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timing, and predictive
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The use of immune checkpoint inhibitors (ICIs) has revolutionized cancer

treatment, particularly in lung cancer. However, their use in patients with pre-

existing autoimmune diseases (PADs) presents unique challenges. PADs, such as

rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and psoriasis,

complicate the clinical management of lung cancer due to concerns about

worsening autoimmune symptoms during ICI therapy. This review summarized

the safety and efficacy of ICIs in lung cancer patients with PAD, focusing on the

available clinical evidence, the optimal timing of ICI initiation, and the potential

predictive biomarkers for immune-related adverse events (irAEs). Future

prospective studies are needed to establish definitive guidelines for the use of

ICIs in this population, with a focus on identifying patients at risk, managing ICI

resumption after irAE and developing new medications with durable control of

both cancer and PAD.
KEYWORDS

lung cancer, immune checkpoint inhibitors (ICBs), immune-related adverse events
(IRAE), autoimmune disease (AD), flare, predictive biomarker
1 Introduction

Immune checkpoints (ICs) are pivotal in maintaining immune homeostasis and self-

tolerance, balancing protective immunity against overactivation of the immune system.

Recently, inhibitory ICs contribute to the immune escape of cancer cells and offer several

therapeutic targets. Immune checkpoint inhibitors (ICIs), which target ICs, such as

cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed death protein 1 (PD-1) or
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programmed death protein ligand 1 (PD-L1), effectively release the

brakes on ICs and restore the anti-tumor immunity (1, 2).

Meanwhile, ICIs stimulate an excessive immune response,

disrupt self-tolerance, and precipitate in immune-related adverse

events (irAEs) that may affect nearly any organ system. The

incidence of any grade irAEs ranges from 20% to 50% of patients,

with most being mild to moderate in severity. Fatal irAEs are rare,

occurring in 0.3-1.3% of patients, with myocarditis being the most

common cause, followed by pneumonitis. Although the exact

pathophysiological mechanisms remain unclear, irAEs are

generally attributed to widespread immune activation, which can

attack normal organs and manifest symptoms resembling

autoimmune diseases (ADs) (3).

To date, the US Food and Drug Administration (FDA) has

approved various PD-1/PD-L1 inhibitors and CTLA-4 inhibitors

for cancer treatment, including in lung cancer patients. However,

research specifically addressing cancer patients with pre-existing

autoimmune diseases (PADs) remains limited. These patients are

routinely excluded from clinical trials due to heightened concerns

about the risk of irAEs and PAD flares.

Lung cancer is the most prevalent malignant tumor, with 14%

to 25% of patients reported to have PADs at diagnosis. With the

increasing use of ICIs and the significant proportion of lung cancer

patients affected by PADs, it is important to assess the safety and

efficacy of these treatments in this unique subgroup. While several

studies have examined ICI safety and efficacy in general cancer

populations (4–6), a comprehensive synthesis of recent evidence

specifically focused on lung cancer remains notably absent from the

literature. This gap is particularly significant given the unique

immunobiological characteristics of pulmonary malignancies and

their distinct response profiles to immunotherapy. While strong
Abbreviations: AE, adverse effect; AD, autoimmune disease; ADCC, antibody-

dependent cytotoxicity; ANA, anti-nuclear antibody; ASCO, American Society of

Clinical Oncology; BOR, best overall response; CTCAE, Common Terminology

Criteria for Adverse Events; CTLA-4, cytotoxic T-lymphocyte antigen 4; DCR,

disease control rate; DMARDs, disease-modifying antirheumatic drugs; ESMO,

European Society for Medical Oncology; FDA, Food and Drug Administration;

IBD, inflammatory bowel disease; ICs, Immune checkpoints; ICIs, Immune

checkpoint inhibitors; ILD, interstitial lung disease; IMDC, immune-mediated

diarrhea and colitis; irAEs, immune-related adverse events; JAK/STAT, Janus

kinase/signal transducer and activator of transcription; MMP, metalloproteinase;

MS, multiple sclerosis; NA, not applicable; NCCN, National Comprehensive

Cancer Network; NCI, National Cancer Institute; NLR, neutrophil-to-

lymphocyte ratio; NSAIDs, nonsteroidal anti-inflammatory drugs; NSCLC,

non-small cell lung cancer; ORR, overall response rate; OS, overall survival;

PAD, pre-existing autoimmune disease; PFS, progression-free survival; PLR,

platelet-to-lymphocyte ratio; PD-1, programmed death protein 1; PD-L1,

programmed death protein ligand 1; pHLIP, pH low insertion peptide; PMR,

polymyalgia rheumatica; RA, rheumatoid arthritis; RNS, reactive nitrogen

species; ROS, reactive oxygen species; SITC, Society for Immunotherapy of

Cancer; SLE, systemic lupus erythematosus; SNP, single nucleotide

polymorphism; SSc, systemic sclerosis; TME, tumor microenvironment; trAEs,

treatment-related adverse events.
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evidence from prospective studies is lacking, numerous case reports

and retrospective studies offer limited insights into the use of ICIs in

patients with PADs.

This review synthesizes current evidence on the use of ICIs in

lung cancer patients with PAD, focusing on their safety and efficacy.

It also explores the optimal timing for ICI administration and

evaluates potential blood-predictive markers for irAEs. The review

aims to deepen the understanding of ICI use in this unique

population, thereby guiding treatment strategies and future

research directions.
2 Lung cancer patients with PAD:
epidemiology and mechanisms

The intersection of cancer and ADs represents a significant

clinical challenge, with 11-25% of cancer patients having PADs (7).

In lung cancer specifically, 14-25% of patients are diagnosed with

PAD before cancer diagnosis (8). The bidirectional relationship

stems from shared pathogenic mechanisms: dysregulated immunity

promotes both autoimmunity and carcinogenesis, while

immunosuppressive therapies impair tumor surveillance (9–11).

Studies confirm organ-specific cancer risks associated with

autoimmune and inflammatory diseases (9, 12–16), particularly

for lung cancer in systemic sclerosis (SSc) (4.2-fold risk) (17),

rheumatoid arthritis (RA) (1.7-fold) (13, 18), systemic lupus

erythematosus (SLE) (1.6-fold) (19). Key mechanisms include

immune system dysregulation, chronic tissue inflammation and

damage caused by immunity overaction, immunosuppressive

treatments, and the shared predisposing factors, as summarized in

Figure 1 (10–13, 20–25). Even when not associated with ADs, the

tumor may coexist during either the active or stable phase of the

disease (26).
2.1 Dysregulated of immune system,
chronic inflammation and tissue damage

ADs create a chronically inflamed microenvironment that

promotes lung carcinogenesis through multiple interconnected

mechanisms (Figure 2). Dysregulated immunity disrupts self-

tolerance with effector T cells (Th1/Th17), B cells, and

macrophages sustaining a pro-tumorigenic cascade (27).

Th17 differentiation (driven by IL-6, TGF-b, and IL-23) and

Th1 responses generate excess IL-17, IFN-g, and TNF-a, activating
macrophages and recruiting cytotoxic CD8(+) T cells and B cells

(28–30). These CD8+ T cells exacerbate tissue damage via perforin/

granzyme B and Fas/FasL-mediated cytotoxicity while secreting

pro-inflammatory cytokines (30, 31).

B cells could contribute through autoantibodies production (via

CD4+ PD1+CXCR5- cells peripheral Tph-cell) (32), triggering

complement fixation and antibody-dependent cytotoxicity

(ADCC) or pro-inflammatory cytokines secretion (IL-1, TNF-a)
to promote inflammation, induce tissue damage, and activate

oncogenic pathways (32, 33).
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While macrophages release matrix metalloproteinase (MMP),

pro-inflammatory cytokines (IL-1, IL-6, IL-8, etc.) and reactive

oxygen species (ROS)/reactive nitrogen species (RNS) that induce

DNA damage and genomic instability (34, 35). Otherwise, the

induction of anti-inflammatory cytokines, such as TGF-b and IL-

10, is reduced (35, 36).

M2 macrophages secrete IL-10 and TGF-b, while Th2/ILC2-

derived IL-5 promotes M2 polarization, suppressing M1-mediated

inflammation (33). This M1/M2 imbalance contributes to both AD

pathogenesis and cancer development (37–39). Concurrently, ADs

exhibit impaired Treg function, leading to defective immune

regulation and uncontrolled tissue damage (39). Notably, chronic

upregulation of immune checkpoints (PD-1/CTLA-4) in ADs may

paradoxically facilitate immune evasion by pre-malignant cells

(40, 41).

This vicious cycle of tissue damage, defective repair, and impaired

surveillance creates an ideal niche for malignant transformation.
2.2 Immunosuppressive treatments

Immunosuppressive therapies play a crucial role in managing ADs

but carry significant oncogenic risks. Widely used biologic agents

including TNF-a inhibitors (e.g., infliximab, adalimumab) and IL-6

antagonists (e.g., tocilizumab) exert broad immunosuppressive effects

that compromise critical antitumor immune mechanisms (42, 43). By

inhibiting key inflammatory pathways, these treatments impair

dendritic cell maturation, CD8+ T cell cytotoxicity, and NK cell
Frontiers in Immunology 03
surveillance - creating permissive conditions for malignant cell

escape and proliferation. Clinical studies demonstrate that prolonged

use (>2 years) of immunosuppressive therapies correlate with a 1.3-2.5-

fold increased malignancy risk, particularly for non-melanoma skin

cancers and lymphoproliferative disorders (42). This risk-benefit

paradox necessitates careful monitoring of AD patients receiving

chronic immunosuppressive therapy, particularly those with

additional cancer risk factors such as smoking history or family

predisposition (43).
2.3 Shared predisposing factors

Growing evidence highlights overlapping etiological factors

between ADs and lung cancer. Genetically, shared signatures

include susceptibility single nucleotide polymorphism (SNP)

(rs13194781, rs1270942) linking SLE to lung carcinogenesis (44),

as well as ferroptosis-related genes (FANCD2, HELLS, VLDLR)

shared by RA and lung cancer (45). The immune-regulator PDE4A

further demonstrates mechanistic convergence in lung cancer and

multiple sclerosis (MS) (46).

Environmental and lifestyle factors synergistically promote both

disease groups. Smoking, the predominant risk factor for lung

cancer, concurrently activates pro-inflammatory pathways

implicated in RA, SLE, SSc, and MS development (22, 47).

Additional shared risks include alcohol consumption, obesity,

occupational exposures (e.g., crystalline silica) (16, 18). The gut-

lung axis further connects these conditions, where microbiota
FIGURE 1

Pathogenic mechanisms linking PADs to lung cancer development.
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dysbiosis impairs immune homeostasis and facilitates IL-25-

mediated recruitment of inflammatory lymphoid cells to

pulmonary tissues (48–50).

Pulmonary complications of ADs substantially elevate cancer

risk. Chronic inflammation in SSs and RA drives pulmonary

fibrosis, a condition characterized by thickened and scarred lung

tissue (13, 14), inducing hypoxia and mutagenesis that predispose

to malignant transformation (23). Notably, patients with

scleroderma-associated interstitial lung disease (ILD) exhibit

exceptional vulnerability to lung cancer, underscoring the need

for vigilant monitoring in this population (24, 25).
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3 Clinical evidences for ICIs in lung
cancer patients with PAD: safety and
efficacy

ICIs are becoming a common and effective way to fight lung

cancer through immune regulation. Up to 80% of patients treated

with ICIs develop irAEs, with the first irAEs occurring 3–6 months

after the start of ICI treatment (51–53). IrAEs can affect any organ

but most commonly affect the skin, gastrointestinal tract, liver,

lungs and endocrine glands. Although irAEs are usually mild and
FIGURE 2

Immune dysregulation pathways in autoimmune diseases contributing to chronic inflammation and tissue damage. 1) CD4(+) T cells differentiate into
Th1/17 cells and produce excessive pro-inflammatory cytokines. 2) Cytotoxic CD8+ T cells produce perforin and granzyme B, induce Fas/FasL-
mediated cytotoxicity and the secretion of pro-inflammatory cytokines, thereby contributing to tissue damage. 3) B cells differentiate into plasma
cells and secrete autoantibodies to trigger tissue damage through complement fixation and ADCC. Some B cells secrete multiple pro-inflammatory
cytokines. 4) Macrophages polarize to a pro-inflammatory phenotype and release MMP, pro-inflammatory cytokines and small-molecule mediators
of inflammation (such as ROS and RNS). Th2, ILC2 and eosinophil regulate the differentiation of macrophages to the M2 phenotype, which could
secret anti-inflammatory cytokines. 5) Treg secret anti-inflammatory cytokines to suppress pathogenic T cells.
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can be managed by clinicians, few can be life-threatening (54). The

most common serious irAEs are pneumonitis and colitis, while

myocarditis is the irAE with the highest mortality rate (53, 55).

Although the pathogenesis of irAEs is still not fully understood,

the over-activation of immunity is very similar to ADs. IrAEs may

develop through a combination of pathways involving autoreactive

T cells, autoantibodies, and cytokines. Briefly, ICI therapy inhibits

the combination of ICs and their gland, thus removing the

inhibitory signals and causing aberrant activation of T cells,

further leading to the production of autoantibodies and

inflammatory cytokines, regulating immune cells and finally

contributing to the development of irAEs (55, 56).

Cancer patients with PAD were thought to be at increased risk

of flares or de novo irAEs following ICI treatment due to their pre-

activated immune system (57) and were excluded from clinical

trials. Given the increasing global incidence and prevalence of ADs

worldwide, this raises important questions about the safety and

efficacy of ICI treatment in these patients (58). However, their

absence from clinical trials makes it difficult to consider the safety

and efficacy of ICIs in this population (59).

The association of PAD with the risk of irAEs and survival has

been controversial in various studies. Previous studies have shown

that in patients with PAD treated with ICIs, 25-50% develop PAD

flares, while approximately 16-40% develop de novo irAEs, and 24-

46% discontinue ICIs due to irAEs (60, 61). Analyses of

retrospective studies and the SEER database suggest that the

development of flare or de novo irAEs after ICI initiation is more

common in patients with PAD (62–64). A meta-analysis combining

95 studies with 23,897 patients has reported that patients with PAD

were 30% more likely to report an irAE than patients without PAD

(61). However, some studies have shown that there is no association

between PAD and the incidence or severity of irAEs (65, 66). In

terms of efficacy, some studies have even reported that patients with

PAD had an increased progression-free survival (PFS) or overall

survival (OS) when treated with ICIs compared to patients without

PAD (63–65). In the meta-analysis, there were no statistically

significant differences in cancer response to ICIs between patients

with and without PAD (61).

A meta-analysis focusing on lung cancer included 250 non-

small cell lung cancer (NSCLC) patients with PAD from 9 cohort

studies (67). The incidence of PAD flare was 23% (95% CI: 9%-

40%). PAD was associated with an increased risk of any grade and

grade 3–4 de novo irAE. More discontinuations were observed in

patients with PAD (10% vs. 3%). PAD was also associated with a

better tumor response (complete response/partial response).

However, this meta-analysis included three studies with

interstitial lung disease (ILD) patients, those who may not be AD

patients. Due to the small sample size and a high heterogeneity, the

safety and efficacy of ICIs in lung cancer with PAD may be different

from the results in all cancer populations. Without sufficient clinical

evidence, it is difficult for clinicians to make decisions about how to

treat this unique patient population.

To illustrate the use of ICI in lung cancer patients with PAD, we

conducted a comprehensive search of MEDLINE, EMBASE, Web of

Science, PubMed, and the Cochrane Library databases for studies of
Frontiers in Immunology 05
NSCLC patients with PAD who received ICI treatment. After

removing studies with no usable data and duplicate studies, we

identified 19 retrospective studies (68–87). We did not include the

case reports or case series to avoid bias. Eleven studies are specific to

lung cancer (68, 69, 72, 73, 75, 77, 79, 81–84, 87), and seven studies

have more than one type of cancer from which we can get data on

lung cancer (70, 71, 74, 76, 78, 80, 85, 86). Of these, 13 studies with

468 patients were able to provide safety data and 15 studies with 997

patients provided efficacy data. We have summarized the safety and

efficacy data in Table 1.

The majority of patients had NSCLC, with only two patients

having small cell lung cancer. The ICIs used in these studies include

PD-1 inhibitors (nivolumab, pembrolizumab), PD-L1 inhibitors

(atezolizumab, durvalumab), CTLA-4 inhibitor (ipilimumab), and

the combination. In the 190 patients with detailed PAD data from

seven studies (68, 70, 76, 79, 84, 86, 87), we find 50.0% of patients

have rheumatological PAD, followed by endocrine PAD (18.4%),

dermatological PAD (14.7%) and neurological (7.9%). RA is the

most common PAD, occurring in 25.8% of patients (49/190),

followed by psoriasis and thyroiditis. The grade ≥3 irAEs are

colitis (n=1), diarrhea (n=1), hepatitis dysfunction (n=2), and

pneumonitis (n=1).
3.1 Safety of ICIs in lung cancer patients
with PAD

The rate of PAD flares was reported in 11 studies, ranging from

5.9% to 33.3%, and the incidence of grade ≥ 3 flares was 0-10.0%.

The incidence of de novo irAEs of any grade in the 12 included

studies ranged from 12.5% to 90.0%, with only two studies reporting

an incidence greater than 50%. The incidence of grade ≥ 3 de novo

irAEs was reported in 3.3%-26.0% of patients in seven studies and

was less than 10.0% in 50.0% of studies. Permanent discontinuation

of ICIs due to flares or de novo irAEs was reported in 6.7-38.0% of

patients from six studies.

Some studies have reported that the risk and severity of irAEs in

patients with PAD are similar to those in the overall population (78,

81). Higgins et al. reported that the PAD group tended to have a

higher incidence of irAEs (42.9% vs. 32.7%), although not

statistically significant (p = 0.130) (82). The incidence of grade ≥

3 irAEs was reported to be unaffected by PAD (79, 87). Two studies

even reported a lower incidence of grade ≥ 3 irAEs in the PAD

group, although the difference was not significant (82, 83).

Any grade and grade ≥ 3 flare/de novo irAEs were not increased

compared to patients without PAD. Ansel et al. showed that low-

grade adrenal insufficiency was the only irAE that occurred

significantly in the PAD group (p = 0.02) (84). Ardizzoni et al.

found a moderate increase of respiratory or gastrointestinal AEs in

patients with PAD (81). Ohe et al. reported that the incidence of

grade ≥ 3 irAEs was higher in patients with a history of ILD (18.4%

vs. 9.4%, p = 0.0056) or current ILD (24.6% vs. 8.9%, p < 0.0001)

compared to the patients without ILD (83).

So far, based on the limited data, ICI treatment appears to be

relatively safe for lung cancer patients with PAD. Larger trials could
frontiersin.org
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Study ICI target Duration Cancer No. Any
grade

≥grade
3

Any
grade

≥grade
3

Leonardi 2018 (68) PD(L)‐1 2015-2017 NSCLC 56 23.2% 3.6% 37.5% 10.7%

Pease 2018 (69) PD-1 2015-2016 NSCLC 9 11.1% – – –

Cytryn 2019 (70) NA 2011-2018
Lung
cancer

29 27.6% NA 34.5% 6.9%

Khozin 2019 (72) NA 2011-2018 NSCLC 538 – – – –

Tison 2018 (71),
2019 (73)

PD(L)‐1 2017-2018 NSCLC 40 – – – –

Alexander 2021 (74) PD(L)‐1 2015-2018
Lung
cancer

11 – – – –

Calvo 2021 (76) PD-1 2016-2018 NSCLC 6 33.3% – – –

Debieuvre 2021 (77) PD-1 2016-2019 NSCLC 60 – – 35.0% 8.3%

Fountzilas 2021 (78)
PD(L)‐1 , CTLA-4
and combination

2014-2021 NSCLC 77 – – – –

Sawhney 2021 (79) NA 2017-2020 NSCLC 8 12.5% 0 12.5% 12.5%

Zhang 2021 (80) PD(L)‐1 2015-2018
Lung
cancer

17 5.9% – 23.5% –

Ardizzoni 2021 (75) and
2022 (81)

PD-L1 2017-2018 NSCLC 30 – – 13.30% 3.3%

Higgins 2022 (82) PD-1 2014-2019
Lung
cancer

19 – – – –

Ohe 2022a (83) PD-L1 2018 NSCLC 27 – – 33.80% 7.4%

Ohe 2022b (83) PD-L1 2018 NSCLC 98 – – 32.30% 8.2%

Ansel 2023 (84) PD-1 2017-2018 NSCLC 10 30.0% 10.0% 90.0% 10.0%

Reid 2023 (85) PD-1 2016-2019 NSCLC 25 23.0% – 27.0% 4.0%

Reid 2023 (85) PD-1+ CTLA-4 2016-2019 NSCLC 16 18.0% – 71.0% 26.0%

Androdias 2024 (86) PD(L)‐1 2019-2022 NSCLC 8 12.5% – – –

Asao 2024 (87) PD-1 2010-2020 NSCLC 69 25.40% – 45.10% 23.9%

Ohe 2022a (83) included 27 patients had a medical history of autoimmune disorders, and Ohe 2022b (83) included 98 patients were experiencing an autoimmune disorder
d
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provide more details about which patients need to be monitored

closely and what AEs may occur.
3.2 Efficacy of ICIs in lung cancer patients
with PAD

Two multicenter studies reported that ICIs were beneficial in

lung cancer patients with PAD compared with non-ICI treatments

(87, 88). Among the included studies, the overall response rate

(ORR) ranged from 22.0% to 71.4% in six studies, and the disease

control rate (DCR) ranged from 50.0% to 96.0% in five studies.

Median PFS ranged from 2.9 to 16.5 months in eight studies, and

median OS ranged from 8.5 to 29.1 months in ten studies.

Ardizzoni et al. reported a slightly shorter median OS in the

PAD group compared with patients without PAD (10.1 vs. 11.2

months) (81). Most studies reported that the presence of PAD did

not affect survival (68, 72, 79, 88). Higgins et al. even showed that

patients with PAD tended to have longer median PFS (5.5 vs. 3.5

months, p = 0.8551) and median OS (17.2 vs. 14.4 months, p =

0.991) (82). Data are still limited to answer the question of the

efficacy of ICIs in lung cancer patients with PAD.
3.3 Combination therapy: ICI and
chemotherapy

Asao et al. included 69 NSCLC patients with PAD and

compared the safety and efficacy of ICI monotherapy and the

combination with cytotoxic chemotherapy (87). PAD flares were

more frequent with combination treatment than with ICI

monotherapy, although the difference was not significant (35.7%

vs. 22.8%, p = 0.32). There were no significant differences in the

incidence of de novo irAEs between combination treatment and ICI

monotherapy (combination vs. monotherapy: all-grade irAEs:

50.0% vs. 43.9%, p = 0.68; grade ≥ 3 irAEs: 21.4% vs. 24.6%, p >

0.99). PAD exacerbations were more likely when NSCLC was

diagnosed within one year after the diagnosis of AD (p = 0.016).

When adjusted by inverse probability weighting, the use of ICI

could prolong survival in NSCLC patients with PAD (p = 0.0006).

Although the rates of flares and irAEs tended to be higher with

combination therapy, the differences were not significant,

supporting the feasibility of combining ICI and chemotherapy in

patients with NSCLC and PAD. Physicians need to be cautious

when treating patients within a short time after diagnosis of PAD.
3.4 Dual therapy: combination of PD-1 and
CTLA-4 inhibitors

Reid et al. enrolled 25 lung patients treated with PD-1 inhibitors

and 16 lung patients received the combination of PD-1 and CTLA-4

inhibitors (85). The dual therapy showed an increased incidence of

PAD flares, and any grade/high grade de novo irAEs compared to

PD-1 inhibitor alone, but was not significantly different (dual
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therapy vs. monotherapy: flares: 18% vs. 23%, p = 0.36; any grade

de novo irAEs: 71% vs. 27%, p = 0.12; high grade de novo irAEs: 26%

vs. 4%, p = 0.17).

Thus, the combination use of PD-1 and CTLA-4 inhibitors does

not increase the risk of flare or de novo irAEs and could be used in

lung cancer patients with PAD.
3.5 The association between irAEs and
clinical outcomes

Recently, it has been suggested that irAEs may be associated

with therapeutic response and may serve as survival predictor.

Tison et al. found that flare/de novo irAE was associated with

prolonged PFS in cancer patients with PAD treated with ICIs (p =

0.026) (73). In addition, Fukihara et al. reported that pneumonitis is

associated with poor outcomes in NSCLC patients treated with PD-

1 inhibitors (89). However, Cytryn et al. reported no statistically

significant association between survival and the presence of irAE

(70). The relationship between irAEs and clinical response has not

been fully investigated. Further studies are needed to evaluate the

correlation between the flares, irAEs, their severity, organ site and

efficacy (90).

These studies have shown that ICIs are effective, often leading to

durable responses with tolerable toxicity. Physicians should

consider using ICIs in lung cancer patients with PAD. Combining

an ICI with chemotherapy or using two types of ICI is also

acceptable. Notably, the ongoing NCT03816345 phase Ib trial

(National Cancer Institute (NCI)-sponsored) aims to enroll 300

patients with advanced cancer and PADs (RA, SLE, inflammatory

bowel disease (IBD), SSc, psoriasis, etc.) to evaluate nivolumab

safety and biomarkers (completion: 2026-08-31). This may provide

the first high-quality data on irAE patterns in specific PADs (91).

The use of ICIs in this population remains challenging and further

prospective, controlled studies are needed.
4 Optimal timing of ICI treatment in
lung cancer patients with PAD

To determine the optimal timing of ICI treatment, we need to

balance clinical benefit and toxicity. Because of the underlying

mortality associated with cancer, the short-term risk of death

from cancer may outweigh the risk of worsening of AD or

induction of irAEs. Patient assessment by a multidisciplinary

team is required to make clinical decisions.
4.1 PAD status

We focused on the relationship between PAD status and the

safety of ICI use. Patients can be divided into active status and

inactive status. Leonardi et al. reported on 56 NSCLC patients with

PAD who were treated with PD-1 inhibitors, and the patients with

active PAD were the majority of those who experienced flares (7).
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Cortellini et al. showed that inactive patients had fewer irAEs and a

better prognosis in cancer patients treated with PD-1 inhibitors

compared to patients with active PAD (66). Two meta-analyses

reported no differences in the presentation of flares/irAEs and ORR

between patients with active and inactive PAD (92, 93). Khozin

et al. also found there was no association between PAD status and

outcomes in NSCLC patients but reported higher rates of selected

AEs, including endocrine, gastrointestinal and hematological

disorders, in patients with active PAD (72).

Therefore, it is generally safe to receive ICIs when PAD is well

controlled. For those whose disease is not yet under control, there is

a high likelihood of flares/irAEs. Disease status must be considered

and carefully evaluated before starting treatment and during

ICI therapy.
4.2 Baseline use of immunomodulatory
medications

The management of immunomodulatory medications prior to

ICI initiation requires careful consideration of both AD control and

potential impacts on cancer outcomes. These agents can be

categorized into three cl inical ly relevant classes : (1)

corticosteroids, (2) conventional disease-modifying antirheumatic

drugs (DMARDs; e.g., methotrexate), and (3) biologics/targeted

therapies (e.g., TNF inhibitors, IL-6 antagonists) (94). Current

evidence suggests differential effects based on medication class.

Cytryn et al. (70) demonstrated that overall immunomodulator

use at ICI initiation was not associated with increased AD flares/

irAEs or survival differences, while Leonardi et al. (7) specifically

found no association between immunomodulators (including both

corticosteroids and steroid-sparing agents) and ICI response rates

(p = 0.66). The meta-analysis found that these agents may

paradoxically reduce severe irAE risk (29.4% vs 70.0%, p = 0.007)

while maintaining comparable overall immunotoxicity profiles

(43.2% vs 58.3%, p = 0.148) (95).

However, corticosteroid-specific analyses reveal significant

concerns; Fountzilas et al. (78) reported significantly poorer PFS

in patients receiving baseline corticosteroids (p = 0.003), a finding

supported by two additional studies (73, 85) and confirmed in a

recent pooled analysis of six clinical trials by Verheijden et al. (96),

which showed reduced objective response rates (ORR: 28% vs. 42%)

and shorter PFS (HR: 1.54) with corticosteroid use for treatment-

related adverse events (trAEs).

Data on DMARDs and biologics remain limited but suggest

intermediate effects. While they appear less detrimental than

corticosteroids for ICI efficacy, their immunomodulatory

mechanisms may still partially interfere with checkpoint blockade.

Notably, the reduced severe irAE risk seen with immunosuppressive

therapy overall may be particularly relevant for this class (95).

These findings indicate that while baseline immunomodulators

—especially corticosteroids—may reduce ICI efficacy, they do not

elevate flare risk and could potentially decrease severe immune-

related toxicity. Consequently, clinical practice should prioritize: (1)
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initiating ICIs during AD quiescence, (2) minimizing pre-ICI

corticosteroids to <10 mg/day prednisone-equivalent (preferably

≤7.5 mg/day for maintenance therapy (97), and (3) favoring

steroid-sparing immunomodulators when continuous treatment is

required. This strategy achieves optimal balance between preserving

antitumor immunity and maintaining AD control.
4.3 PAD Type

Different PADs may pose different risks to patients receiving

ICI treatment. Previous studies have found that flares are more

common in patients with pre-existing psoriasis/psoriatic arthritis

(39%), IBD (37%) and RA (36%) (63). Gutzmer et al. noted that

PAD flares appeared to be more common in patients with

rheumatological PAD and psoriasis (98). Alexander et al. found

that patients with rheumatological PAD had a significantly higher

incidence of flares than patients with non-rheumatological PAD

(74). Patients with RA also have a higher incidence of all-grade and

severe irAEs (65).

In our review, 50.0% of patients have rheumatological PAD,

followed by endocrine PAD (18.4%), dermatological PAD (14.7%)

and neurological (7.9%). RA is the most prevalent PAD, occurring

in 25.8% of cases (49/190), followed by psoriasis and thyroiditis.

RA patients could be well-controlled by DMARDs, biologics, or

low-dose steroids (99, 100). So, ICIs could be started in these stable

patients stopped their DMARDs or controlled by low-dose. If RA

flares occur post-ICI, they typically present as joint pain, swelling,

or stiffness but are rarely severe or life-threatening. Flares can often

be managed with corticosteroids, nonsteroidal anti-inflammatory

drugs (NSAIDs), or escalation of RA therapy without requiring ICI

discontinuation and did not appear to negatively impact the tumor

response to immunotherapy (101, 102).

Psoriasis is often mild-to-moderate and well-controlled with

topical agents, phototherapy, or systemic therapies (e.g.,

methotrexate, biologics) (103). ICI-induced psoriasis flares usually

manifest as worsening skin plaques or new-onset psoriatic lesions,

but severe cases (e.g., erythroderma, pustular psoriasis) are rare.

Most flares respond to topical steroids, methotrexate, or biologics

without needing ICI cessation (6, 103, 104).

Patients with thyroiditis always have stable thyroid function on

hormone replacement (levothyroxine) or antithyroid medications.

ICIs commonly induce hypothyroidism (more frequent) or

transient hyperthyroidism, but thyroid storms or life-threatening

dysfunction are rare (93). Monitoring TSH/T4 and adjusting

thyroid medications usually suffice (105).

Since ICIs may be the most effective treatment option for

advanced lung cancer, and even the only choice for those

intolerance to chemotherapy and unsuitable to target treatment,

the benefits often outweigh the risks of RA exacerbation,

particularly when PADs are manageable with low-dose of

medications. It is importance to individually assess the risk-

benefit rather than blanket avoidance. Thus, physicians should

consider the type of PAD when deciding whether to treat with
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ICIs, especially rheumatological PAD. Cancer patients with

rheumatological PAD may require careful stabilization and

possibly delayed use of ICIs.
4.4 ICI type

PAD flares were increased in patients receiving PD-1/PD-L1

inhibitors, while de novo irAEs were observed more frequently in

patients receiving CTLA-4 inhibitors (95). Postow et al. reported

that colitis and hypophysitis seem to be more common with CTLA-

4 inhibitors, whereas pneumonitis and thyroiditis are more

common with PD-1 inhibitors (51).

The risk of irAEs was lower in patients on monotherapy

compared to combination therapy (85, 95). Reid et al. reported

that patients with gastrointestinal PAD were more likely to

experience flares with combination ICI therapy, and patients with

dermatological or endocrine PAD had a lower incidence of de novo

irAEs with monotherapy (85).

Therefore, physicians should be cautious when using a

combination of PD-1/PD-L1 inhibitors and CTLA-1 inhibitors in

patients with gastrointestinal, dermatological or endocrine PAD.
4.5 Cancer stage and progression

Patients with advanced or rapidly progressing lung cancer may

need earlier ICIs to effectively control disease progression. In early,

slow-progressing cases with PAD, delaying ICIs until the PAD is

better controlled may be a safer approach (106).

In conclusion, the optimal timing of ICIs in lung cancer patients

with PAD should be personalized based on the status and type of

PAD, the use of immunoregulatory treatment, the type of ICI used,

and the stage of lung cancer. It is generally recommended to start

ICI treatment when PAD is stable. Minimal immunosuppression at

the initiation of ICI must be achieved by stopping or minimizing the

dose of medications in quiescent patients. It is important to use low-

dose immunosuppression treatment to prevent flares and to avoid

further delay of ICI initiation in some patients. The timing of ICI

can be complicated by the high heterogeneity of PAD. Experienced

multidisciplinary team discussions, involving oncologists,

rheumatologists, and other specialists, are essential for optimal

timing and management.
5 Predictive biomarkers of irAEs after
ICI initiation

PAD flares or irAEs generally improve with the discontinuation

of ICIs with or without the administration of immunosuppressive

therapy. However, several case reports raise concerns about the

potentially irreversible morbidity of irAEs. Prediction and early

recognition are crucial to optimizing therapy, avoiding

discontinuation of ICI, and preventing morbidity and mortality.

Currently, there is no reliable biomarkers correlating with risk of
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irAEs. Considering blood as a non-invasive and convenient origin

for tests. We focused on potential blood biomarkers based on cancer

patients without PADs and summarized the advances.
5.1 Autoantibodies

Autoantibodies detected at the baseline and during treatment in

cancer patients treated with ICI may predict the incidence of irAE

(107). Sakakida et al. reported that positive anti-nuclear antibody

(ANA) was associated with a higher risk of ICI-mediated colitis, but

not with classic ANA-associated ADs such as SLE and scleroderma

(108). Osorio et al. found that the baseline levels of anti-

thyroglobulin and anti-thyroid peroxidase antibodies were higher

in NSCLC patients who developed thyroiditis after the PD-1

inhibitor treatment (109). In a retrospective study of NSCLC

patients treated with PD-1 inhibitors, pre-existing ANA,

rheumatoid factor, anti-thyroglobulin and anti-thyroid peroxidase

antibody positivity correlated with the development of irAEs, but

also with clinical benefit from ICIs (110).

Another study reported that patients who experienced irAEs

had a low baseline autoantibody level, which increased significantly

after initiation of ICI therapy (111). This may suggest that the

dynamic change may be more useful for the early recognition

of irAEs.

The likely mechanism is that PD-1/PD-L1 blockade or deletion

of PD-1 can led to increased B cell proliferation and antibody

response to T cell-independent antigens (112), resulting in

autoantibody expansion and subsequent irAE development.

Monitoring the dynamic change of relevant autoantibodies at

baseline will help to identify high-risk patients and detect the

early onset of irAEs during ICI treatment.
5.2 Cytokines

As irAE is a result of over-activation of the immune system,

baseline and dynamic changes in cytokines have been extensively

studied to predict irAE. Lower baseline levels of TNF-a, IL-6, IL-8,
IL-15, CXCL9, CXCL10, CXCL11, and CXCL19 and higher baseline

levels of IL-17 or IL-6 are associated with a high risk of irAE (113–

117). High levels of IL-17 (114) and IL-6 (115) were also found to

correlate with high-grade irAEs. Baseline Ang-1 (p = 0.005) and

CD40L (p = 0.006) were significantly increased in patients who

developed dermatitis, compared to those who did not. Patients

who developed pneumonitis had significantly elevated baseline IL-

17 (p = 0.009) and trends towards decreased baseline IL-8 (p = 0.06)

and IL-15 (p = 0.06). In patients who developed colitis, there was a

trend towards decreased baseline GCSF (p = 0.08) (116).

Significant increases in the levels of IFN-g, IL-6, GM-CSF,

CCL5, CXCL9, and CXCL10 levels after treatment are associated

with irAE (113, 115, 118, 119). Elevated levels of IL-6 are associated

with severe irAEs, particularly colitis (115). IL-17 has been observed

to be elevated in patients with ipilimumab-induced colitis (120).

Significant downregulation of MICA, CX3-CL1 or VEGF-A is
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associated with dermatitis (116). Patients who developed

pneumonitis had significant upregulation of MICB, IL-2, IL-17,

IFN-g and CCL4 (116).
5.3 Gene expression

Whole blood could provide gene expression information that

associated with the risk of irAE. The SNP rs2910164 at baseline and

during ICI therapy, which leads to reduced miR-146a expression,

was associated with an increased risk of developing severe irAEs,

and reduced PFS (121). Other SNPs, such as rs11743438 and

rs3026321, mapped to genes that associated with inflammation

and ADs and led to the development of irAEs (122). Friedlander

et al. used whole-blood RNA transcript-based gene signatures and

reported a 16-gene signature panel to detect severe colitis/diarrhea

in patients with advanced melanoma treated with the CTLA-4

inhibitors (123). When using the next-generation sequencing

technique to test the circulating tumor DNA in blood samples,

the baseline expression of several immune-related genes, including

CD3E, CD37, CD4, and IL-32, is associated with increased

gastrointestinal irAEs. In particular, increased expression of

CD177 and CEACAM1gene, two neutrophil-activation markers,

were closely associated with gastrointestinal irAEs and early

predictors (124). Researchers found gastric cancer patients with

alterations in CEBPA, FGFR4, MET, or KMT2B gene had a greater

likelihood of irAEs (p = 0.09) (125).

Since T and B lymphocytes are also important mediators of

immune tolerance and play a crucial role in the occurrence of irAEs.

Peripheral CD8+ T cell clonal expansion has been found to

correlate with the development of severe irAEs in cancer patients

treated with CTLA-4 inhibitors (126, 127).
5.4 Routine blood count

Routine blood count could provide information about immune

conditions and serve as valuable indicators of irAE risk. High

absolute lymphocyte count, low absolute neutrophil count, low

absolute monocyte count, and low neutrophil-to-lymphocyte ratio

(NLR) before and during ICI treatment are associated with irAE

onset in cancer patients with ICI treatment (128). Pavan A et al.

reported that low NLR and platelet-to-lymphocyte ratio (PLR) at

baseline were significantly associated with the development of irAEs

(129). A high absolute lymphocyte count has been associated with

an increased risk of irAEs, possibly due to increased immune

reactivity (130). A high level of baseline absolute eosinophil count

is an indicator of ICI-associated pneumonitis (130). Increased total

white blood cell count and decreased relative lymphocyte count are

associated with severe irAEs or lung/gastrointestinal irAEs (131)

and a significant increase of C-reactive protein is an early marker of

irAE (132).

In summary, some results of the current studies are

controversial, further research is needed to validate these

biomarkers in large prospective trials and to develop predictive
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panels to stratify patients by risk in cancer patients with PAD

undergoing ICI therapy.
6 Safe use of ICIs in lung cancer
patients with PAD

6.1 Improving the treatment strategies

Oncologists should be familiar with the manifestations of ADs,

risk factors for irAEs, and related therapeutic medications. A

multidisciplinary team including rheumatologists, gastroenterologists,

endocrinologists, neurologists and dermatologists is essential (56).

Before ICI treatment, physicians must perform a baseline medical

history, physical examination, appropriate laboratory tests, and

imaging tests to assess the risk of flares/irAEs and determine the

optimal timing of ICIs based on the cancer stage, PAD status (active/

inactive) and type (mild/life-threatening), and the use of

immunoregulatory treatments. Predictive biomarkers can be used to

determine the likelihood of irAEs and the possible irAEs, and may also

aid in early detection and intervention, which could reduce the

duration and severity of irAEs (133).

Physicians need to discuss the symptoms and signs of possible

irAEs with patients and their families. Education and

communication will enable patients to recognize irAEs early and

seek timely medical help, especially when patients are discharged

from hospital. As there are no clear recommendations available, we

recommend a treatment process for lung cancer patients with PAD

is illustrated in Figure 3, the strategy may vary depending on the

type of pre-existing autoimmune disease.

In inactive patients, ICI can be started after discontinuing or

minimizing the use of immunoregulatory therapy. The type of ICI

or its combination with chemotherapy or a different type of ICI

should be discussed personally.

In patients with active PAD, clinicians should weigh the

potential benefits of ICIs against the possible AEs. In advanced

cancer patients with rapid progression, there may be no other

options other than ICIs. If the PAD is mild with acceptable possible

AEs, ICI should be used with close monitoring. If the PAD is also

severe with life-threatening symptoms, proper control is required

before immunotherapy can be started. For active patients with early

or slowly progressing cancer, it’s better to delay the use of ICIs and

control the PAD at first. Then, re-evaluate the possibility of using

ICIs and use ICIs if the PAD becomes inactive.

Once ICI treatment is started, it is important to conduct regular

examinations. Abnormal findings on relevant tests will help in the

early detection offlares/irAEs. The management of irAEs in patients

treated with ICIs should always be considered. There is no specific

guideline for ICI treatment in cancer patients with PAD; we refer to

the recommendations of the National Comprehensive Cancer

Network (NCCN) (97), the Society for Immunotherapy of Cancer

(SITC) (134, 135), the American Society of Clinical Oncology

(ASCO) (136, 137), and the European Society for Medical

Onco logy (ESMO) (138) for the i rAE management

recommendations. IrAEs are graded from 1 to 5 according to the
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severity based on the Common Terminology Criteria for Adverse

Events (CTCAE). Briefly, discontinuation of ICIs is not necessary

for grade 1 irAEs if close monitoring is feasible, whereas temporary

withholding of ICIs and moderate systemic corticosteroids should

be considered for most grade 2 toxicities. ICIs are resumed when

toxicity decreases to grade 1 or symptoms resolve. For grade 3

irAEs, ICIs should be discontinued and high-dose corticosteroids

should be started and tapered over 4–6 weeks. If symptoms worsen,

steroid-sparing biologic immunosuppressants such as TNF-a
inhibitors or IL-6 antagonists should be considered. For grade 4

irAEs, permanent discontinuation of ICIs is recommended. With

proper management, most irAEs in cancer patients with PAD

resolve, and only few patients discontinue using ICIs.
6.2 Managing the resumption of ICIs after
flares/irAEs

When the flares/irAEs improve with treatment, the physicians

will consider resuming ICI treatment. Here we summarize the

previous research and try to make some suggestions.

Allouchery et al. reported 180 patients from the French

pharmacovigilance database who experienced at least one grade

≥2 irAE leading to ICI discontinuation; 41.4% were lung cancer

patients (139). 61.1% of patients had no grade ≥2 irAEs after ICI

resumption. Among patients who experienced a recurrent irAE,

70% had their initial irAE, 25.7% had a de novo irAE, and 4.3% had

both. Most patients (68.6%) required corticosteroids, and 8.6%

required immunosuppressive medications. No deaths related to

recurrent irAE were reported, and 76.6% of second irAEs resolved

to grade 1 or lower (139).
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There is a lack of data on the risk factors associated with irAE

recurrence. Allouchery et al. found that initial gastrointestinal irAEs

were more likely to recur (p = 0.007), whereas initial endocrine

irAEs were associated with lower rates of irAE recurrence (p =

0.003) (139). Dolladille et al. reported that colitis (p = 0.01),

hepatitis (p = 0.01), and pneumonitis (p = 0.01) were associated

with a higher recurrence rate, whereas adrenal events were

associated with a lower recurrence rate (p = 0.03) (140).

However, Pollack et al. reported that colitis/diarrhea recurred less

frequently than other irAEs (6% vs. 28%, p = 0.01) (141).

Abu-Sbeih et al. reported a multicenter retrospective study

focusing on patients treated with ICI treatment after the onset of

immune-mediated diarrhea and colitis (IMDC) (142). IMDC

recurred in 34% of patients; 81% of the recurrences required

corticosteroid therapy and 12% required the addition of

infliximab or vedolizumab. IMDC recurred in 44% of patients

who resumed CTLA-4 inhibitors and in 32% of whom resumed

PD-1/L1 inhibitors. Multivariate analysis showed that risk factors

significantly associated with IMDC recurrence were the initial need

for immunosuppressive therapy (p = 0.019) and the longer duration

of initial IMDC symptoms (p = 0.031) (142). Initial use of PD-1/L1

inhibitors was higher risk of IMDC recurrence than CTLA-4

inhibitors (p = 0.002). However, PD-1/L1 inhibitor resumption

had lower risk of recurrence than CTLA-4 inhibitors resumption,

regardless of the type of initial ICI (p = 0.019) (142). Pollack et al.

studied 80 patients who discontinued PD-1 and CTLA-4 inhibitor

combination therapy due to irAEs. Of these, 96% received

corticosteroids and 21% received additional immunosuppressive

treatment. All patients were resumed on PD-1 inhibitors, and

patients with initial colitis or hypophysitis could safely resume

PD-1 inhibitors (141). However, Allouchery et al. reported that the
FIGURE 3

The recommended treatment process for lung cancer patients with PADs. The strategy may vary depending on the type of PADs.
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resumption of the same ICI treatment was associated with a lower

rate of irAE recurrence (77.1% vs. 90%, p = 0.02) (139).

The reported duration before resumption ranged from 0.9 to 6.3

months (139–145). Sminonaggio et al. reported that a shorter time

to the first irAE was associated with the occurrence of a second irAE

(9 vs. 15 weeks, p = 0.04) (143). However, Allouchery et al. reported

that the duration from ICI discontinuation to resumption and irAE

severity did not predict recurrent irAEs (p = 0.53 and p = 0.40,

respectively) (139).

To investigate the efficacy of resuming ICI retreatment, Santini

et al. retrospectively analyzed 68 NSCLC patients with severe irAEs

requiring interruption of PD-L1 inhibitor (144). Among them, 56%

of patients resumed PD-L1 inhibitors, and 44% were permanently

discontinued. In the retreatment cohort, 48% of patients had no

irAEs, 26% had initial irAEs recurrence, and 26% had de novo

irAEs. Most recurrences/de novo irAEs were mild (58% were grade

1-2) and controllable (84% resolved or reduced to grade 1). For

those without an observed partial response before the irAE, PFS and

OS were longer with ICI resumption. Conversely, in those who had

an objective response before irAE, PFS and OS were similar with or

without resumption of ICI. Therefore, patients who had no

treatment response prior to irAE onset may be more need in ICI

resumption. Similarly, another retrospective analysis of melanoma

patients treated with nivolumab and ipilimumab showed that

patients could continue to benefit from previous immunotherapy

even after the discontinuation due to irAEs (145).

Overall, the retrospective design, heterogeneity of cancer type,

irAE and ICI treatment, and small sample sizes of the studies make

it difficult to conclude resumption after irAEs. AE recurrences are

mostly low-grade and manageable, but it remains controversial

whether there is any additional benefit from continuing ICI after

irAE. The risk-benefit ratio of resumption should be considered

personally. It is challenging but necessary to look for specific

predictive risk factors for irAE recurrence.
6.3 Prevention of flares/irAEs with selective
immunosuppressive medications

There are no successful strategies for preventing irAEs. Previous

studies mentioned that selective antibody therapy, such as anti-IL-6,

anti-CD20, and anti-TNF therapy, is effective in treating irAEs or

preventing the flares and maintaining the clinical benefit of ICIs

(146–148). This increased our interest in therapies that could

control PAD and alleviate cancer at the same time.

Many medications for ADs also have anti-tumor activity. Janus

kinase/signal transducer and activator of transcription (JAK/STAT)

signaling regulates the secretion of various cytokines, which play a

central role in the development of ADs and tumorigenesis (149).

Inhibition of JAK/STAT pathways by JAK inhibitors alleviates ADs

by decreasing cytokines secretion. Moreover, JAK inhibitors have

the potential to counteract tumorigenesis by reversing drug

resistance, inducing G2 arrest, and augmenting apoptosis (150).

In a phase II clinical trial, 21 treatment-naïve metastatic NSCLC

patients with tumor PD-L1 ≥50% were treated with pembrolizumab
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and delayed itacitinib (a JAK1 inhibitor) (151). Patients received

pembrolizumab until disease progression, and two cycles of

itacitinib were added on cycles 3 and 4. The 12-week ORR was

62%, and the best overall response (BOR) after 12 weeks was 67%.

After a median follow-up time of 27.6 months, the median PFS was

23.8 months. Response assessment at 6 weeks showed that five

patients had an early response to pembrolizumab before itacitinib.

In contrast, eight patients who failed to respond or progress after

initial pembrolizumab were able to respond after itacitinib. Hence,

patients who failed to respond to initial PD-1 inhibitor could still

achieve a high response rate with the addition of a JAK inhibitor in

NSCLC patients with tumor PD-L1 ≥50%. Itacitinib promoted CD8

T cell plasticity and therapeutic responses of exhausted and effector

memory-like T cell clonotypes. Thus, it may enhance the efficacy of

PD-1 inhibitors by altering the dynamics of T-cell differentiation.
6.4 Reduce toxicities via development of
next-generation ICIs and drug-delivery
system

Recent advances in protein engineering and drug delivery

technologies are addressing the critical need to improve the safety

profile of ICIs, particularly for cancer patients with PADs.

To enhance selectivity and minimize toxicity, protein

engineered next-generation ICIs are being developed with

optimized pharmacokinetics, including longer half-lives, greater

stability, and more controlled activation (152). One strategy is to

modify the Fc region of ICIs to reduce binding to Fcg receptors and
minimize off-target immune activation of macrophages or dendritic

cells (153). For example, IgG4 isotype ICIs have lower Fc effector

function than IgG1 type (154). Second, tumor-specific bispecific

antibodies are designed with increased affinity to target tumor cells

while sparing normal tissues. It could target ICIs specifically to

tumors by conjugating to tumor antigen-binding domains (e.g.,

Anti-PD-1/Her2 Bispecific Antibody IBI315) (155). Third,

modified immune checkpoint proteins are used to make ICIs

inactive until conditionally active in the tumor microenvironment

(TME). For example, CX-072 (a PD-L1 inhibitor) has protease-

cleavable masking and is only activated by tumor-associated

proteases (156). pH low insertion peptide (pHLIP) modified PD-

L1 has pH-sensitive design and suppresses T-cell activation in the

acidic TME (157). Hence, pHLIP modified ICIs could remaining

less active in normal tissues and potent in the acidic TME. Selective

targeting reduces off-target effects and minimizes the risk of irAEs,

paving the way for safer cancer immunotherapies for cancer

patients with PAD.

Otherwise, specific drug delivery systems are used for safer ICI

therapy. Encapsulation of ICIs in nanoparticles, which release

medications preferentially in the TME with the design of pH-,

redox-, or enzyme-responsive, makes the medications tumor-

targeted and reduces broad immune activation (158, 159). Cell

membrane-coated nanoparticles use autologous immune cell

membranes (e.g., T cell membranes) to improve tumor homing

and reduce off-target effects (160).
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Intriguingly, irAEs can be prevented to some extent by

modifying ICIs so that they are only active within the TME, or

restricting their delivery to the TME.
7 Conclusion

The increasing prevalence of PADs among lung cancer patients

presents both challenges and opportunities for the use of ICIs. Our

comprehensive review addresses critical gaps in the existing

literature by incorporating the most recent clinical evidence

(2021-2024) that was absent from previous reviews limited to

pre-2021 data and predominantly melanoma-focused studies. The

unique value of our work lies in several key contributions. First, we

provide a mechanistic understanding of the relationship between

autoimmune diseases and lung cancer, particularly examining how

dysregulated immunity, chronic inflammation, and tissue damage

in autoimmune conditions may contribute to oncogenesis. Second,

we offer a comprehensive synthesis of clinical evidence regarding

ICI safety and efficacy specifically in lung cancer patients with

autoimmune comorbidities, including analysis of combination

therapies with chemotherapy or dual ICIs. Third, our review

advances translational research by exploring the relationship

between immune-related adverse events and clinical outcomes,

while discussing potential predictive biomarkers for risk

stratification. We also develop a practical clinical decision

framework to guide optimal timing and use of ICIs in this

complex patient population. When considering ICIs, it’s

important to weigh the potential benefits against the risks of

exacerbating PAD or de novo irAEs. This balance may differ

depending on the PAD activity, use of immunosuppressive

treatments, type of PAD, ICI and cancer.

In conclusion, although ICIs present an exciting therapeutic

option for lung cancer patients with PADs, their use requires

individualized treatment strategies with multidisciplinary

management. It is acceptable to use ICIs in patients with a low

risk of irAE after informing patients of involved irAEs and

monitoring them closely. Early recognition and timely

intervention for irAEs can help ensure safer ICI administration.

The resumption of ICI after irAEs is another clinical question that

remains to be answered. Prevention of flare/irAE with selective
Frontiers in Immunology 13
immunosuppressive medications is an important area of

future research.
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