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Subtype cluster analysis unveiled
the correlation between m6A-
and cuproptosis-related lncRNAs
and the prognosis, immune
microenvironment, and
treatment sensitivity of
esophageal cancer
Ming Zhang1, Yani Su2, Pengfei Wen2, Xiaolong Shao2,
Peng Yang2, Peng An2, Wensen Jing2, Lin Liu2,
Zhi Yang2* and Mingyi Yang2*

1Department of General Practice, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China,
2Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
Objective: Esophageal cancer (EC) is characterized by a high degree of

malignancy and poor prognosis. N6-methyladenosine (m6A), a prominent

post-transcriptional modification of mRNA in mammalian cells, plays a pivotal

role in regulating various cellular and biological processes. Similarly, cuproptosis

has garnered attention for its potential implications in cancer biology. This study

seeks to elucidate the impact of m6A- and cuproptosis-related long non-coding

RNAs (m6aCRLncs) on the prognosis of patients with EC.

Methods: The EC transcriptional data and corresponding clinical information were

retrieved from The Cancer Genome Atlas (TCGA) database, comprising 11 normal

samples and 159 EC samples. Data on 23 m6A regulators and 25 cuproptosis-

related genes were sourced from the latest literature. Them6aCRLncs linked to EC

were identified through co-expression analysis. Differentially expressed

m6aCRLncs associated with EC prognosis were screened using the limma

package in R and univariate Cox regression analysis. Subtype clustering was

performed to classify EC patients, enabling the investigation of differences in

clinical outcomes and immune microenvironment across patient clusters. A risk

prognostic model was constructed using least absolute shrinkage and selection

operator (LASSO) regression. Its robustness was evaluated through survival

analysis, risk stratification curves, and receiver operating characteristic (ROC)

curves. Additionally, the model’s applicability across various clinical features and

molecular subtypes of EC patients was assessed. To further explore the model’s

utility in predicting the immune microenvironment, single-sample gene set

enrichment analysis (ssGSEA), immune cell infiltration analysis, and immune

checkpoint differential expression analysis were conducted. Drug sensitivity

analysis was performed to identify potential therapeutic agents for EC. Finally,
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the mRNA expression levels of m6aCRLncs in EC cell lines were validated using

reverse transcription quantitative polymerase chain reaction (RT-qPCR).

Results: We developed a prognostic risk model based on five m6aCRLncs,

namely ELF3-AS1, HNF1A-AS1, LINC00942, LINC01389, and MIR181A2HG, to

predict survival outcomes and characterize the immunemicroenvironment in EC

patients. Analysis of molecular subtypes and clinical features revealed significant

differences in cluster distribution, disease stage, and N stage between high- and

low-risk groups. Immune profiling further identified distinct immune cell

populations and functional pathways associated with risk scores, including

positive correlations with naive B cells, resting CD4+ T cells, and plasma cells,

and negative correlations with macrophages M0 and M1. Additionally, we

identified key immune checkpoint-related genes with significant differential

expression between risk groups, including TNFRSF14, TNFSF15, TNFRSF18,

LGALS9, CD44, HHLA2, and CD40. Furthermore, nine candidate drugs with

potential therapeutic efficacy in EC were identified: Bleomycin, Cisplatin,

Cyclopamine, PLX4720, Erlotinib, Gefitinib, RO.3306, XMD8.85, and WH.4.023.

Finally, RT-qPCR validation of the mRNA expression levels of m6aCRLncs in EC

cell lines demonstrated that ELF3-AS1 expression was significantly upregulated in

the EC cell lines KYSE-30 and KYSE-180 compared to normal esophageal

epithelial cells.

Conclusion: This study elucidates the role of m6aCRLncs in shaping the

prognostic outcomes and immune microenvironment of EC. Furthermore, it

identifies potential therapeutic agents with efficacy against EC. These findings

hold significant promise for enhancing the survival of EC patients and provide

valuable insights to inform clinical decision-making in the management of

this disease.
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Introduction

Esophageal cancer (EC) is a highly aggressive malignancy with a

poor prognosis, representing a significant global health challenge

(1). Despite advances in treatment modalities—including surgery,

chemotherapy, radiotherapy, molecular targeted therapy, and

various combination approaches—both the morbidity and

mortality rates associated with EC remain alarmingly high (2, 3).

These therapeutic advancements have yet to achieve substantial

improvements in long-term outcomes, as the overall prognosis for

EC patients remains grim (4). Consequently, EC continues to pose a

serious threat to public health worldwide, underscoring the urgency

of developing more effective therapeutic strategies (5, 6).

Addressing these challenges requires an integrated effort to better

understand the disease’s molecular mechanisms and to identify

innovative treatments capable of improving patient survival and

quality of life.

Copper is an essential cofactor required for the survival and

function of all organisms, playing critical roles in various
02
biochemical processes. However, when copper concentrations

exceed the levels maintained by evolved homeostatic systems, it

becomes toxic (7). This toxicity is primarily mediated through the

disruption of the tricarboxylic acid (TCA) cycle, where copper

directly binds to the lipid components of TCA cycle enzymes,

inducing copper-dependent cell death (cuproptosis). In cells with

active TCA cycles, elevated levels of lipid-acylated TCA enzymes

and direct copper binding to their lipid acyl moieties result in the

accumulation of lipid-acylated proteins, depletion of Fe-S cluster-

containing proteins, and activation of HSP70. These events

collectively lead to protein stress and ultimately cellular demise

(7). Recent studies have identified cuproptosis-related genes (CRGs)

as key determinants in predicting prognosis for certain cancers,

including colorectal cancer and osteosarcoma, using risk prognostic

models (8–12). These findings underscore the potential of CRGs as

novel biomarkers and therapeutic targets. However, the role of

CRGs in EC has not been further explored, representing a critical

gap in the understanding of copper-induced cellular toxicity and its

implications for EC prognosis and treatment. Further investigation
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is warranted to elucidate the function of CRGs in EC and their

potential utility in clinical practice.

N6-methyladenosine (m6A) represents the most prevalent

internal modification of mRNA in mammalian cells, playing a

pivotal role in post-transcriptional regulation (13). First identified

in the 1970s (14), m6A has since been recognized as a crucial

regulator of diverse cellular and biological processes (14). This

modification influences the structural conformation, stability,

degradation, and cellular interactions of mRNA, thereby

modulating key processes such as splicing, translation, nuclear

export, and RNA decay (15). The implications of m6A

methylation extend far beyond fundamental biology, with

growing evidence highlighting its critical role in human diseases.

Aberrant m6A modification has emerged as a hallmark of cancer,

with methylation patterns of m6A-related genes offering potential

as distinctive diagnostic biomarkers and therapeutic targets (16).

Moreover, m6A plays a vital role in regulating tumor metabolism,

further underscoring its significance in cancer progression and

treatment strategies (17). As research continues to unravel the

complexities of m6A modifications, their potential to transform

cancer diagnostics and therapeutics becomes increasingly apparent.

Exploring the intricate interplay between m6A methylation and

disease processes will likely yield novel insights and open new

avenues for precision medicine.

The regulatory mechanisms involving m6A and cuproptosis have

garnered increasing attention in cancer biology due to their

multifaceted roles. m6A modifications have demonstrated

significant potential not only as prognostic biomarkers but also as

key regulators of tumor cell proliferation and immune modulation

within the tumor microenvironment (18–20). Similarly, cuproptosis-

associated characteristics have been identified as predictive indicators

for the prognosis and immune response across various cancer types

(21, 22). Importantly, both m6A and cuproptosis are intricately

linked to cancer prognosis and are actively involved in shaping the

tumor immune microenvironment. Their contributions to immune

regulation underscore their potential as therapeutic targets, opening

avenues for developing novel immunotherapeutic strategies in

oncology. Previous finding underscore the potential of RiskScore

system comprising ten m6A/m5C-related lncRNAs as effective

biomarkers for predicting survival outcomes, characterizing the

immune landscape, and assessing response to immunotherapy in

esophageal squamous cell carcinoma (ESCC) (23). Study identified

that m6A-mediated modification of the autophagy-related gene

ATG10 plays a critical role in inducing cuproptosis in kidney

chromophobe, revealing a novel intersection between autophagy,

m6A methylation, and cuproptosis in cancer biology (24). Previous

investigations have extensively examined the prognostic implications

of m6A- and cuproptosis-related long non-coding RNAs

(m6aCRLncs) across a broad spectrum of malignancies, including

hepatocellular carcinoma, head and neck squamous cell carcinoma,

gastrointestinal cancers, and clear cell renal cell carcinoma (25–28).

These studies collectively underscore the significant value of

m6aCRLncs as robust predictors of cancer prognosis, further

highlighting their potential to inform clinical decision-making and
Frontiers in Immunology 03
therapeutic strategies by integrating molecular markers with

patient outcomes.

Despite these advancements, the development of a risk prognostic

model specifically focused onm6aCRLncs in EC remains unexplored.

Given the significant prognostic and therapeutic implications of such

models in other malignancies, investigating the role of m6aCRLncs in

EC could provide valuable insights. This gap in research underscores

the need for future studies to assess the interplay between m6A

methylation, cuproptosis, and lncRNAs in EC, potentially unveiling

novel biomarkers and therapeutic targets for this aggressive disease.

This study successfully established a novel risk prognostic model

centered on m6aCRLncs, providing a comprehensive framework for

evaluating their critical role inEC.Themodel highlights the prognostic

significance of m6aCRLncs and their potential involvement in

modulating the immune microenvironment. By elucidating the

interplay between m6aCRLncs and key immunological processes,

this research offers valuable insights into their utility not only as

predictive biomarkers but also as potential therapeutic targets in EC.

Such findings underscore the importance ofm6aCRLncs in advancing

precision oncology and optimizing treatment strategies for patients

with EC.
Materials and methods

Data download

The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/) served as the primary source for RNA-

sequencing (RNA-seq) data and clinical information related to

EC. The dataset included 11 normal samples and 159 EC

samples, encompassing both mRNA and lncRNA expression

profiles, along with comprehensive clinical annotations for the

159 EC cases. Clinical data were systematically categorized based

on survival time (futime), survival status (fustat), gender, clinical

stage, and the TNM classification (T, N, and M stages). A set of 25

CRGs was curated from the latest literature (29) and intersected

with the gene expression data from the EC microarray to identify

EC- related CRGs. Additionally, 23 m6A regulatory genes were

extracted from recent publications (30). This forming a

foundational dataset for subsequent analyses.
EC-related CRLncs and m6aCRLncs

The limma package in R was employed to perform co-

expression analysis between EC-related CRGs and lncRNAs using

the EC RNA-seq dataset, thereby identifying EC-associated

CRLncs. A similar approach was utilized to analyze the co-

expression of EC-related CRLncs with m6A regulators, resulting

in the identification of EC-related m6aCRLncs (31, 32). The

selection criteria applied for these analyses were a |Pearson

correlation coefficient| > 0.3 and P< 0.001, ensuring a robust

statistical threshold for determining significant associations.
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EC prognosis-related
differentially m6aCRLncs

Prognosis-related m6aCRLncs in EC were identified through

univariate Cox regression analysis, with hazard ratio (HR) values

calculated to assess their prognostic significance. Additionally,

differential expression analysis of prognosis-related m6aCRLncs in

ECwasconductedusing the limmapackage inR, comparing11normal

samples with 159 EC samples. The selection criteria for differentially

expressed m6aCRLncs were P< 0.05 and |logFC| > 1. To enhance

interpretability, the pheatmap package in R was employed to generate

heatmaps visualizing the differential expression profiles, while the

ggpubr package in R was used to construct boxplots for detailed

visualization of expression differences.
Analysis of tumor immune
microenvironment based on
subtype cluster

The “ConsensusClusterPlus” software tool was utilized to classify

EC patients into distinct molecular subtypes based on the expression

profiles of prognosis-related m6aCRLncs. To evaluate the prognostic

implications of these subtypes, survival analysis was performed using

the survival and survminer packages in R, assessing differences in

overall survival amongpatientswithdifferent subtypes.Clinical feature

variations across EC subtypes were analyzed and visualized using the

pheatmap package in R. To further investigate the immune

microenvironment, the expression data of 22 immune cell types in

EC samples were assessed using the CIBERSORT algorithm,

identifying immune cell composition differences across subtypes

(33–35). Additionally, tumor purity and the stromal and immune

cell contributions to the tumor microenvironment were estimated

using the ESTIMATE algorithm, which calculates immuneScore,

stromalScore, and ESTIMATEScore based on gene expression data

(36). These scores were analyzed for subtype-specific differences using

the limma package in R.
Construction of risk prognostic model

LASSO regression analysis was performed using the glmnet

package in R to minimize the risk of overfitting and to determine

the optimal number of prognosis-related m6aCRLncs for inclusion

in the prognostic model. To assess the robustness and predictive

accuracy of the model, the dataset was stratified into training (N =

80), testing (N = 79), and overall (N = 159) cohorts. A risk

prognostic model was subsequently constructed for each group.

The calculation of the riskscore was based on the following formula:

Riskscore =on
i=1(lncrnaexpi � coefi)

in the riskscore calculation, n represents the total number of EC

prognosis-related m6aCRLncs, while i denotes the individual

m6aCRLncs, and coef refers to the corresponding regression

coefficient. The riskscore for each sample is determined by multiplying

the expression level of each m6aCRLncs by its respective regression
Frontiers in Immunology 04
coefficient and summing these values (12). Based on the median risk

score, the samples from the overall cohort, as well as the training and

testing cohorts, were stratified into high-risk and low-risk groups for

further analysis.
Validation of risk prognostic model

Survival analysis was conducted using the survival and survminer

packages in R to assess whether there were significant differences in the

survival outcomesofECpatients betweenhigh-risk and low-risk groups.

R was used to generate survival status plot, thereby highlighting the

survival rate of patients between the two risk groups. Additionally, the

survival and timeROC packages in R were employed to construct

Receiver Operating Characteristic (ROC) curves, providing a

quantitative measure of the model’s diagnostic accuracy and its

potential for risk prediction in EC patients. The pheatmap package in

R was used to generate heatmaps depicting of risk scores, thereby

highlighting the variations in m6aCRLncs between the two risk groups.
Difference analysis of clinical features,
immunescores and cluster with risk model

The limma package in R was employed to examine whether EC

patients with distinct clinical features and subtypes exhibited differences

in risk stratification between the high- and low-risk groups within the

overall sample cohort. To visualize these differences, the pheatmap

package in R was utilized to generate heatmaps, while the ggpubr

package was used to create boxplots, allowing for a clear

representation of the variations in clinical characteristics and subtypes

across the risk groups.
Immune correlation analysis of risk
prognostic model

Single samplegene set enrichmentanalysis (ssGSEA)wasconducted

on the risk prognostic model for the overall sample cohort to assess the

enrichment scores for immune cells and immune functions in EC

patients. To compute these enrichment scores, the limma, GSVA, and

GSEABase packages in R were utilized. Differences in immune cell

populations and immune function between the high- and low-risk

groups were examined using the limma, ggpubr, and reshape2

packages. Additionally, the correlation between the 22 immune cell

types and the risk score for the overall sample group was analyzed using

the limma, ggpubr, and ggExtra packages in R. Furthermore, to

investigate the immune checkpoints that differed between the high-

and low-risk groups, the limma, reshape2, and ggpubr packages were

applied to the data from the overall sample cohort.
Drug sensitivity analysis

Drug sensitivity analysis was performed using the limma,

pRRophetic, and ggpubr packages in R to identify drugs with
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varying sensitivities between the high-risk and low-risk groups

within the overall sample cohort. This analysis aimed to uncover

potential therapeutic agents that could be leveraged to enhance

clinical treatment strategies for EC, offering insights into drugs that

may exhibit differential efficacy based on risk stratification.
Cell culture

Human EC cell lines (KYSE-30 and KYSE-180) and normal

esophageal epithelial cells (NE-2) were utilized for this study. The

EC cell lines (KYSE-30 and KYSE-180) were cultured in RPMI 1640

medium supplemented with 10% fetal bovine serum (FBS), while

the normal esophageal epithelial cells (NE-2) were maintained in a

Defined Keratinocyte-SFM (DK-SFM) and Epilife mixed medium.

All cell cultures were incubated at 37°C in a humidified atmosphere

with 5% CO2 to promote optimal growth conditions.
Real-time quantitative PCR

Total RNA was isolated from EC cell lines and normal

esophageal epithelial cells (NE-2) using TRIzol Reagent (Cat. No.

15596018, Life Technologies Invitrogen), following the

manufacturer’s protocol. The extracted RNA was then subjected

to reverse transcription polymerase chain reaction (RT-PCR) using

ChamQ Universal SYBR qPCR Master Mix (Cat#: Q711-02,

Vazyme), in accordance with the manufacturer’s guidelines, to

quantify the mRNA levels of m6aCRLncs. Primer sequences were

synthesized by Accurate Biology, and the primer pairs are detailed

in Table 1. All data were normalized to the expression of b-actin,
and relative expression levels were calculated using the 2-

DDCt method.
Results

To enhance the clarity and comprehensibility of our study, a

flowchart was constructed, as illustrated in Figure 1.
Frontiers in Immunology 05
EC prognosis-related differentially
expressed m6aCRLncs

The 25 CRGs were cross-referenced with the gene expression

data from the EC microarray, resulting in the identification of 25

EC-related CRGs. Through co-expression analysis of these CRGs

and lncRNAs in EC RNA-seq data, a total of 335 EC-related

CRLncs were identified (Figure 2A). Further co-expression

analysis between the EC-related CRLncs and 23 m6A regulators

led to the identification of 92 EC-related m6aCRLncs (Figure 2B).

Subsequently, seven EC prognosis-related m6aCRLncs were

identified through single-variable Cox regression analysis

(Figure 3A). These seven m6aCRLncs exhibited differential

expression between normal and EC samples (Figures 3B, C).
Subtype cluster analysis of EC prognosis-
related differentially m6aCRLncs

To assess whether the seven m6aCRLncs could be used to cluster

EC patients, a subtype clustering analysis was conducted. The optimal

clustering stability was achieved when K = 3 (Figure 4A), resulting in

the classification of 159 EC patients into three distinct clusters: Cluster

1 (N= 110), Cluster 2 (N= 8), and Cluster 3 (N= 41). Survival analysis

revealed thatCluster2 exhibited thepoorestprognosis among the three

groups,witha statistically significantdifference in survival outcomes (P

= 0.022) (Figure 4B). No significant differences were observed in

clinical features among the different EC subtypes (Figure 4C).

Further differential analysis of 22 immune cells and subtypes

identified notable variations, with resting dendritic cells showing

differences among all three clusters. Additionally, differences in

immune cell populations, including naive B cells, resting

macrophages (M0), M2 macrophages, resting mast cells, activated

NKcells, plasma cells, restingmemoryCD4+Tcells,CD8+Tcells, and

regulatory T cells (Tregs), were observed between one or two of the EC

subtypes (Figures 4D-M). Finally, differential analysis of the tumor

microenvironment revealed significant variations in immune scores,

stromal scores, and ESTIMATE scores between one or two of the EC

subtypes (Figures 4N-P).
TABLE 1 Primer sequences for RT-qPCR.

Genes Forward Reverse

b-actin TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA

ELF3-AS1 AAAGTTCTTCCCTCAGCGCC AGTCTGTGCGGTTCGTGATG

HNF1A-AS1 ACTCCAACCCTCTGCTCGTT AAGTTGCCCAAGGCCATACG

LINC00942 AGCAAGAGAGCGAAGTCCCA TGTCTTGTGGGAGGCTGACA

LINC01389 CCAAGACTTGATCCCTTGCCC TATCACTCAGGCCCACACCT

MIR181A2HG ACCCCCATCCCCTTTTGACA TCCACAGGACAGTTCGCCTT
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1539630
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1539630
Construction of risk prognostic model

In the preceding univariate Cox regression analysis, seven

differentially expressed m6aCRLncs were identified as being

prognostically relevant to EC. Subsequently, LASSO regression

analysis revealed that five m6aCRLncs constituted the optimal

number to include in the model, as determined by the most favorable

penalty parameter (l) value (Figures 5A, B). Based on this model, the

overall sample cohort was stratified into high-risk (N = 72) and low risk

(N=87) groups. Similarly, the training cohortwasdivided intohigh-risk

(N = 40) and low-risk (N = 40) groups, while the testing cohort was

separated into high-risk (N = 32) and low-risk (N = 47) groups.
Risk prognosis models forecast the
prognosis of EC patients

Survival analysis revealed statistically significant differences

in survival outcomes between the high- and low-risk groups,
Frontiers in Immunology 06
with patients in the low-risk group exhibiting better survival

rates compared to those in the high-risk group. This pattern was

observed across the overall sample group (P< 0.001), the training

group (P = 0.002), and the testing group (P = 0.048)

(Figures 6A, 7A, 8A). Mortality rates among EC patients

progressively increased from the low-risk group to the high-

risk group, as shown in the survival status plots for the overall

sample, training, and testing groups (Figures 6B, C, 7B, C, 8B,

C). This trend underscores that higher risk scores are associated

with poorer survival outcomes. ROC curve analysis

demonstrated that the 1-year area under the curve (AUC)

values for the overall sample group, training group, and

testing group were 0.702, 0.701, and 0.687, respectively

(Figures 6D, 7D, 8D). Furthermore, the expression levels of

five m6aCRLncs, namely ELF3-AS1, HNF1A-AS1, LINC00942,

LINC01389, and MIR181A2HG, were identified as high-risk

factors for EC, with their expression levels increasing

progressively from the low-risk group to the high-risk group

(Figures 6E, 7E, 8E).
FIGURE 1

Flow diagram of our study.
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FIGURE 2

The m6aCRLncs were obtained. (A) A total of 335 CRLncs were identified by co-expression analysis of 25 CRGs and 3719 lncRNAs. (B) A total of 92
m6aCRLncs were identified by co-expression analysis of 335 CRLncs and 23 m6A regulators.
FIGURE 3

EC prognosis-related differentially expressed m6aCRLncs. (A) 7 m6aCRLncs were demonstrated by univariate Cox regression analysis as having
prognostic significance. (B) Difference heatmap of m6aCRLncs associated with EC prognosis. (C) Difference boxplot of m6aCRLncs associated with
EC prognosis. (* P< 0.05, ** P< 0.01, *** P< 0.001).
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Difference analysis of clinical features,
immunescores and cluster with risk model

1?>Heatmaps and boxplots were generated to analyze the

associations between clusters, immunescores, clinical features
Frontiers in Immunology 08
(including gender, clinical stage, T, N, and M), and risk scores

in both high- and low-risk groups within the overall sample

cohort. The results indicated significant differences in cluster,

clinical stage, and N stage between the high-risk and low-risk

groups (Figure 9).
FIGURE 4

Subtype cluster analysis of m6aCRLncs. (A) At K = 3, the classification was the most reliable. (B) Survival analysis of different subtypes of EC patients.
(C) Clinical characteristics analysis of EC patients with different subtypes. (D-M) Immune cells differences analysis of EC patients with different
subtypes. (N-P) Immune microenvironment differences analysis of EC patients with different subtypes.
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Risk prognosis model guide the immune
microenvironment of EC patients

Differential analysis of immune cell populations revealed a

significant reduction in the levels of aDCs, DCs, iDCs,
Frontiers in Immunology 09
macrophages, NK cells, and Th1 cells in the high-risk group

(Figure 10A). Immune function analysis indicated a notable

downregulation of APC co-stimulation in the high-risk group

(Figure 10B). Immune correlation analysis identified a positive

association between risk score and the levels of naive B cells,
FIGURE 5

Construction of m6aCRLncs risk prognostic model. (A) Five m6aCRLncs’ LASSO coefficient profiles. (B) Cross-validation to fine-tune the LASSO
model’s parameter selection.
FIGURE 6

Overall sample cohort. (A) Survival curve. (B, C) Survival status map. (D) ROC curve. (E) Risk heatmap.
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FIGURE 7

Training cohort. (A) Survival curve. (B, C) Survival status map. (D) ROC curve. (E) Risk heatmap.
FIGURE 8

Testing cohort. (A) Survival curve. (B, C) Survival status map. (D) ROC curve. (E) Risk heatmap.
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resting CD4 T cells, and plasma cells, with higher content of these

immune cells correlating with an increased risk of EC. Conversely, a

negative correlation was observed between risk score and

macrophages M0 and M1, with higher content of these cell types

linked to a reduced risk of EC (Figure 10C). Immune checkpoint

analysis showed that patients in the high-risk group exhibited

upregulation of TNFRSF14, TNFSF15, CD160, LGALS9, HHLA2,

and CD40LG, while the expression levels of CD276, TNFRSF18,
Frontiers in Immunology 11
PDCD1LG2, CD44, TNFSF18, TNFRSF8, and CD40 were

downregulated in the high-risk patients (Figure 10D).
Potential therapeutic drugs for EC patients

A drug sensitivity analysis revealed that Bleomycin, Cisplatin,

Cyclopamine, PLX4720, Erlotinib, Gefitinib, RO.3306, XMD8.85,
FIGURE 9

Relationship between riskscore and cluster, immune score, and clinical features (gender, clinical stage, T, N, M) in high- and low-risk groups within
the overall sample cohort. (A) Heatmap. (B-G) Boxplot.
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and WH.4.023 exhibited marked sensitivity in both the high- and

low-risk groups. Notably, patients in the low-risk group showed

significantly greater responsiveness to these nine drugs compared to

those in the high-risk group (Figure 11).
Validation of the expression of m6aCRLncs
in EC

To further assess the expression of m6aCRLncs in EC, two EC

cell lines, KYSE-30 and KYSE-180, were selected for evaluation of

mRNA expression levels, with normal esophageal epithelial cells

(NE-2) serving as the control group. The results revealed a

significant upregulation of ELF3-AS1 mRNA expression in both

KYSE-30 and KYSE-180 cell lines compared to NE-2. Furthermore,
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mRNA expression levels of LINC01389 and MIR181A2HG were

markedly elevated in the KYSE-180 cell line relative to the control.

Additionally, LINC00942 mRNA expression was notably higher in

the KYSE-30 cell line compared to NE-2 (Figure 12).
Discussion

This study developed a novel prognostic risk model for EC,

leveraging five m6aCRLncs (ELF3-AS1, HNF1A-AS1, LINC00942,

LINC01389, and MIR181A2HG) identified as high-risk factors for

EC patients. Comprehensive validation demonstrated that the

model effectively predicts patient survival outcomes and provides

insights into the immune microenvironment of EC. Additionally,

subtype clustering and correlation analyses with clinical features
FIGURE 10

The immune correlation analysis of risk prognosis model. (A) Immune cell differential analysis. (B) Immune function differential analysis. (C) The
correlation analysis correlation between riskscore and immune cell. (D) Immune checkpoint analysis. *p< 0.05, **p< 0.01, ***p< 0.001.
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revealed significant differences in cluster composition, clinical stage,

and N stage between high- and low-risk groups. Immune profiling

further highlighted disparities between these groups, with naive B

cells, resting CD4 T cells, and plasma cells positively correlating

with risk scores, whereas macrophages M0 and M1 displayed

negative correlations. Differential expression of immune

checkpoint-related genes, including TNFRSF14, TNFSF15,

TNFRSF18, LGALS9, CD44, HHLA2, and CD40, provided

additional mechanistic insights. Lastly, drug sensitivity analysis

identified nine therapeutic agents with potential efficacy for EC

patients, including Bleomycin, Cisplatin, Cyclopamine, PLX4720,

Erlotinib, Gefitinib, RO.3306, XMD8.85, and WH.4.023, offering

promising avenues for personalized treatment strategies.

In this study, we identified seven m6aCRLncs significantly

associated with the prognosis of EC through univariate Cox

regression analysis. These m6aCRLncs included ELF3-AS1,

HNF1A-AS1, JPX, LINC00942, LINC01389, MIR181A2HG, and

PPP1R26-AS1. As illustrated in Figure 3A, all seven m6aCRLncs

exhibited hazard ratio (HR) greater than 1, indicating their

classification as high-risk m6aCRLncs implicated in the

progression and pathogenesis of EC. Differential expression

analysis was subsequently conducted to compare these
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m6aCRLncs between the control group (comprising 11 normal

samples) and the tumor group (comprising 159 EC patients), as

shown in Figures 3B, C. The results demonstrated that ELF3-AS1,

JPX, LINC00942, LINC01389, MIR181A2HG, and PPP1R26-AS1

were significantly upregulated in EC patients, whereas HNF1A-AS1

showed reduced expression in the EC group. To further refine

prognostic relevance, a risk-prognosis model was developed, which

identified five key m6aCRLncs (ELF3-AS1, HNF1A-AS1,

LINC00942, LINC01389, and MIR181A2HG) as significant

contributors to patient stratification. As depicted in Figures 6E,

7E, and 8E, these five m6aCRLncs exhibited higher expression levels

in the high-risk EC patient group compared to the low-risk group.

Notably, four of these m6aCRLncs (ELF3-AS1, LINC00942,

LINC01389, and MIR181A2HG) were consistently overexpressed

in both the overall EC cohort and the high-risk subgroup,

suggesting their critical roles in EC pathobiology. The findings

were further validated through PCR analysis, which confirmed the

elevated expression of ELF3-AS1, LINC00942, LINC01389, and

MIR181A2HG in EC patients compared to controls, as shown in

Figure 12. These results collectively underscore the potential of

these m6aCRLncs as biomarkers for prognosis and as targets for

therapeutic intervention in EC.
FIGURE 11

Relationship between risk prognostic model and sensitivity drugs in EC patients.
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In contrast to the four m6aCRLncs (ELF3-AS1, LINC00942,

LINC01389, and MIR181A2HG), HNF1A-AS1 exhibits a unique

expression pattern in EC patients. Although HNF1A-AS1 is more

highly expressed in the high-risk group compared to the low-risk

group of EC patients, it shows decreased expression in the tumor

group (comprising 159 EC samples) compared to the control group

(11 normal samples). It is important to note that the high- and low-

risk groups within the risk prognosis model consist solely of EC

patients, and the comparisons do not involve normal controls.

Consequently, the elevated expression of HNF1A-AS1 in high-risk

EC patients relative to the low-risk group does not imply that its

expression is generally higher in EC patients when compared to

healthy individuals. Differential expression analysis revealed lower

expression levels of HNF1A-AS1 in EC patients relative to normal

controls, although its expression remained significantly different

between the high-risk and low-risk subgroups, with higher levels

observed in high-risk patients. However, the PCR validation results

did not show statistically significant differences in HNF1A-AS1

expression between EC patients and controls. While HNF1A-AS1

appeared to be moderately overexpressed in EC patients, as

depicted in Figure 12, this observation lacked statistical

significance. Such discrepancies between bioinformatics

predictions and PCR validation are not uncommon and reflect

the inherent limitations of computational analysis, particularly

when combined with experimental methods. Importantly, four of

the five m6aCRLncs included in the risk-prognosis model (ELF3-

AS1, LINC00942, LINC01389, and MIR181A2HG) were

successfully validated by PCR, which sufficiently supports the

overall findings and biological significance of the model. The

inconsistent results for HNF1A-AS1 may be influenced by the

disparity in sample sizes between the two groups analyzed.

Specifically, the differential expression analysis compared 11

normal samples with 159 EC samples, and the imbalanced sample

sizes may have contributed to variations in the statistical outcomes

for HNF1A-AS1. Unfortunately, the current dataset did not allow

for analyses using a more balanced or larger sample size,
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representing a limitation of this study. Addressing this limitation

in future research through studies with larger and more evenly

distributed sample sizes will be crucial to better understand the

expression patterns and biological roles of HNF1A-AS1 in EC

prognosis and pathogenesis.

This study identified ELF3-AS1, LINC00942, LINC01389 and

MIR181A2HG as being significantly associated with tumor

prognosis of EC patients, thereby reinforcing the validity of the

findings. The prognostic value of HNF1A-AS1 in EC patients needs

further study. ELF3-AS1 has been strongly linked to the prognosis

of glioma and hepatocellular carcinoma (37–39) and has been

shown to accelerate gastric cancer progression through binding to

hnRNPK (40). LINC00942 has been linked to prognosis and

immune responses in hepatocellular and bladder cancers (41–45)

and promotes METTL14-mediated m6A methylation in breast

cancer (46). Although the role of LINC01389 in tumor prognosis

remains uncertain, it has been shown to participate in the epithelial-

mesenchymal transition in stomach cancer (47). MIR181A2HG is

associated with prognostic prediction and immunotherapy

response in bladder cancer (48) and serves as a diagnostic marker

for thyroid cancer (49). HNF1A-AS1 is implicated in osteosarcoma

prognosis and tumorigenesis (50) and plays roles in the progression

of gastric cancer and glioblastoma (50–52). Specifically, it acts as a

competitive endogenous RNA in gastric cancer by sponging miR-

30b-3p (34) and, when regulated by HNF1a , mitigates

hepatocellular carcinoma malignancy by enhancing SHP-1

phosphatase activity (53). Importantly, HNF1A-AS1 is also

involved in the development of EC. Studies reveal its role in

regulat ing proli ferat ion and migration in esophageal

adenocarcinoma (EAC) cells (54) and promoting growth and

metastasis in esophageal squamous cell carcinoma (ESCC) by

sponging miR-214 to upregulate SOX-4 expression (55). These

findings highlight the multifaceted roles of these m6aCRLncs in

cancer progression and their potential as biomarkers or

therapeutic targets.

Tumor immunotherapy represents a promising and innovative

therapeutic strategy for EC (6). EC cells are characterized by a rich

repertoire of tumor antigens, yet they have developed sophisticated

mechanisms to evade anti-tumor immune responses. These

mechanisms include activation of immune checkpoints, secretion

of immunosuppressive factors, and negative regulation of immune

cell activity. The immune landscape within the tumor

microenvironment significantly influences cancer progression,

patient survival, and treatment efficacy (6). Immune checkpoints

play a pivotal role in maintaining self-tolerance and preventing the

onset of inflammatory disorders. However, cancer cells can exploit

these pathways to induce T-cell exhaustion and impair immune

function. In recent years, immunotherapy targeting immune

checkpoints has seen remarkable advancements, providing new

hope for improving clinical outcomes in EC (56).

The genetic variant rs2234167 within the TNFRSF14 locus has

not been associated with the risk of ESCC (57). However, this study

revealed that TNFRSF14 expression was upregulated in high-risk

EC patients, suggesting its potential involvement in the risk of EC.

Additionally, CD44 was found to be downregulated in high-risk EC

patients, indicating its possible role in the immunotherapy of EC.
FIGURE 12

Validation of the mRNA expression level of m6aCRLncs in EC cell
lines. **p< 0.01, ****p< 0.0001, each experiment was repeated
three times.
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Previous studies have identified CD44 as a novel biomarker for EC

patients undergoing neoadjuvant chemoradiotherapy and

highlighted its utility, in combination with HER2, in enhancing

the predictive accuracy of 18F-FDG PET-based clinico-radiomic

models for treatment response (58, 59). The immune checkpoint

molecule HHLA2 has been shown to predict survival and immune

characteristics in patients with ESCC (60). This study reinforces the

prognostic and immunotherapeutic potential of HHLA2 in EC.

Furthermore, the expression of CD40 in human ESCC has been

linked to tumor progression and lymph node metastasis (61).

Currently, limited data exists regarding the roles of TNFSF15,

TNFRSF18, and LGALS9 in EC. This study identifies these

molecules as being associated with the prognosis and immune

microenvironment of EC, providing new directions for future

research on EC prognosis and immunotherapeutic strategies.

Bleomycin and Cisplatin are established chemotherapeutic

agents for EC (62, 63). TNFAIP8 has been implicated in

promoting Cisplatin resistance via interaction with TAF-Ia,
thereby contributing to the malignant progression of EC (64).

Cyclopamine exerts its anti-tumor effects by inhibiting glioma-

associated oncogene protein-1, a key marker of EC progression,

effectively suppressing the growth of EC cells (65). Furthermore,

treatment with KAAD-Cyclopamine or neutralizing antibodies

targeting Shh has been shown to reduce EC cell proliferation and

induce apoptosis (66). For patients with ESCC who are intolerant

to chemoradiotherapy, Erlotinib in combination with

radiotherapy has demonstrated therapeutic efficacy (67).

Similarly, Gefitinib has been shown to enhance survival and

improve quality of life in advanced-stage EC patients who have

failed first-line chemotherapy (68). Among the drugs identified as

sensitive in this study, several are known to exhibit therapeutic

potential in EC, underscoring the robustness of the study’s

findings. The roles of PLX4720, RO.3306, XMD8.85, and

WH.4.023 in EC have not been well-documented. These agents

may represent promising candidates for further exploration as

potential therapeutic options for EC.

This study, while offering meaningful insights, is not without its

limitations. First, the relatively small sample size of tumor

specimens, which may constrain the statistical power and

generalizability of the findings. A larger, more diverse cohort is

essential in future research to ensure the robustness and

reproducibility of the conclusions. Expanding the sample size

would not only strengthen the statistical validity of the prognostic

model but also enhance its applicability across varied patient

populations. Furthermore, a larger cohort would provide an

opportunity to validate the identified biomarkers in independent

datasets, thereby increasing the reliability of the proposed risk

stratification framework for clinical implementation. Second,

although this research identifies key m6aCRLncs with prognostic

and immune-regulatory roles in EC, their underlying biological

mechanisms remain largely unexplored. Comprehensive functional

analyses are required to elucidate how these m6aCRLncs contribute

to tumor progression, immune microenvironment modulation, and

therapy resistance. This would provide deeper insights into their

potential as biomarkers or therapeutic targets. Addressing these

limitations in subsequent studies will be crucial to confirming the
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translational potential of the findings and further advancing the

field of EC research.
Conclusion

In conclusion, this study successfully established a novel prognostic

model for EC based on five m6aCRLncs, offering a comprehensive

approach to risk stratification. These five m6aCRLncs demonstrated

significant potential in predicting immune efficacy and drug sensitivity,

as evidenced by analyses of the tumor microenvironment, immune

correlations, and drug response patterns. The integration of these

biomarkers into a prognostic framework not only provides valuable

insights into the immune landscape of ECbut also highlights their utility

in identifying potential therapeutic options. Thefindings of this research

hold promising implications for predicting patient survival and

optimizing clinical management strategies, and lay a theoretical

foundation for more personalized and effective treatment protocols for

EC patients.
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