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Targeting TCMR-associated
cytokine genes for drug
screening identifies PPARg
agonists as novel
immunomodulatory agents
in transplantation
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and Zhongyang Shen2,5,6*
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Transplant Medicine, School of Medicine, Nankai University, Tianjin, China, 3School of Medicine,
Nankai University, Tianjin, China, 4Department of Renal Transplantation, Tianjin First Central Hospital,
Nankai University, Tianjin, China, 5NHC Key Laboratory for Critical Care Medicine, Tianjin First Central
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Sciences, Tianjin, China
Objective: T cell-mediated rejection (TCMR) remains a significant challenge in

organ transplantation. This study aimed to define a TCMR-associated cytokine

gene set and identify drugs to prevent TCMR through drug repurposing.

Methods: Gene expression profiles from kidney, heart, and lung transplant

biopsies were obtained from the Gene Expression Omnibus (GEO) database.

Differentially expressed genes (DEGs) between TCMR and non-TCMR groups

were identified, and their intersection with cytokine-related genes yielded an 11-

gene TCMR-associated cytokine gene set (TCMR-Cs). To evaluate the

effectiveness of this gene set, a diagnostic predictive model was constructed

using Lasso regression and multivariate logistic regression, with validation in

independent datasets. Connectivity Map (CMap) analysis was employed to screen

drugs targeting TCMR-Cs. Experimental validation of the identified drug was

performed in vitro using T cell activation and Th1 differentiation assays, and in

vivo in a mouse skin transplant model with survival analysis.

Results: The TCMR-Cs exhibited outstanding predictive performance for TCMR,

achieving an AUC of 0.99 in the training cohorts and maintaining strong

performance in the test cohorts. CMap analysis identified peroxisome

proliferator-activated receptor gamma (PPARg) agonists as potential

therapeutic candidates. Experimental validation showed that the PPARg agonist
rosiglitazone significantly suppressed T cell activation and reduced Th1

differentiation in vitro without cytotoxic effects. The combination of

rosiglitazone and rapamycin significantly prolonged graft survival.
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Conclusions: This study defined a novel TCMR-associated cytokine gene set that

effectively predicts TCMR and identified PPARg agonists, which prevent TCMR

and improve graft survival when combined with rapamycin.
KEYWORDS

T-cell-mediated rejection, organ transplantation, cytokine genes, predictive model,
drug repurposing, PPARg agonists, rosiglitazone
1 Introduction

Organ transplantation is a life-saving treatment for patients with

end-stage organ failure, significantly improving survival rates and

quality of life (1). Kidney, heart, and lung transplantation procedures

benefit tens of thousands of patients worldwide each year. However,

long-term graft survival is often hindered by transplant rejection,

among which T cell-mediated rejection (TCMR) remains one of the

major challenges (2–4). TCMR arises from the activation of T cells

through immunological synapses formed with antigen-presenting

cells (APCs), such as dendritic cells and inflammatory myeloid

cells. These interactions, mediated by the recognition of antigens by

the T cell receptor (TCR), lead to interferon-gamma (IFNG)-driven

inflammatory signaling pathways and the expression of inflammation-

related genes, including IL2, IFNG, and ADAMDEC1. Together, these

immune processes result in severe inflammation and graft

dysfunction, highlighting the critical roles of T cells, dendritic cells,

and macrophages in TCMR pathogenesis (5, 6).

Although immunosuppressive therapies, such as cyclosporine,

tacrolimus, and mycophenolate mofetil, have demonstrated efficacy

in reducing short-term rejection episodes (7), their long-term use is

associated with substantial adverse effects, including infections,

malignancies, hypertension, diabetes, and nephrotoxicity (8–12).

These complications significantly impair patient quality of life and

limit the applicability of current therapeutic regimens. Moreover,

the diagnosis of TCMR relies heavily on invasive graft biopsies,

which are prone to sampling errors, procedural complications, and

subjective variations in histopathological evaluations (13, 14). These

challenges underscore the critical need for innovative diagnostic

tools and safer, more effective immunomodulatory interventions to

address TCMR.

Cytokines, as key regulators of immune responses, represent

promising candidates for improving both the diagnosis and

treatment of TCMR. Cytokine-related genes play central roles in

mediating immune dysregulation during TCMR, making them

valuable targets for biomarker discovery and therapeutic

development. To expand their translational potential, a broader

understanding of cytokine dysregulation across different transplant

types is necessary. A multi-organ perspective may uncover shared

pathways underlying TCMR, facilitating the identification of

universal targets for intervention.
02
Among potential therapeutic targets, the nuclear receptor

peroxisome proliferator-activated receptor gamma (PPARg) has

received attention for its immunomodulatory and anti-inflammatory

properties. Originally recognized for its role in regulating lipid

and glucose metabolism in diseases such as type 2 diabetes and

dyslipidemia (15, 16), PPARg has now been implicated in

modulating immune responses. PPARg agonists, such as

rosiglitazone, have been shown to attenuate T cell activation, alter

cytokine production, and regulate macrophage polarization, thereby

suppressing excessive inflammatory responses (17). These properties

position PPARg agonists as promising candidates for addressing

immune dysregulation in TCMR and reducing graft rejection.

However, their potential therapeutic value has yet to be fully

explored in the context of organ transplantation.

In this study, we addressed the limitations of traditional

diagnostic and therapeutic approaches to TCMR by identifying a

novel TCMR-associated cytokine gene set (TCMR-Cs) through the

integration of transcriptomic data from kidney, heart, and lung

transplant rejection biopsies. This gene set provided valuable

insights into the mechanisms underlying TCMR and served as

the basis for both diagnostic and therapeutic innovations. A

predictive model constructed using the TCMR-Cs demonstrated

its utility in differentiating TCMR from non-TCMR patients, while

drug repurposing analyses identified PPARg agonists as promising

immunomodulatory agents for TCMR prevention. Experimental

validation further confirmed the efficacy of the PPARg agonist

rosiglitazone in modulating immune responses, including its

ability to suppress T cell activation and prolong graft survival in

combination with rapamycin. These findings lay a foundation for

future precision medicine strategies in transplantation and highlight

the potential of cytokine-based interventions to overcome the

challenges of TCMR.
2 Materials and methods

2.1 Data acquisition and preprocessing

Gene expression microarray datasets for kidney (GSE192444)

(18), heart (GSE150059) (19), and lung (GSE150156) (20)

transplants were retrieved from the GEO database. All datasets
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were log2-transformed and normalized using the “limma” package

in R to ensure consistency across datasets. The biopsy diagnosis for

each sample was defined based on the original annotations provided

in the corresponding dataset. In order to ensure a focused and

accurate analysis, samples were regrouped into two categories: those

with a biopsy diagnosis of “TCMR” were classified into the “TCMR”

group, while those diagnosed with other conditions, such as

“ABMR” or “No Rejection,” were classified into the “non-TCMR”

group. To minimize potential bias and improve the specificity of the

analysis, samples labeled as “Mixed Rejection,” “Possible TCMR,”

“Borderline,” or “Possible ABMR” were excluded, as the inclusion

of such heterogeneous or uncertain diagnoses could confound the

identification of molecular features specific to TCMR (5).
2.2 DEG identification and functional
enrichment analysis

DEGs were identified using the “limma” package in R. Linear

models accompanied by empirical Bayes moderation were applied

to stabilize variance estimates. DEGs were defined by a log-fold

change (logFC) threshold of ±1 and a p-value < 0.05. Significant

DEGs were then subjected to functional annotation using the

“clusterProfiler” package. Gene Ontology (GO) analysis was

performed to explore biological processes (BP), molecular

functions (MF), and cellular components (CC) associated with

these genes. Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis identified relevant biological pathways implicated

by the DEGs. Both GO and KEGG analyses used the “org.Hs.eg.db”

as the reference database. Visualization of GO and KEGG results

was performed using bar plots or bubble charts.
2.3 Data visualization

Principal component analysis (PCA) was conducted using the

“FactoMineR” and “factoextra” packages to visualize variance

within datasets and achieve a clear separation between TCMR

and non-TCMR groups. Heatmaps and volcano plots of DEGs

were generated using the “EnhancedVolcano” and “pheatmap”

packages, displaying differential expression patterns visually. To

identify genes shared across kidney, heart, and lung datasets,

Venn diagrams were generated using the “VennDiagram” R

package. Additional visualizations were generated using the

“ggplot2” package.
2.4 Definition of the TCMR-Cs

Upregulated DEGs shared across kidney, heart, and lung TCMR

datasets were identified through intersection analysis. These shared

DEGs were further cross-referenced with a cytokine-related gene set

curated from the literature (21), resulting in 11 genes defined as the

TCMR-Cs. Gene interaction networks among the TCMR-Cs were

analyzed using GeneMANIA (http://genemania.org/) (22). This
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analysis included co-expression, physical interactions, and shared

pathways to support the inclusion of these genes as a cohesive set.
2.5 Predictive model construction
and validation

To validate the significance of the identified TCMR-Cs, a

predictive model was constructed. Normalized gene expression

data from the kidney (GSE192444), heart (GSE150059), and lung

(GSE150156) datasets were combined to form the training cohort.

Lasso regression for feature selection was implemented using the

“glmnet” R package to address high-dimensional data. Cross-

validation was utilized to determine the optimal lambda

parameter, and lambda.1se was selected to balance model

complexity and performance. Five hub genes (CXCL13, IFNG,

TNFSF13B, CCL3, CCL18) were identified through this process. A

multivariate logistic regression model was then constructed using

the selected genes. Risk scores were calculated for each sample based

on the following formula:

Risk   Score =o
n

i=1
(coef i � expri)

where coefi represents the regression coefficient for gene i,

and expri indicates the expression level of gene i. The model’s

performance was assessed through receiver operating characteristic

(ROC) curve analysis. The risk score threshold was determined

using the Youden index. Independent validation datasets from

kidney (GSE98320) (23), heart (GSE124897) (24), and lung

(GSE125004) (25) transplantation were used to evaluate the

generalizability of the model. ROC curves and area under the

curve (AUC) values were calculated for each test cohort. Given

the class imbalance present in the datasets, additional performance

metrics such as precision, recall, and F1 score were implemented to

ensure a more thorough evaluation of the model’s predictive

performance. These metrics were computed for both the training

and independent test datasets to robustly validate the model.
2.6 Immune cell infiltration analysis

The CIBERSORT algorithm (26), utilizing the LM22 signature

matrix, was employed to estimate the proportions of 22 immune

cell types, providing insights into the immune landscape of the

datasets. Differences in immune cell infiltration between TCMR and

non-TCMR groups were visualized using box plots and heatmaps.

Statistical significance was determined using Kruskal-Wallis tests,

while correlation analysis was performed using the “Hmisc”

package in R.
2.7 Drug screening

CMap (https://clue.io/) database (27) was used to identify small

molecules with potential therapeutic effects based on connectivity
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scores that reflect the ability to reverse TCMR-associated gene

expression. Among the top candidates, PPARg receptor agonists

were highlighted, and rosiglitazone was selected for further

experimental validation.
2.8 Mouse skin transplantation model

Donor mice were 8-week-old male BALB/c mice, while

recipient mice were 8–12-week-old male C57BL/6 mice. Donor

mice were euthanized, and their tail skin was thoroughly disinfected

with povidone-iodine. Tail skin was excised and trimmed into 1.0 ×

1.0 cm² grafts. Recipient mice were anesthetized with isoflurane,

and the hair on their dorsal region was shaved and disinfected with

povidone-iodine. Once the disinfectant dried, a 1.0 × 1.0 cm² graft

bed was prepared by excising the skin. The donor skin graft was

placed onto the graft bed and secured at the four corners and edges

using sutures. After surgery, the graft was protected with a sterile

bandage, and the mice were housed in clean cages with heating pads

to maintain body temperature until they fully recovered. The mice

were divided into four groups: control group, rosiglitazone group,

rapamycin group, and combination group (rosiglitazone +

rapamycin). Starting on the day of transplantation, the mice

received daily intraperitoneal injections of the respective

treatments. The rapamycin group received 0.5 mg/kg/day, the

rosiglitazone group received 10 mg/kg/day, and the combination

group received both drugs at the same dosages. The control group

received an equivalent volume of the solvent. Bandages were

removed on postoperative day 7. Graft survival was assessed daily

through macroscopic observation, and photographs were taken for

analysis. Graft rejection was defined as ≥90% necrosis of the

graft area.
2.9 Mouse CD4+ T cell culture

CD4+ T cells were activated in 96-well plates pre-coated with 5

mg/mL anti-mouse CD3e antibody (BioLegend, Cat# 100340) in

PBS, incubated overnight at 4°C. CD4+ T cells were isolated from

the spleens of 6–8-week-old C57BL/6 mice using the CD4+ T Cell

Isolation Kit (StemCell, Cat# 19765) following the manufacturer’s

protocol. Spleens were homogenized through a 70 mm cell strainer

to obtain single-cell suspensions, followed by red blood cell lysis

using 0.84% ammonium chloride. Purified CD4+ T cells were

resuspended in RPMI-1640 medium supplemented with 10% fetal

bovine serum (FBS), 1% penicillin-streptomycin, 50 mM b-
mercaptoethanol, 2 mg/mL anti-CD28 antibody (BioLegend, Cat#

102116), and 50 U/mL recombinant mouse IL-2 (BioLegend, Cat#

575402). The cells were seeded in the anti-CD3e-coated plates and

cultured at 37°C in a humidified atmosphere with 5% CO2. During

the culture period, rosiglitazone was added to the medium at

concentrations of 10 mM or 30 mM, or an equivalent volume of

solvent was added as a control. After 24 hours of incubation, cells

were harvested for flow cytometric analysis.

For Th1 differentiation, CD4+ T cells were cultured in RPMI-

1640 medium supplemented with 10% fetal bovine serum, 1%
Frontiers in Immunology 04
penicillin-streptomycin, 50 mM b-mercaptoethanol, recombinant

murine IL-12p70 (10 ng/mL, Propetech, Cat# 210-12-10UG), and

neutralizing IL-4 antibody (10 mg/mL, BioLegend, Cat# 504122)

under Th1-inducing conditions. The cells were seeded at a density

of 1 × 106 cells/mL in 96-well flat-bottom plates and cultured for 72

hours at 37°C in a humidified atmosphere with 5% CO2.
2.10 Flow cytometry analysis

To evaluate cell viability and death, CD4+ T cells treated with

rosiglitazone (10 mM or 30 mM) or solvent control were first stained

using the live-dead Zombie Aqua (BioLegend, Cat# 423102)

according to the manufacturer’s instructions. Stained cells were

then washed and resuspended in staining buffer (PBS containing 1%

FBS and 0.1% sodium azide) for surface marker staining. For

surface marker staining, cells were incubated with FITC-

conjugated anti-mouse CD4 (ThermoFisher, Cat# 25-7021-82),

APC-conjugated anti-mouse CD69 (BioLegend, Cat# 104513),

and PE-conjugated anti-mouse CD25 (BioLegend, Cat# 102007)

antibodies at 4°C in the dark for 30 minutes. After staining, cells

were washed twice with cold staining buffer and resuspended in 300

mL PBS for analysis. For intracellular cytokine staining, cells were

stimulated in vitro with 50 ng/mL PMA, 1 mg/mL ionomycin, and

10 mg/mL brefeldin A for 5 hours in a humidified 37°C incubator.

Following stimulation, cells were fixed and permeabilized using

Fixation Buffer (BioLegend, Cat# 420801) according to the

manufacturer’s instructions. Intracellular IL-2 staining was

performed using PE-Cy7-conjugated anti-mouse IL-2 antibody

(ThermoFisher, Cat# 25-7021-82) at 4°C in the dark for 30 minutes.

For Th1 analysis, cells were collected following culture under

Th1-inducing conditions, washed twice with cold PBS, and stained

for CD4+ surface markers using FITC-conjugated anti-mouse CD4

antibody at 4°C in the dark for 30 minutes. After surface staining,

intracellular cytokine staining was performed using the intracellular

fixation and permeabilization kit (BioLegend, Cat# 420801).

Subsequently, cells were stained for IFN-g using anti-mouse IFN-

g-eFluor450 (ThermoFisher, Cat# 48-7311-82) at 4°C in the dark

for 30 minutes. After washing, cells were resuspended in PBS with

1% FBS and analyzed using flow cytometry.

Flow cytometric analysis was conducted using a flow cytometer,

and data were processed with FlowJo software (Version 10.8.1). The

gating strategy was consistent across all samples. Debris and dead

cells were excluded based on FSC/SSC properties during gating, and

CD4+ T cells were selected for further analysis.
2.11 Statistical analysis

All statistical analyses were performed using R Software

(version 4.3.0) and GraphPad Prism (version 9.5.1). Group

comparisons were conducted using a two-tailed unpaired

Student’s t-test for two groups or one-way analysis of variance

(ANOVA) for comparisons among multiple groups. Graft survival

in the skin transplantation experiments was analyzed using Kaplan-

Meier survival curves and the log-rank test. The diagnostic
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performance of models was evaluated using ROC curves and AUC,

with optimal cutoff points determined by the Youden index.

Statistical significance was defined as a two-tailed p < 0.05.
3 Results

3.1 Identification and functional annotation
of DEGs in TCMR patients across different
organ transplants

To investigate the molecular mechanisms underlying TCMR

across different transplanted organs, microarray data from kidney,

heart, and lung transplant biopsy samples were retrieved from the

GEO database and analyzed.

In the kidney transplant cohort (GSE192444), which included

21 TCMR samples and 242 non-TCMR samples (Figure 1A), a total

of 454 upregulated and 158 downregulated DEGs were identified

(Figures 1B, C). Similarly, the heart transplant cohort (GSE150059),

consisting of 76 TCMR samples and 1032 non-TCMR samples

(Figure 1D), yielded 587 upregulated and 34 downregulated DEGs

(Figures 1E, F). In the lung transplant cohort (GSE150156),

including 23 TCMR samples and 291 non-TCMR samples

(Figure 1G), 439 upregulated and 351 downregulated DEGs were

identified (Figures 1H, I). These findings highlight the significant

transcriptomic changes associated with TCMR in each

organ system.

Functional annotation of the upregulated DEGs in each cohort

using GO and KEGG pathway analyses revealed significant

enrichment in immune-related biological processes and signaling

pathways (Supplementary Figures S1A–F). Despite certain organ-

specific differences in DEG profiles, key enriched pathways—such

as “immune response-activating signaling pathway” and “immune

receptor activity”—were consistently observed across kidney, heart,

and lung transplants. This consistency highlights the shared

immune processes underlying TCMR, regardless of the type of

transplanted organ, further supporting the notion that TCMR is

driven by conserved molecular mechanisms.
3.2 Shared molecular features and cytokine
network analysis in TCMR patients

To identify conserved molecular signatures across different

transplanted organ types, we conducted an intersection analysis

of the upregulated DEGs shared across kidney, heart, and lung

TCMR cohorts. This approach identified 190 commonly

upregulated DEGs (CU-DEGs) shared across the three organ

types (Figure 2A). GO enrichment analysis of the CU-DEGs

revealed significant associations with immune-related functional

categories, including “positive regulation of cytokine production,”

“immune response-activating signaling pathways,” “leukocyte

activation involved in immune response,” “regulation of T cell

activation,” and “leukocyte cell-cell adhesion” (Figure 2B). These

results suggest that the shared DEGs play essential roles in driving

immune activation and cell-cell interactions during TCMR. Further
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DEGs were prominently involved in pathways directly linked to

transplant rejection, such as “allograft rejection,” “phagosome,”

“graft-versus-host disease,” “hematopoietic cell lineage,” and

“cytokine–cytokine receptor interaction” (Figure 2C). These

enriched pathways highlight the interplay between innate and

adaptive immune responses in TCMR pathogenesis and reinforce

the critical role of a cytokine-driven inflammatory cascade in

mediating transplant rejection.

By intersecting the identified CU-DEGs with a curated

cytokine-related gene set, we further narrowed down a set of 11

TCMR-associated cytokine genes (TCMR-Cs): CXCL13, IFNG,

TNFSF13B, CCL3, CXCL11, CXCL9, CXCL10, CCL8, CCL18, LTB,

and CCL19 (Figure 2D). These cytokine and chemokine genes are

well-established as key regulators of immune responses and

leukocyte recruitment, underscoring their importance in

mediating immune dysregulation during TCMR. To explore the

functional relationships among these TCMR-Cs, we constructed a

protein-protein interaction (PPI) network using the GeneMANIA

database. The resulting network revealed extensive direct and

indirect interactions both within the cytokine gene set and with

additional functional partners (Figure 2E). This PPI network

illustrates the intricate and interconnected roles of these cytokines

and chemokines in TCMR, emphasizing their collective

contribution to immune activation, leukocyte recruitment, and

inflammation. Collectively, these findings define a cytokine-driven

axis of immune dysregulation in TCMR, which may serve as the

basis for developing therapeutic strategies aimed at modulating

cytokine activity during transplant rejection.
3.3 Diagnostic predictive model for TCMR
using lasso and logistic regression

To further explore the biological significance and diagnostic

potential of the previously identified 11 TCMR-Cs, we used their

expression profiles to construct a predictive model for TCMR. This

approach aimed to evaluate whether these cytokine genes

collectively could reliably distinguish TCMR patients from non-

TCMR patients across multiple organ transplant types.

The 11 TCMR-Cs were used as input features for modeling, and

transcriptomic data from the kidney (GSE192444), heart

(GSE150059), and lung (GSE150156) transplant cohorts were

integrated to form a comprehensive multilayer dataset. Patients

were categorized into TCMR (120 samples) and non-TCMR (1565

samples) groups based on clinical outcomes. To select the most

informative genes and construct the optimal model, Lasso

regression analysis was performed (Figure 3A). After tuning the

parameters using the lambda.1se selection criterion, five genes—

CXCL13, IFNG, TNFSF13B, CCL3, and CCL18—were identified as

the key predictors for the final model (Figure 3B). These five genes

are referred to as TCMR Core Hub Genes (TCMR-Hubs).

To examine the specific contributions of these TCMR-Hubs to

the predictive model, multivariate logistic regression was

conducted, revealing their individual regression coefficients and

highlighting their predictive importance. The coefficients for the
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selected genes were as follows: CXCL13 (0.83), IFNG (1.33),

TNFSF13B (1.51), CCL3 (-1.19), and CCL18 (0.36) (Figure 3C).

The corresponding odds ratios (ORs) and 95% confidence intervals

(CIs) further validated their diagnostic relevance (Figure 3D). Using

these coefficients, risk scores for all patients in the training cohort

were calculated, providing a quantitative basis for stratifying

patients by TCMR risk. Comparative analysis of risk scores

between TCMR and non-TCMR patients showed a pronounced

separation, with TCMR patients exhibiting significantly higher
Frontiers in Immunology 06
scores (Figure 3E). ROC curve evaluation confirmed the

predictive performance of the model, achieving an exceptional

AUC of 0.99 in the training cohort (Figure 3F). Using the

Youden index, the optimal risk score threshold for classification

was determined to be 17.64, effectively distinguishing high-risk

patients from low-risk individuals. These results indicate the high

diagnostic accuracy of the model and emphasize the biological and

predictive importance of the five TCMR-Hubs in capturing

immune features associated with TCMR.
FIGURE 1

Differential gene expression between TCMR and non-TCMR groups across different transplant cohorts. PCA plots illustrate the separation of TCMR
and non-TCMR samples in three transplant cohorts: renal transplant (GSE192444) (A), heart transplant (GSE150059) (D), and lung transplant
(GSE150156) (G). Each point represents an individual sample, with colors distinguishing the TCMR group from the non-TCMR group. Heatmaps
(B, E, H) display the expression patterns of DEGs between TCMR and non-TCMR groups in the corresponding cohorts (GSE192444, GSE150059, and
GSE150156). Rows correspond to DEGs, and columns represent individual samples. Volcano plots (C, F, I) present the results of DEG analysis
between TCMR and non-TCMR groups for each cohort. Red dots indicate upregulated genes in the TCMR group, while blue dots indicate
downregulated genes. The x-axis represents log2 fold change, and the y-axis represents -log10 p-value. Labeled genes denote the top 10
upregulated or downregulated genes with the highest absolute log2 fold changes.
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3.4 Validation of the TCMR
predictive model

To validate the robustness and generalizability of the predictive

model, we first evaluated its performance within the training cohort.

The distinct expression profiles of the five TCMR-Hubs between

TCMR and non-TCMR samples provided a solid basis for accurate
Frontiers in Immunology 07
classification (Figure 4A). At an optimal cutoff of 0.03, the model

demonstrated excellent sensitivity (0.99) and specificity (0.91) in the

training cohort, with an outstanding AUC of 0.99 (Figure 4B).

Moreover, additional metrics were utilized to provide a more

nuanced assessment of the model’s diagnostic performance in the

training data. Specifically, the precision, recall, and F1 score of the

model were 0.999, 0.909, and 0.952 (Figure 4C), respectively,
FIGURE 2

Shared gene characteristics and cytokine network analysis in TCMR patients. (A) A Venn diagram showing the commonly upregulated differentially
expressed genes (CU-DEGs) among TCMR patients in renal transplant (GSE192444), heart transplant (GSE150059), and lung transplant (GSE150156)
cohorts, identifying a total of 190 shared genes. (B) Bubble plot displaying the GO functional enrichment analysis of CU-DEGs. (C) Bar chart
illustrating the KEGG pathway enrichment analysis of CU-DEGs. (D) A Venn diagram depicting the intersection between CU-DEGs and cytokine-
related genes, identifying 11 TCMR-associated cytokine genes (TCMR-Cs). (E) PPI network of the TCMR-Cs constructed using the GeneMANIA
database. The network reveals both direct and indirect interactions among the 11 key genes, along with additional functionally related genes.
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indicating a strong balance between minimizing false positives and

maximizing detection of TCMR cases. These results reinforced the

ability of the model to reliably identify TCMR within the

development dataset.

The predictive capability of the model was then validated across

independent test cohorts, representing kidney (GSE98320), heart

(GSE124897), and lung (GSE125004) transplants, to confirm its

applicability across diverse transplant types. Additional

performance metrics were calculated for these test datasets to

ensure comprehensive evaluation. In the kidney test cohort, the
Frontiers in Immunology 08
model displayed strong diagnostic performance, achieving an AUC

of 0.87 (Figures 4D, E), with precision, recall, and F1 score of 0.979,

0.839, and 0.904 (Figure 4F), respectively. Similarly, in the heart test

cohort, the model maintained exceptional accuracy with an AUC of

0.98 (Figures 4G, H), combined with a precision of 1.000, recall of

0.897, and an F1 score of 0.946 (Figure 4I). Lastly, the lung

transplant test cohort achieved high predictive power with an

AUC of 0.95 (Figures 4J, K), alongside precision, recall, and F1

score values of 0.981, 0.963, and 0.972 (Figure 4L), respectively.

These additional metrics not only confirmed the strong diagnostic
FIGURE 3

Diagnostic Model for TCMR Using Lasso and Logistic Regression. (A) Cross-validation plot for the Lasso regression, showing the trend of mean
squared error (MSE) with the logarithmically transformed lambda parameter during cross-validation. (B) Coefficient path plot of the Lasso regression,
illustrating the shrinkage of candidate gene coefficients toward zero as the regularization parameter lambda increases. At the selected lambda value
(lambda.1se), five key genes were retained for constructing the prediction model. (C) Logistic regression coefficients of the TCMR-Hubs. (D) Forest
plot summarizing the odds ratios (OR) and 95% confidence intervals (CIs) of the five key genes identified by logistic regression. (E) Box plot depicting
the risk scores for each sample in the training cohort, calculated based on the regression coefficients of the five key genes. Significant differences in
risk scores are shown between the TCMR and non-TCMR groups. (F) ROC curve of the risk scores, with the red dot indicating the optimal threshold
determined by the Youden index for distinguishing TCMR and non-TCMR groups. ***P< 0.001.
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capabilities of the model but also highlighted its robustness in

handling imbalanced datasets, as evidenced by consistently high

precision and balanced recall.

Collectively, these findings indicate that the TCMR predictive

model based on the TCMR-Cs gene set can robustly and accurately

assess TCMR risk across various organ transplant types. By

integrating transcriptomic data and focusing on a core set of

cytokine genes, this model demonstrates potential clinical utility

for the early detection of TCMR.
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3.5 Immune infiltration characteristics in
TCMR patients

To investigate the immune microenvironment of TCMR,

immune cell infiltration levels were analyzed in TCMR and non-

TCMR patients across kidney, heart, and lung transplant cohorts.

Despite organ-specific differences, the TCMR groups consistently

demonstrated elevated infiltration of several immune cell subsets,

including CD8+ T cells, activated NK cells, M1 macrophages, M2
FIGURE 4

Evaluation of the predictive performance of the TCMR diagnostic model. Heatmaps display the expression patterns of TCMR-Hubs in the TCMR and
non-TCMR groups across the training cohort (A), renal transplant testing cohort (GSE98320, (D)), heart transplant testing cohort (GSE124897, (G)),
and lung transplant testing cohort (GSE125004, (J)). Receiver operating characteristic (ROC) curves for the prediction model are shown for the
training cohort (B), renal transplant testing cohort (GSE98320, (E)), heart transplant testing cohort (GSE124897, (H)), and lung transplant testing
cohort (GSE125004, (K)). Each ROC curve includes the AUC, optimal cutoff point, specificity, and sensitivity. Performance metrics, including
precision, recall, and F1 score, are shown for the training cohort (C), renal transplant testing cohort (F), heart transplant testing cohort (I), and lung
transplant testing cohort (L).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1539645
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2025.1539645
macrophages, gd T cells, follicular helper T cells (Tfh cells), naive B

cells, and plasma cells (Figures 5A, B; Supplementary Figures

S2A–D).

Organ-specific differences in immune infiltration were observed

when comparing TCMR patients to non-TCMR patients. In the

kidney transplant cohort, infiltration of M1 macrophages, gd T cells,
Frontiers in Immunology 10
plasma cells, and Tfh cells was significantly increased (Figure 5C).

Among heart transplant TCMR patients, higher infiltration levels of

CD8+ T cells, M1 macrophages, gd T cells, and Tfh cells were

observed (Supplementary Figure S2E). Similarly, lung transplant

TCMR patients showed elevated infiltration of M1 macrophages,

activated NK cells, gd T cells, and activated memory CD4+ T cells
FIGURE 5

Immune infiltration characteristics of TCMR patients. (A) Heatmap showing the infiltration levels of various immune cells in the TCMR and non-
TCMR groups within the renal transplant cohort (GSE192444). (B) Box plot ranking the abundance of immune cell infiltration in the TCMR group
within the renal transplant cohort (GSE192444). (C) Box plot comparing the infiltration levels of immune cells between the TCMR and non-TCMR
groups within the renal transplant cohort (GSE192444). (D) Correlation matrix illustrating the relationships among different immune cells in the TCMR
group. Blue indicates negative correlations, while red indicates positive correlations, with deeper colors representing stronger correlations.
(E) Correlation analysis between TCMR-Hubs and immune cell infiltration levels in the TCMR group. Blue indicates negative correlations, while red
indicates positive correlations, with deeper colors representing stronger correlations. *P < 0.05, **P < 0.01, ***P < 0.001. *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001 and non-significant values (ns) indicate p≥0.05.
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(Supplementary Figure S2F). These observations highlight both

shared and organ-specific immune mechanisms in TCMR. In

contrast, several immune subsets were consistently reduced across

all three organ types in the TCMR group, including regulatory T

cells (Tregs) and resting mast cells. Moreover, M2 macrophages

displayed lower infiltration levels in both kidney and heart TCMR

cohorts (Figure 5C; Supplementary Figures S2E, F). This indicates a

shift in the immune environment of TCMR patients towards a pro-

inflammatory state, characterized by an imbalance between

immune activation and regulation.

Correlational analysis between immune cell subsets revealed

strong positive associations between certain immune populations,

such as M1 macrophages and activated NK cells (Figure 5D;

Supplementary Figures S3A, C). Furthermore, the relationship

between the five TCMR-Hubs and immune cell infiltration was

examined. Positive correlations were identified between TCMR-

Hubs and immune-activated subsets, including gd T cells, activated

memory CD4+ T cells, plasma cells, activated NK cells, M1

macrophages, and Tfh cells. Conversely, TCMR-Hubs were

negatively correlated with immune-regulatory or resting subsets,

such as Tregs, resting NK cells, resting mast cells, naive B cells, and

resting memory CD4+ T cells (Figure 5E; Supplementary Figures

S3B, D).

These findings emphasize the critical role of specific immune

subsets, particularly pro-inflammatory and effector cells, in the

progression of TCMR. The observed negative correlations with

regulatory immune populations further underscore the imbalance

within the immune microenvironment in TCMR. These results

suggest that modulating key immune subsets may provide a

therapeutic strategy for mitigating TCMR.
3.6 Immunomodulatory effects of the
PPARg agonist rosiglitazone in TCMR

To identify potential therapeutic agents for TCMR, we focused

on utilizing the TCMR-Cs to explore targeted treatment strategies.

Using the 11 TCMR-Cs and the top 10 upregulated DEGs in TCMR

patients, a drug-repurposing analysis was conducted through the

CMap database. The analysis yielded a ranked list of small-molecule

compounds with potential relevance to TCMR, based on their

ability to reverse the TCMR-associated transcriptional signature.

From the top 100 compounds showing negative CMap scores, the

most frequent mechanisms of action included “PPAR receptor

agonist,” “serotonin receptor antagonist,” “acetylcholine receptor

antagonist,” “carbonic anhydrase inhibitor,” and “HDAC inhibitor”

(Supplementary Figure S4). Among these, PPAR receptor agonists

stood out due to their established anti-inflammatory and

immunomodulatory properties. To validate their therapeutic

potential, rosiglitazone, a PPARg agonist, was selected for in vitro

and in vivo functional experiments.

To evaluate its immunomodulatory capacity, CD4+T cells were

isolated from mouse spleens, activated with anti-CD3, anti-CD28,

and IL-2, and treated in vitro with rosiglitazone at concentrations of

10 mM and 30 mM. After 24 hours of treatment, flow cytometry
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analysis revealed that rosiglitazone significantly inhibited CD4+T cell

activation, as evidenced by reduced expression of activation markers

CD69 and CD25 (Figures 6A, B), and suppressed functional activity

by significantly reducing IL-2 production (Figure 6C). Moreover, at

both concentrations, no significant differences in cell viability and

death were observed between the rosiglitazone-treated and control

groups (Supplementary Figure S5A), indicating that rosiglitazone

effectively modulates immune responses without inducing

cytotoxicity under the tested conditions. Additionally, the effect of

rosiglitazone on Th1 differentiation was investigated. CD4+T cells

were isolated and cultured in Th1-inducing conditions (recombinant

IL-12 and anti-IL-4 antibody) for 72 hours in the presence or absence

of rosiglitazone. Flow cytometry analysis revealed that rosiglitazone

treatment significantly reduced the proportion of Th1 cells, as

indicated by a decreased percentage of CD4+IFN-g+cells compared

to the untreated Th1-differentiated control (Supplementary Figure

S5B). These results suggest that rosiglitazone not only inhibits T cell

activation but also suppresses the differentiation of pro-inflammatory

Th1 cells.

The therapeutic potential of rosiglitazone was further assessed

in vivo using a murine skin transplant rejection model. BALB/c

mouse skin was transplanted onto the backs of C57BL/6 mice, and

the animals were divided into four groups: control, rosiglitazone (10

mg/kg/day), rapamycin (50 mg/kg/day), and a combination of

rosiglitazone and rapamycin (Figure 6D). In the rosiglitazone-

only group, monotherapy did not significantly prolong graft

survival compared to the control group. In contrast, rapamycin-

treated mice exhibited extended graft survival. Importantly, the

combination therapy of rapamycin and rosiglitazone demonstrated

a synergistic effect, significantly prolonging graft survival compared

to rapamycin alone (Figure 6E).

These results highlight the immunomodulatory potential of PPARg
agonists in TCMR. Rosiglitazone effectively suppressed T cell activation

in vitro, reduced Th1 differentiation, and demonstrated no cytotoxic

effects on T cells under the tested conditions, supporting its safety and

efficacy as an immunomodulatory agent. In vivo, rosiglitazone

enhanced graft survival when combined with rapamycin, as

evidenced by extended survival times, suggesting a synergistic

mechanism. These findings provide robust evidence supporting the

repurposing of PPARg agonists as adjunctive therapies for TCMR.

Furthermore, they underscore the importance of combining targeted

immunomodulators with existing immunosuppressive regimens to

optimize outcomes in transplantation medicine.
4 Discussion

This study defines a novel TCMR-associated cytokine gene set and

highlights its potential in both understanding the pathogenesis of

TCMR and facilitating drug repurposing efforts to address this

significant clinical challenge in organ transplantation. By integrating

multi-organ transcriptomic data, we established an organ-agnostic

approach to investigate key immune mechanisms underlying TCMR

and proposed innovative therapeutic strategies based on these findings.

Early detection of TCMR and the identification of targeted
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interventions are critical for improving long-term transplant outcomes

(28), especially since current immunosuppressive therapies often result

in severe complications such as infections, organ toxicity, and

malignancy with prolonged use (7, 29). Responding to the urgent

demand for safer and more sustainable treatments, this study offers a

new framework for identifying actionable biomarkers, constructing

predictive models, and exploring drug repurposing opportunities in

transplantation medicine.

By focusing on the shared immune characteristics of TCMR

across kidney, heart, and lung transplantation, we identified a

cytokine-driven gene signature with significant translational

potential. The intersection of TCMR-related genes with cytokine-
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associated gene sets yielded a concise and relevant gene signature

(TCMR-Cs) that provides a foundation for understanding common

immune mechanisms and identifying therapeutic targets.

Functional annotation of these genes, through GO and KEGG

pathway enrichment analyses, revealed their central roles in

immune activation pathways, including “Regulation of T cell

activation,” “Leukocyte cell-cell adhesion,” “Allograft rejection,”

and “Graft-versus-host disease.” Notably, these pathways are

essential mediators of rejection and underpin many of the

immune dysregulation processes involved in TCMR. This organ-

agnostic approach reinforces the biological relevance of TCMR-Cs

and opens the possibility of targeting shared molecular processes
FIGURE 6

Immunoregulatory effects of the PPARg agonist rosiglitazone in TCMR. CD4+ T cells were isolated from mouse spleens, activated in vitro, and
treated with 10 mM or 30 mM rosiglitazone (Rosi) or an equivalent volume of solvent control for 24 hours. Flow cytometry was used to measure the
mean fluorescence intensity (MFI) of CD69 (A) and CD25 (B) in each group. (C) Proportion of IL-2-positive CD4+ T cells measured by flow
cytometry after 24 hours of culture. (D) Representative photographs of skin grafts from four groups of mice: control group, rosiglitazone group,
rapamycin group (Rapa), and rapamycin combined with rosiglitazone group. (E) Survival curves of skin grafts from the four experimental groups.
*p<0.05, **p<0.01, ***p<0.001 and ns indicate p≥0.05.
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across multiple organ transplant types, thereby advancing the

development of generalized therapeutic strategies.

Key cytokines within our gene set emerged as significant

contributors to TCMR pathogenesis, emphasizing their potential

as biomarkers and therapeutic targets. CXCL13, for instance,

promotes B cell infiltration in kidney transplantation, increasing

the severity of rejection, and its elevated levels in serum have been

proposed as both a biomarker and therapeutic target for TCMR

(30). Similarly, IFNG plays a pivotal role in modulating endothelial

cell activity and antigen presentation pathways, exacerbating

rejection (31). These mechanistic insights into cytokine-mediated

immune regulation further validate their potential as molecular

targets for therapeutic intervention in TCMR. Other cytokines, such

as CCL3, TNFSF13B, and CCL18, are equally important in TCMR.

Elevated levels of CCL3 have been linked to immune cell

recruitment and activation in both antibody-mediated rejection

(ABMR) and TCMR, indicating its dual relevance (32). Likewise,

TNFSF13B, which encodes the cytokine BAFF, plays a regulatory

role in B-cell activity and rejection-related immune networks (33,

34). Although its direct role in TCMR requires further study, its

centrality in autoimmune and rejection pathways highlights its

therapeutic potential. Finally, CCL18 has been implicated in

accelerating graft rejection by recruiting alloreactive T cells, as

shown in a humanized skin transplant model (35). Taken

together, these findings establish a shared cytokine-mediated axis

of immune dysregulation that is pivotal to TCMR across multiple

organ systems, further validating the importance of our identified

gene set as both a biological and therapeutic resource.

Our predictive model, developed using Lasso regression and

multivariate logistic regression analysis, demonstrated robust

performance, achieving high AUC values in both the training and

testing cohorts. These results not only validate the clinical utility of

the TCMR-Cs as a robust biomarker but also emphasize the model’s

reliability in stratifying TCMR patients based on gene expression

profiles. By enabling the early recognition and risk stratification of

high-risk patients, this model provides a potential tool for

optimizing clinical immunosuppressive regimens, which could

ultimately reduce the incidence of acute rejection and improve

long-term transplant outcomes. By enabling the early identification

of high-risk TCMR patients, the model provides a valuable tool for

clinicians to optimize immunosuppressive regimens and potentially

reduce the incidence of acute rejection. Compared to previous

studies that predominantly focus on single-organ systems (36–

38), our multi-organ approach offers a broader perspective by

identifying universal biomarkers and therapeutic targets shared

across different organ transplant types. This comprehensive

strategy underscores the potential for developing organ-agnostic

therapeutic interventions.

Further analysis of immune infiltration patterns in TCMR

patients revealed significant increases in CD8+ T cells, activated

natural killer (NK) cells, and M1 macrophages. These immune

subsets are key mediators of the effector phase of rejection,

contributing to direct cytotoxicity and amplifying inflammatory

cascades. The observed enrichment of these immune cell

populations aligns with previous studies emphasizing the central
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role of cellular immunity in TCMR pathogenesis (39–43). These

findings provide further evidence that cellular immunity plays a

pivotal role in TCMR and highlight the importance of targeting these

immune subsets or their upstream pathways to mitigate rejection.

In addition, drug screening through the CMap database identified

peroxisome PPARg agonists as promising candidates for TCMR

management. PPARg agonists are well-known regulators of glucose

and lipid metabolism (15), with established clinical applications in

treating metabolic disorders such as type 2 diabetes, dyslipidemia,

and non-alcoholic fatty liver disease (44). Emerging evidence also

suggests that PPARg agonists exert immunomodulatory effects on T

cells by inhibiting the differentiation of Th1, Th2, and Th17 effector T

cells, thereby reducing the secretion of associated cytokines such as

IFN-g, IL-4, IL-13, and IL-17A (45, 46). Additionally, PPARg agonists
enhance the generation and functionality of regulatory T cells

(Tregs), which play a critical role in suppressing effector T cell

activity (46). These mechanisms suggest that PPARg agonists may

have potential as immunomodulatory agents in transplantation

medicine. In our study, the PPARg agonist rosiglitazone

demonstrated the ability to suppress T cell activation and IL-2

production in vitro and significantly prolonged graft survival in

vivo when combined with rapamycin. These findings are consistent

with the reported anti-inflammatory properties of PPARg agonists

(47–49), supporting their potential as adjunctive therapies in TCMR.

However, the mechanisms underlying the synergy between

rosiglitazone and rapamycin warrant further investigation.

Despite these promising findings, this study has several limitations.

First, the data used to develop the predictive model and identify

therapeutic candidates were derived from publicly available

databases, which may introduce variability due to differences in data

collection and processing methods. Second, the heterogeneity of

transplant types and patient populations poses challenges to the

generalizability of the model across all clinical scenarios. Future

investigations should focus on expanding the sample size and

diversity of patient cohorts, particularly by incorporating longitudinal

data to assess temporal changes in TCMR-related gene expression and

immune infiltration. Finally, while PPARg agonist rosiglitazone

demonstrated immunomodulatory potential in preliminary analyses,

its efficacy in clinical settings requires validation through larger in vivo

and clinical trials. These efforts are essential for optimizing drug dosing

strategies, minimizing potential off-target effects, and evaluating

combinatorial therapies with existing immunosuppressive regimens.
5 Conclusion

In this study, we defined a novel gene set—TCMR-Cs by

analyzing gene expression profiles from kidney, heart, and lung

transplant biopsies. This gene set formed the basis for a predictive

model that demonstrated high diagnostic accuracy across multiple

transplant cohorts, validating its potential as a tool for risk

stratification and clinical decision-making. Furthermore, using the

TCMR-Cs, we identified PPARg agonists through CMap-based

drug repurposing as promising therapeutic candidates for TCMR.

Experimental validation showed that PPARg agonist rosiglitazone
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effectively suppressed T cell activation in vitro and prolonged graft

survival in vivo when combined with rapamycin. These findings

emphasize the importance of TCMR-Cs in understanding cytokine-

driven immune dysregulation and highlight the potential of PPARg
agonists as adjunctive therapies in transplantation medicine.
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Núñez-Roldán A, Aguilera I. Computer-assisted definition of the inflammatory
infiltrates in patients with different categories of banff kidney allograft rejection.
Front Immunol. (2019) 10:2605. doi: 10.3389/fimmu.2019.02605

44. Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM,
dyslipidaemia and NAFLD. Nat Rev Endocrinol. (2017) 13:36–49. doi: 10.1038/
nrendo.2016.135

45. Park H, Park H, Lee J, Bothwell ALM, Choi J. Sex-based selectivity of PPARg
Regulation in th1, th2, and th17 differentiation. Int J Mol Sci. (2016) 17(8):1347.
doi: 10.3390/ijms17081347

46. Miao Y, Zhang C, Yang L, Zeng X, Hu Y, Xue X, et al. The activation of PPARg
enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid
oxidation and subsequent N-glycan branching of TbRII/IL-2Ra . Cell
Communication Signaling: CCS. (2022) 20:48. doi: 10.1186/s12964-022-00849-9

47. Titus C, Hoque MT, Bendayan R. PPAR agonists for the treatment of
neuroinflammatory diseases. Trends Pharmacol Sci. (2024) 45:9–23. doi: 10.1016/
j.tips.2023.11.004,

48. Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome
proliferator-activated receptors. J Hepatol. (2023) 79:1302–16. doi: 10.1016/
j.jhep.2023.07.004

49. Stark JM, Coquet JM, Tibbitt CA. The role of PPAR-g in allergic disease. Curr
Allergy Asthma Rep. (2021) 21:45. doi: 10.1007/s11882-021-01022-x
frontiersin.org

https://doi.org/10.1016/j.bcp.2023.115433
https://doi.org/10.1016/j.bcp.2023.115433
https://doi.org/10.1016/j.jhep.2014.10.039
https://doi.org/10.1681/ASN.2021091191
https://doi.org/10.1016/j.healun.2021.08.004
https://doi.org/10.1016/j.healun.2020.08.013
https://doi.org/10.1093/nar/gky787
https://doi.org/10.1093/nar/gkq537
https://doi.org/10.1172/jci.insight.94197
https://doi.org/10.1172/jci.insight.94197
https://doi.org/10.1016/j.healun.2019.01.1318
https://doi.org/10.1111/ajt.15685
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1097/TP.0000000000002560
https://doi.org/10.1097/TP.0000000000002560
https://doi.org/10.2215/CJN.15040920
https://doi.org/10.3390/ijms20102552
https://doi.org/10.3390/ijms20102552
https://doi.org/10.3389/fimmu.2023.1139358
https://doi.org/10.1111/ajt.14410
https://doi.org/10.1056/NEJMoa1610528
https://doi.org/10.3389/fimmu.2022.869444
https://doi.org/10.1016/j.xcrm.2022.100559
https://doi.org/10.3389/fimmu.2023.1090373
https://doi.org/10.1016/j.ajt.2024.04.004
https://doi.org/10.1097/TP.0000000000003478
https://doi.org/10.3389/fimmu.2023.1151127
https://doi.org/10.1371/journal.pone.0234323
https://doi.org/10.1016/j.kint.2023.11.012
https://doi.org/10.1016/j.kint.2023.11.012
https://doi.org/10.3389/fimmu.2022.846695
https://doi.org/10.3389/fimmu.2019.02605
https://doi.org/10.1038/nrendo.2016.135
https://doi.org/10.1038/nrendo.2016.135
https://doi.org/10.3390/ijms17081347
https://doi.org/10.1186/s12964-022-00849-9
https://doi.org/10.1016/j.tips.2023.11.004
https://doi.org/10.1016/j.tips.2023.11.004
https://doi.org/10.1016/j.jhep.2023.07.004
https://doi.org/10.1016/j.jhep.2023.07.004
https://doi.org/10.1007/s11882-021-01022-x
https://doi.org/10.3389/fimmu.2025.1539645
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Targeting TCMR-associated cytokine genes for drug screening identifies PPAR&gamma; agonists as novel immunomodulatory agents in transplantation
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition and preprocessing
	2.2 DEG identification and functional enrichment analysis
	2.3 Data visualization
	2.4 Definition of the TCMR-Cs
	2.5 Predictive model construction and validation
	2.6 Immune cell infiltration analysis
	2.7 Drug screening
	2.8 Mouse skin transplantation model
	2.9 Mouse CD4+ T cell culture
	2.10 Flow cytometry analysis
	2.11 Statistical analysis

	3 Results
	3.1 Identification and functional annotation of DEGs in TCMR patients across different organ transplants
	3.2 Shared molecular features and cytokine network analysis in TCMR patients
	3.3 Diagnostic predictive model for TCMR using lasso and logistic regression
	3.4 Validation of the TCMR predictive model
	3.5 Immune infiltration characteristics in TCMR patients
	3.6 Immunomodulatory effects of the PPAR&gamma; agonist rosiglitazone in TCMR

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


