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Revealing gut microbiota
biomarkers associated with
melanoma immunotherapy
response and key bacteria-fungi
interaction relationships:
evidence from metagenomics,
machine learning, and
SHAP methodology
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Xiaolin Liu3, Tao Sun1,4* and Junnan Xu1,2,4*

1Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer
Hospital, Shenyang, China, 2Department of Pharmacology, Cancer Hospital of China Medical
University, Liaoning Cancer Hospital, Shenyang, China, 3Department of Bioinformatics, Kanghui
Biotechnology Co., Ltd., Shenyang, China, 4Department of Breast Medicine, Cancer Hospital of Dalian
University of Technology, Liaoning Cancer Hospital, Shenyang, China
Introduction: The gut microbiota is associated with the response to

immunotherapy in cutaneous melanoma (CM). However, gut fungal

biomarkers and bacterial-fungal interactions have yet to be determined.

Methods: Metagenomic sequencing data of stool samples collected before

immunotherapy from three independent groups of European ancestry CM

patients were collected. After characterizing the relative abundances of

bacteria and fungi, Linear Discriminant Analysis Effect Size (LEfSe) analysis,

Random Forest (RF) model construction, and SHapley Additive exPlanations

(SHAP) methodology were applied to identify biomarkers and key bacterial-

fungal interactions associated with immunotherapy responders in CM.

Results: Diversity analysis revealed significant differences in the bacterial and

fungal composition between CM immunotherapy responders and non-

responders. LEfSe analysis identified 45 bacterial and 4 fungal taxa as potential

biomarkers. After constructing the RF model, the AUC of models built using

bacterial and fungal data separately were 0.64 and 0.65, respectively. However,

when bacterial and fungal data were combined, the AUC of the merged model

increased to 0.71. In the merged model, the following taxa were identified as

important biomarkers: Romboutsia, Endomicrobium, Aggregatilinea, Candidatus

Moduliflexus, Colwellia, Akkermansia, Mucispirillum, and Rutstroemia, which

were associated with responders, whereas Zancudomyces was associated with

non-responders. Moreover, the positive correlation interaction between

Akkermansia and Rutstroemia is considered a key bacterial-fungal interaction

associated with CM immunotherapy response.
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Conclusion: Our results provide valuable insights for the enrichment of

responders to immunotherapy in CM patients. Moreover, this study highlights

the critical role of bacterial-fungal interactions in CM immunotherapy.
KEYWORDS

gut microbiota, melanoma, immunotherapy, biomarker, metagenomics, machine
learning, SHAP methodology
1 Introduction

Melanoma, a type of skin cancer, has garnered significant

attention due to its grim prognosis, pronounced invasiveness, and

limited survival potential. Cutaneous melanoma (CM), which

constitutes about 5% of all skin cancers, is a particularly aggressive

form (1). Despite its relatively low incidence, it is responsible for a

staggering 55,500 fatalities each year (2). Therefore, the development

of effective treatment strategies is a critical priority in enhancing the

survival rates of CM patients. Fortunately, the emergence of

immunotherapy has marked a significant advancement in

improving the prognosis for CM patients (3). However, a

proportion of patients are still unable to derive substantial benefit

from this treatment (4). Therefore, it is highly meaningful to

screening potential responders to immunotherapy and guide non-

responders to promptly receive alternative effective treatments.

The gut microbiota has been shown to actively participate in the

host’s local and systemic inflammation (5, 6). Therefore, the gut

microbiota is considered a promising biomarker and potential

therapeutic target across various fields (7–9). Early studies have

indicated that the gut microbiota and its metabolites maintain

immune system homeostasis in the host by modulating immune cell

responses and functions (10, 11). This endows them with the ability to

enhance or counteract immunotherapy responses by promoting local

and systemic inflammation or inducing an immunosuppressive

phenotype. Current gut microbiota studies primarily focus on

bacterial taxa, likely due to the higher abundance of bacteria in the

gut. A study analyzed fecal samples collected from CM patients

undergoing immune checkpoint inhibitor (ICI) treatment and

identified Bifidobacterium longum, Enterococcus faecium and

Collinsella aerofaciens as potential bacterial taxa associated with

enhanced efficacy of PD-L1 inhibitors (12). Notably, gut fungi are an

underappreciated biomarker. This perspective arises from the fact that

gut bacteria constitute 99.9% of the entire gut microbiome, leading to

the neglect of the role of gut fungi (13). However, a recent study has

identified gut fungi as potential biomarkers associated with

immunotherapy (14) . Addi t iona l l y , the gut fungus

Schizosaccharomyces octosporus is capable of fermenting starch into

short-chain fatty acids (SCFAs) in the bodies of immunotherapy

responders, functionally further highlighting the role of gut fungi in

immunotherapy (15). A recent study suggests that both fungal and

bacterial roles should be considered in cancer research (16).
02
To further investigate gut bacterial and fungal biomarkers

associated with immunotherapy response in CM patients, we

collected three publicly available metagenomic datasets and

performed Linear Discriminant Analysis (LDA) Effect Size (LEfSe)

analysis, Random forest (RF) machine learning, and SHapley Additive

exPlanations (SHAP) methodology. It will provide valuable insights for

the enrichment of responders to immunotherapy in CM patients.

Moreover, this study highlights the critical role of bacterial-fungal

interactions in CM immunotherapy.
2 Materials and methods

2.1 Acquisition of metagenomic datasets

We retrieved three publicly available metagenomic sequencing

datasets of stool samples from CM patients prior to immunotherapy

from the National Center for Biotechnology Information Sequence

Read Archive (NCBI-SRA) using the following accession numbers:

PRJEB43119 (17), PRJNA399742 (12) and PRJNA915098 (18). The

PRJEB43119 dataset includes 165 samples, consisting of 22

complete responses, 42 partial responses, 30 stable diseases, and

71 progressive diseases. In subsequent analyses, we classified

complete responses, partial responses, and stable diseases as

responders, while progressive diseases were classified as non-

responders. The PRJNA399742 dataset includes 14 responders, 23

non-responders, and 1 unknown sample. All samples in the

PRJNA915098 dataset are derived from responders. The three

cohorts were all of European descent, which helped minimize the

potential impact of ethnic heterogeneity on the results. PRJEB43119

will serve as the discovery cohort and training set for machine

learning, while PRJNA399742 and PRJNA915098 will be used as the

replication cohort and external test sets for machine learning.
2.2 Data processing

To remove low-quality base sequences and adapters, the fastq

software (v0.21.0) was used for quality control of the raw sequencing

data. Subsequently, the clumpify software (v38.90) will be used for

duplicate removal in the data. Based on the human reference genome

(GRCh38.p13), Bowtie2 (v2.4.2) software was used to filter out host-
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derived reads to obtain clean sequence data. Next, MEGAHIT and

QUAST were used to assemble the cleaned data and perform gene

prediction. CD-HIT software was used to perform redundancy

removal on the gene prediction results, resulting in a non-redundant

initial gene catalogue. Clustering was performed using default

parameters: identity set at 95% and coverage at 90%, with the longest

sequence selected as the representative sequence. Finally, Salmon

software was used to calculate the gene abundance information for

each sample based on the Unigenes gene sequences and the clean data

from each sample.
2.3 Diversity analysis

For alpha diversity, the indices assessed include Ace, Chao,

Richness, and Shannon. The significance of inter-group differences

between the two groups was assessed using the Wilcoxon rank-sum

test. For beta diversity, principal components analysis (PCA) was

performed based on the OTU table, followed by the creation of a

scatter plot. The statistical significance was then assessed using

analysis of similarity (ANOSIM). The analyses were performed

using the “Vegan” and “ade4” packages in R software.
2.4 Differential analysis

Biomarker grouping was determined based on the effect sizes

from LEfSe analysis (19). The differential analysis was performed

using the Wilcoxon rank-sum test, and the results were adjusted for

multiple hypothesis correction using the Bonferroni method

(Bacterial comparisons: P < 0.0000327 is considered significant,

and 0.0000327 < P < 0.05 is considered suggestive evidence. Fungal

comparisons: P < 0.000568 is considered significant, and 0.000568 <

P < 0.05 is considered suggestive evidence). The selection criteria

were an LDA > 2 and a P < 0.05 in this exploratory study. The

analysis was performed using the “LEfSe” package in R software.
2.5 Construction and test of the RF models

The diversity and complexity of gut microbiota species level data

limit the reliability and robustness of the models. To simplify the data

and enhance stability, we opted to construct the RF model at the genus

level (20). The biomarkers identified by LEfSe analysis will be used as

potential features for the RF model. The “rfcv” function in the

“randomForest” package was used to compute the minimum error

across different feature subsets using 10-fold cross-validation.

Subsequently, to enhance the model’s reliability, we introduced an

external test set and used the “pROC” package to plot the receiver

operating characteristic (ROC) curve. To evaluate the model’s

performance, we employed the area under the curve (AUC),

calibration curve, and clinical decision curve analysis (DCA). The

accuracy, sensitivity, specificity, and other performance metrics were

calculated and reported for test sets.
Frontiers in Immunology 03
2.6 SHAP methodology

SHAP values explain the contribution of each feature to the

model’s prediction, whether it be positive or negative (21). The

feature importance plot is used to display the features that have

the greatest impact on the model’s predictions, with feature

importance ranked based on the mean absolute SHAP values. The

hive plot illustrates the direction of the impact of changes in feature

relative abundance on the model’s predictions, which helps us

understand the decision-making process within the complex model

and further validate the results of LEfSe. This process utilizes the

“shapviz” package to interpret the predictions of the RF model.
2.7 Bacterial-fungal interaction analysis

After identifying the key bacterial and fungal taxa, Spearman’s

correlation coefficient was used to assess the key bacterial-fungal

interactions in the three cohorts (22). The “stats” package was used

to compute the correlations.
2.8 Statistics analysis

All statistical analysis and data visualization were conducted

using R version 4.3.0.
3 Results

3.1 Changes in gut bacterial composition in
CM responders

The four most abundant bacterial genera in responders and

non-responders were Bacteroides, Bifidobacterium, Collinsella, and

Fecalibacterium (Figure 1A). In the alpha diversity analysis, both

the Ace and Richness indices did not show a significant statistical

difference (P > 0.05). The Chao index of responders was

significantly lower than that of non-responders, suggesting that

the diversity of responders may be lower. However, the Shannon

index of responders was significantly higher than that of non-

responders, indicating a higher evenness in the gut bacterial

composition of responders (Figure 1B). PCA analysis showed that

the first two principal components explained approximately 52.93%

of the diversity. Although the confidence intervals of the two groups

partially overlap, ANOSIM analysis revealed a significant difference

between responders and non-responders (R = 0.0367, P < 0.05)

(Figure 1C). LEfSe analysis identified 45 potential biomarkers,

including 40 bacterial taxa associated with responders and 5

bacterial taxa associated with non-responders. In responders, the

top three bacterial taxa identified by LDA analysis were

Akkermansia, Collinsella, and Dorea, while in non-responders, the

top three were Jonquetella, Xanthovirga, and Roseiflexus (Figure 1D;

Supplementary Table S1).
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3.2 Bacterial feature selection and
interpretation of the RF model

At the minimum error, the top eight biomarkers ranked by

feature importance using the RF algorithm were included in the

construction of the diagnostic model (Figure 2A). The SHAP

summary plot of the model shows the effect of features on the

prediction model (Figure 2B). The selected features were ranked

from highest to lowest based on their average absolute SHAP values.

From high to low are: Romboutsia, Endomicrobium, Aggregatilinea,

Colwellia, Akkermansia, Candidatus Moduliflexus, Mucispirillum,

and Microbacter. The hive plot shows that as the feature value

(Relative abundance) of all features increases, their SHAP values

tend to predict responders (Figure 2C). It is worth noting that these
Frontiers in Immunology 04
features were identified as responder associated bacterial taxa in the

LEfSe analysis, further highlighting their potential value in

predicting immunotherapy responses in CM patients.
3.3 Bacterial RF model
performance evaluation

The test set, composed of two cohorts, was used to evaluate the

performance of the RF model. Using the test set, the RF model

demonstrated poor performance (AUC = 0.637, Accuracy = 0.578,

Sensitivity = 0.536, Specificity = 0.647, F1 Score = 0.584) (Figure 3A;

Supplementary Table S2). We evaluated the accuracy of the RF

model in predicting the response of CM patients to immunotherapy
FIGURE 1

Analysis of differences in gut bacterial diversity and composition between responders and non-responders. (A) The top 10 taxa at the genus level
based on relative abundance. (B) Alpha diversity analysis using Ace, Chao, Richness, and Shannon indices. (C) Beta diversity analysis using PCA. (D)
Bar chart of the distribution of LDA values (LDA > 2). PCA, principal components analysis; LDA, linear discriminant analysis. “f_” and “g_” are family
and genus respectively. *, P < 0.05; ns, not significant.
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by analyzing the calibration curve and DCA. The calibration curve

of the test set showed some degree of bias, reflecting the model’s

generalization ability to unseen data (Figure 3B). The DCA analysis

indicated that the model provided limited net benefit for clinical

decision-making across most threshold probabilities (Figure 3C).
3.4 Changes in gut fungal composition in
CM responders

The four most abundant fungal genera in responders and

non-responders were Beauveria, Pyricularia, Ceratobasidium
Frontiers in Immunology 05
and Valsa (Figure 4A). None of the four alpha diversity indices

showed significant differences between groups (Figure 4B). PCA

analysis revealed that the first two principal coordinates

captured approximately 79.92% of the diversity . The

confidence intervals of the two groups almost overlapped.

However, the ANOSIM analysis revealed a significant

difference between the groups (R = 0.0257, P < 0.05)

(Figure 4C). The subsequent LEfSe analysis identified four

potential gut fungal biomarkers, among which Rasamsonia,

Rutstroemia, and Ganoderma were associated with responders,

while Zancudomyces was exclusively associated with non-

responders (Figure 4D; Supplementary Table S3).
FIGURE 2

Bacterial feature selection and SHAP methodology. (A) Importance ranking computed by the RF algorithm. (B) Importance chart of SHAP variables.
(C) Hive plot of SHAP variables. RF, random forest; SHAP, SHapley Additive exPlanations. “g_” is genus.
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3.5 Fungal feature selection and
interpretation of the RF model

When the error was minimized, the top three potential fungal

biomarkers, ranked by importance based on the RF algorithm, were

incorporated into the model construction (Figure 5A). The SHAP

summary plot of the model illustrates the influence of the features

on the prediction (Figure 5B). The selected features were ranked

from highest to lowest based on their average absolute SHAP values.

From high to low are: Ganoderma, Rutstroemia and Zancudomyces.

The SHAP hive plot reveals that an increase in the feature value

(Relative abundance) of Ganoderma and Rutstroemia is associated

with predictions of responders, while an increase in the feature

value of Zancudomyces is associated with predictions of non-

responders, which is consistent with the results from the LEfSe

analysis (Figure 5C).
Frontiers in Immunology 06
3.6 Fungal RF model
performance evaluation

Similarly, a test set composed of data from two cohorts was used

to evaluate the model’s predictive performance. Compared to the

bacterial based model, the fungal RF model demonstrated better

performance. However, its performance was generally suboptimal

(AUC = 0.654, Accuracy = 0.489, Sensitivity = 0.393, Specificity =

0.647, F1 Score = 0.489) (Figure 6A; Supplementary Table S4). The

calibration curve of the test set showed some degree of bias,

reflecting the model’s generalization ability to unseen data

(Figure 6B). The DCA analysis indicated that the model provided

limited net benefit for clinical decision-making across most

threshold probabilities (Figure 6C).
3.7 Merged feature selection and
interpretation of the RF model

Models constructed separately based on bacteria or fungi both

exhibited poor predictive performance. We further combined

bacteria and fungi to explore the performance of the merged

model. Under the condition of minimized error, the top nine

potential biomarkers ranked by importance according to the RF

algorithm were included in the model construction (Figure 7A).

Among the biomarkers included in the model, seven bacterial

biomarkers were identified, including Candidatus Moduliflexus,

Colwellia , Romboutsia , Mucispiril lum , Endomicrobium ,

Aggregatilinea, and Akkermansia. Only two fungal biomarkers

were included in the model, namely Rutstroemia and

Zancudomyces. The SHAP summary plot of the model illustrates

the influence of the features on the prediction (Figure 7B). The

selected features were ranked from highest to lowest based on their

average absolute SHAP values. From high to low are: Romboutsia,

Endomicrobium, Aggregatilinea, Zancudomyces, Candidatus

Moduliflexus, Colwellia, Akkermansia, Mucispirillum and

Rutstroemia. The SHAP hive plot reveals that an increase in the

feature value (Relative abundance) of Zancudomyces is associated

with the prediction of non-responders, while an increase in other

feature values is associated with the prediction of responders, which

is consistent with the results from the LEfSe analysis (Figure 7C).
3.8 Merged RF model
performance evaluation

After combining the bacterial and fungal data, the performance

of the RF model showed a significant improvement compared to the

models constructed separately using bacteria or fungi, with the

following metrics: AUC = 0.707, Accuracy = 0.644, Sensitivity =

0.679, Specificity = 0.588, and F1 Score = 0.648 (Figure 8A;

Supplementary Table S5). Compared to the previous models, the

calibration curve of the merged model shows a better fit, indicating

a higher consistency between the model predictions and the actual

incidence (Figure 8B). DCA indicates that the merged model
FIGURE 3

External validation of the bacterial model. (A) ROC curve of model in test
set. (B) Calibration curve of the model on the test set. (C) Decision curve
of the model on the test set. ROC, receiver operating characteristic.
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provides higher net benefit for clinical decisions across most

threshold probabilities (Figure 8C). Thus, merging the data from

gut bacteria and fungi provides a more comprehensive

understanding of the gut microbiome and further supports the

potential interactions between bacteria and fungi.
3.9 Bacterial-fungal interaction analysis

Bacteria and fungi involved in the construction of the merged

model were identified as important biomarkers. To investigate the

interactions between bacteria and fungi, we constructed a

microbiome association network by calculating the Spearman

correlation coefficient to identified key interactions. In the

PRJEB43119, PRJNA399742, and PRJNA915098 datasets, three,
Frontiers in Immunology 07
two, and three positive correlations were identified, respectively

(Figures 9A–C). The positive correlation interaction between

Akkermansia and Rutstroemia was identified in all three cohorts,

which may represent a key interaction associated with

immunotherapy response in CM patients. Moreover, the positive

correlation interaction between Candidatus Moduliflexus and

Rutstroemia was identified in two cohorts, providing relatively

strong evidence for it being a key interaction (Figure 9D).
4 Discussion

In previous studies, methods combining LEfSe and machine

learning have been widely used to identify biomarkers (23–25). In

this study, we employed the SHAP methodology to further validate
FIGURE 4

Analysis of differences in gut fungal diversity and composition between responders and non-responders. (A) The top 10 taxa at the genus level based on
relative abundance. (B) Alpha diversity analysis using Ace, Chao, Richness, and Shannon indices. (C) Beta diversity analysis using PCA. (D) Bar chart of the
distribution of LDA values (LDA > 2). PCA, principal components analysis; LDA, linear discriminant analysis. “f_” and “g_” are family and genus respectively.
ns, not significant.
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the results of the LEfSe analysis, and provided a comprehensive

evaluation of feature importance for bacterial-fungal interactions.

Thus, we identified 9 important biomarkers associated with

immunotherapy response in CM patients. Among these

biomarkers, seven are gut bacteria, including Romboutsia,

Endomicrobium, Aggregatilinea, Candidatus Moduliflexus,

Colwellia, Akkermansia, and Mucispirillum, all of which are

associated with responders. Two gut fungal biomarkers,

Rutstroemia and Zancudomyces, are associated with responders

and non-responders, respectively. Moreover, bacterial-fungal

interaction analysis revealed a significant positive correlation

between Akkermansia and Rutstroemia across all cohorts, which

may represent a key bacterial-fungal interaction in immunotherapy

for CM patients.
Frontiers in Immunology 08
Early study has found that the gut bacterial alpha diversity of

responders is significantly higher than that of non-responders,

which is consistent with our current results (26). In addition, a

significant difference in the beta diversity of gut fungi was observed

between the durable clinical benefit group and the non-durable

clinical benefit group in biliary tract cancer immunotherapy.

However, no significant difference was found in the alpha

diversity, as measured by the Shannon index (14). This is also

consistent with our results. Currently, gut microbiota dysbiosis is

widely recognized as a significant factor contributing to melanoma

development (27, 28). Maintaining the balance of the gut

microbiota plays a crucial role in the prevention, management,

and treatment of melanoma. Among the bacterial biomarkers we

have identified, Akkermansia has been extensively studied (29). A
FIGURE 5

Fungal feature selection and SHAP methodology. (A) Importance ranking computed by the RF algorithm. (B) Importance chart of SHAP variables.
(C) Hive plot of SHAP variables. RF, random forest; SHAP, SHapley Additive exPlanations. “g_” is genus.
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study has shown that Akkermansia plays a crucial role in promoting

epithelial development mediated by intestinal stem cells and

contributes to the maintenance of intestinal homeostasis (30).

Epithelial development contributes to the establishment of an

immune environment that supports the colonization of probiotics

(31). Moreover, intestinal homeostasis regulates the gut microbiota

and promotes its tendency towards balanced state (32). These

findings suggest that Akkermansia may have complex interactions

with other members of the gut microbiota. Meanwhile, a study

reported that dihydroartemisinin can enhance the sensitivity of

patients with hepatocellular carcinoma to immunotherapy by

increasing the abundance of Akkermansia (33). This further

underscores the potential of Akkermansia as a core biomarker

associated with immunotherapy response. Our results provide

strong evidence supporting the interaction between Akkermansia

and Rutstroemia. Nevertheless, research on the relationship

between Rutstroemia and human health remains limited.
Frontiers in Immunology 09
Metabolites of the gut microbiota actively participate in the

communication between the gut-skin axis. Among the biomarkers

associated with responders that we identified, Akkermansia and

Mucispirillum generate SCFAs by degrading gut mucin and

fermenting carbohydrates, respectively. Immunotherapy exerts its

antitumor effects primarily through the reactivation of immune

cells (34). Propionate and butyrate, two types of SCFAs, have been

widely recognized as contributing to the enhancement of the

antitumor effects of immunotherapy. Both propionate and

butyrate are capable of inhibiting histone deacetylases (HDACs)

(35, 36). When HDAC is inhibited, histone acetylation of the PD-L1

gene increases, thereby enhancing the expression of the gene (37).

In addition, a recent study indicated that butyrate increases histone

acetylation levels in CD8+ T cells, thereby promoting the expression

of PD-1/CD28 (38). HDAC inhibition can also prevent the

infiltration of myeloid-derived suppressor cells (MDSCs) into

tumors and reprogram the tumor ’s immunosuppressive
FIGURE 6

External validation of the fungal model. (A) ROC curve of model in test set. (B) Calibration curve of the model on the test set. (C) Decision curve of
the model on the test set. ROC, receiver operating characteristic.
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microenvironment (39). These mechanisms will contribute to

enhancing the efficacy of immunotherapy in melanoma.

It should also be noted that a clinical study found that high levels

of butyrate in the blood can inhibit the aggregation of memory T cells

and ICOS+ CD4+ T cells, as well as IL-2 impregnation, induced by

ipilimumab (40). The negative effects may be associated with the

accumulation of Tregs. Studies have reported that both propionate

and butyrate can promote the differentiation of Foxp3+ Tregs (41, 42).

Interestingly, propionate and butyrate promote the differentiation of

Foxp3+ Tregs through the inhibition of HDAC and upregulation of

the Foxp3 enhancer (43). The enrichment of Tregs not only directly
Frontiers in Immunology 10
inhibits effector T cells but also suppresses antigen-presenting cells,

thereby indirectly inhibiting the activation of effector T cells. This has

devastating implications for immunotherapy. Therefore, when using

butyrate-producing bacteria as biomarkers for immunotherapy

response, it is necessary to further monitor the dynamic changes

of Tregs.

Currently, biomarkers for predicting the efficacy of

immunotherapy in CM patients are relatively lacking, whereas the

composition and function of the gut microbiota play a crucial role

in modulating immune responses and treatment outcomes, making

it a potential biomarker for predicting immunotherapy efficacy and
frontiersin.or
FIGURE 7

Merged feature selection and SHAP methodology. (A) Importance ranking computed by the RF algorithm. (B) Importance chart of SHAP variables.
(C) Hive plot of SHAP variables. RF, random forest; SHAP, SHapley Additive exPlanations. “g_” is genus.
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helping optimize therapeutic decision-making. It is worth noting

that our study provides foundational insights into the role of the gut

microbiota in CM immunotherapy. However, further research is

needed to establish a direct causal relationship and determine

whether our findings can guide interventions such as probiotics

or fecal microbiota transplants (FMT).

This study presents several unique advantages. First, the use of

metagenomic sequencing providing more precise taxonomic data

compared to 16S rRNA. In addition, metagenomic sequencing also

enables us to further explore the relationship between gut fungi and

immunotherapy response in CM patients. However, certain limitations

still need to be acknowledged. Our study focused on the genus level,

lacking investigation at other taxonomic levels, which may result in the

omission of some key information. In the future, our research will be
Frontiers in Immunology 11
expanded to include other taxonomic levels to complement the gaps in

the current study. Moreover, our study population is focused on

Europeans, which, although eliminating the impact of racial

heterogeneity on the results, also limits the generalizability of our

findings to other populations. In the future, efforts should be made to

include a broader range of populations to ensure the generalizability of

the results. Finally, due to the widespread lack of understanding of

Rutstroemia’s functions, this study did not conduct an in-depth

investigation into the biological functions of key interactions, which

has also driven us to further explore the biological significance of the

key interaction in the future.

Overall, due to the differences in gut microbiota composition

and diversity between responders and non-responders, the gut

microbiota can be utilized as a biomarker for immunotherapy
frontiersin.or
FIGURE 8

External validation of the merged model. (A) ROC curve of model in test set. (B) Calibration curve of the model on the test set. (C) Decision curve of
the model on the test set. ROC, receiver operating characteristic.
g

https://doi.org/10.3389/fimmu.2025.1539653
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2025.1539653
response. These biomarkers will aid in enriching the population of

immunotherapy responders among CM patients. Furthermore, the

inclusion of the fungal component highlights the potential role of

bacteria-fungi interactions in immunotherapy response.
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