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Background: Breast cancer is a heterogeneous malignancy with complex

molecular characteristics, making accurate prognostication and treatment

stratification particularly challenging. Emerging evidence suggests that

lactylation, a novel post-translational modification, plays a crucial role in tumor

progression and immune modulation.

Methods: To address breast cancer heterogeneity, we developed a machine

learning-derived lactylation signature (MLLS) using lactylation-related genes

selected through random survival forest (RSF) and univariate Cox regression

analyses. A total of 108 algorithmic combinations were applied across multiple

datasets to construct and validate the model. Immune microenvironment

characteristics were analyzed using multiple immune infiltration algorithms.

Computational drug-repurposing analyses were conducted to identify

potential therapeutic agents for high-risk patients.

Results: The MLLS effectively stratified patients into low- and high-risk groups

with significantly different prognoses. Themodel demonstrated robust predictive

power across multiple cohorts. Immune infiltration analysis revealed that the

low-risk group exhibited higher levels of immune checkpoints (e.g., PD-1, PD-L1)

and greater infiltration of B cells, CD4+ T cells, and CD8+ T cells, suggesting

better responsiveness to immunotherapy. In contrast, the high-risk group

showed immune suppression features associated with poor prognosis.

Methotrexate was computationally predicted as a potential therapeutic

candidate for high-risk patients, although experimental validation

remains necessary.
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Conclusion: The MLLS represents a promising prognostic biomarker and may

support personalized treatment strategies in breast cancer, particularly for

identifying candidates who may benefit from immunotherapy.
KEYWORDS

lactylation, breast cancer prognosis, machine learning, immune microenvironment,
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Introduction

Breast cancer is the most prevalent malignancy among women

and the leading cause of cancer-related mortality globally (1). The

complexity and heterogeneity of breast cancer are driven not only by

genetic mutations but also by metabolic alterations, which

significantly impact tumor progression and treatment outcomes

(2). Among these metabolic modifications, lactylation—a post-

translational modification derived from lactate produced during the

Warburg effect—has emerged as a critical player in breast cancer

biology (3). Lactylation influences multiple aspects of cancer biology,

including gene regulation, histone modification, and remodeling of

the tumor microenvironment, thereby contributing to tumor growth,

immune evasion, and disease progression (4). Histone lactylation

particularly alters chromatin structure and transcriptional regulation,

promoting oncogenic pathways and suppressing immune

surveillance (5). Additionally, lactylation of non-histone targets has

been implicated in modulating signaling pathways critical for cancer

progression (6). Despite these advances, the precise clinical

implications of lactylation in BC prognosis and personalized

treatment remain incompletely understood, underscoring the need

for comprehensive studies and robust predictive mode.

Recent studies have highlighted that the metabolic interplay

between tumor cells and immune cells is significantly influenced by

lactylation (7). Tumor cells release metabolites such as lactate, which

are converted into lactylation modifications that impact nutrient

availability and lead to acidosis in the tumor microenvironment (8).

This acidic environment not only supports tumor cell survival but

also impairs immune cell function, thereby promoting immune

evasion and tumor persistence (9).

Lactylation is a key modification resulting from aberrant

glycolysis in cancer cells and has received growing attention for

its multifaceted roles beyond basic metabolism (10). It acts as a

signaling and immunomodulatory molecule that regulates

metabolic pathways, intercellular communication, and immune

responses (11). During breast cancer progression, increased

glycolytic activity leads to elevated lactylation levels, which

accumulate in the tumor microenvironment and exacerbate its

acidity (12). In addition to serving as an energy source,

lactylation directly modifies histone lysine residues, thereby

regulating gene expression linked to cell proliferation and tumor

progression (13).
02
Despite the growing interest in lactylation, its specific role in

breast cancer remains underexplored. This study aimed to bridge

this knowledge gap by investigating the expression and functional

impact of lactylation-related genes in breast cancer. We developed a

machine learning-derived lactylation signature (MLLS) by

integrating multiple algorithms with a ten-fold cross-validation

approach, ultimately identifying seven key prognostic lactylation

genes—four positively correlated with survival and two negatively

correlated. This MLLS was subsequently used to evaluate immune

cell infiltration, genomic instability, and potential therapeutic

targets in breast cancer patients. Furthermore, we examined the

relationship between MLLS and treatment response, focusing on

both immunotherapy and chemotherapy, to gain deeper insights

into the influence of lactylation on clinical outcomes and the

tumor microenvironment.
Methods

Data acquisition

This study enrolled 14 breast cancer cohorts from multiple data

sets, including The Cancer Genome Atlas (TCGA), Gene

Expression Omnibus (GEO), Metabric, and TRANSBIG. These

datasets were selected due to their comprehensive clinical

annotations, extensive genomic characterization, and wide

recognition in breast cancer research, enabling robust validation

of our prognostic model. The specific number of cases analyzed

from each dataset has been detailed as follows: TCGA-BRCA (n =

1076), GSE202203 (n = 3206), GSE96058 (n = 3409), GSE20685 (n

= 327), GSE86166 (n = 330), GSE131769 (n = 298), GSE58812 (n =

107), GSE11121 (n = 200), GSE21653 (n = 244), GSE88770 (n =

108), GSE6532 (n = 87), GE20711 (n = 88), TRANSBIG (n = 198)

and Metabric (n = 1747). Lactylation regulators were sourced from

the published study (14).
Lactylation signature generation and
evaluation

In order to develop a lactylation-derived predictive model for

breast cancer, we utilized the approach from our previous study,
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which incorporated ten different computational approaches (15).

We generated a total of 108 combinations of these machine learning

algorithms to generate a machine learning-derived lactylation

signature (MLLS). Each algorithm was trained in multiple patient

cohorts to get the most predictive model using the Concordance

Index (C-index). Based on the RSF algorithm and univariate Cox

regression analyses, seven lactylation-associated genes (CoefENO1 =

0.529, CoefRIMS1 = 0.255, CoefIK = 0.016, CoefWBP11 = -0.032,

CoefSF3B1 = -0.135, CoefCBR1 = -0.216 and CoefPTMA = -0.312)

were selected. These genes served as the cornerstone for the final

MLLS, which was fine-tuned to forecast patient outcomes in

breast cancer.

To categorize patients, the “survminer” R package was

employed. The surv_cutpoint function determined the optimal

cutoff value necessary for effectively distinguishing patients into

high- and low-risk classifications based on survival data. The

performance of the MLLS was verified using 14 independent

cohorts of breast cancer. Collectively, these cohorts represented

more than 9,000 breast cancer patients, facilitating a thorough

assessment of the model’s effectiveness. Furthermore, the MLLS

was evaluated against 86 established breast cancer signatures,

showcasing its enhanced prognostic capability across all cohorts.
Genomic alterations in MLLS groups

Genetic variations between the high and low MLLS cohorts

were investigated through the analysis of mutation levels and Copy

Number Alterations (CNA), utilizing the TCGA-BRCA dataset. For

patients with high and low MLLS breast cancer, Tumor Mutation

Burden (TMB) was calculated from the original mutation files. The

visualization of the genes with the highest mutation rates (exceeding

5%) was achieved using the maftools package. Within the TCGA-

BRCA dataset, four major mutational signatures (SBS3, SBS1,

SBS12, and SBS11) exhibiting increased mutation frequencies

were emphasized. Moreover, the five regions most frequently

subjected to amplification and deletion were identified,

particularly highlighting four essential genes found in the

chromosomal regions 8q24.21 and 5q21.3.
Single-cell data processing

We applied Seurat (version 4.0) to deal with the published

single-cell RNA sequence (scRNA-seq) from the GEO database

(GSE161529) (16). This procedure included the elimination of

genes with no detected expression while preserving those

displaying non-zero expression levels. Seurat’s “SCTransform”

function was utilized to normalize the expression matrix.

Dimensionality reduction was achieved via principal component

analysis (PCA) and Uniform Manifold Approximation and

Projection (UMAP). To identify cell clusters, we applied Seurat’s

“FindNeighbors” and “FindClusters” functions. In order to

maintain the dataset’s integrity and reliability, potential doublets

were eliminated using the DoubletFinder package (17). Cells not
Frontiers in Immunology 03
passed quality control—such as having mitochondrial gene content

exceeding 15% or showing fewer than 500 expressed genes—were

excluded from the analysis. Finally, 25,605 cells remained for

further analysis. The final identification of 20 clusters was

justified by evaluating the stability and reproducibility across

multiple resolutions (0.2 to 1.0), selecting the resolution that best

balanced detailed cellular heterogeneity and interpretability in the

context of breast cancer biology. Cell types were identified through

manual annotation, relying on recognized marker genes.
Inference of gene regulatory networks and
regulon clustering

SCENIC methodology was utilized to build gene regulatory

networks (GRNs) using scRNA-seq data as we reported before (15).

Briefly, we utilized transcription factors (TFs)-target pairs to

identify co-expression modules and confirmed the direct target

genes in each module. The regulatory activity score (RAS) for every

cell is computed by evaluating the area beneath the recovery curve.

Moreover, data were transformed into the metacells to improve data

quality and minimized computational requirements (18).

We clarified the regulatory dynamics between TF-target pairs,

with a specific emphasis on the clustering of TFs. First, the data

regarding TF-target interactions were refined to retain only those

pairs that exceeded a specified significance threshold (>1), ensuring

that the most pertinent regulatory interactions were highlighted

(19). The following analyses focused on pinpointing chief TFs by

evaluating the depth of their influence on target genes, marking

them as crucial nodes within the GRNs.
Analysis of TME differences and
immunotherapy outcomes

To thoroughly evaluate levels of immune cell infiltration, we

calculated six immune infiltration algorithms using IOBR package

to analyze the presence of adverse tumor microenvironment (TME)

classified by the MLLS (20). We further assessed the ESTIMATE

and TIDE, which offered essential insights regarding the potential

for immunotherapy for breast cancer patients (21, 22). Additionally,

immune checkpoints were measured as indicators of the immune

condition and acted as initial predictors of how patients might

respond to immune checkpoint inhibitors (ICIs) therapy.
Identification of therapeutic drugs for
high-risk MLLS patients

To explore the potential therapeutic targets for high MLLS

breast cancer patients, we got 6,125 micromolecules from the Drug

Repurposing Hub. Spearman correlation was calculated to the

MLLS riskscore with gene expression (coefficients > 0.3 and P-

value < 0.05) and CRES scores (coefficients < -0.3 and P-value <

0.05). Furthermore, CTRP and PRISM databases were utilized to
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assess the drug responsiveness respectively. Finally, the

Connectivity Map (CMap) database was executed to identify the

most promising therapeutic agents (15). CMap score < -95 was

indicative of a greater therapeutic potential against breast cancer in

this study.
Sample collection and
immunohistochemistry

A total of 30 breast cancer patient samples were collected from

Guizhou Provincial People’s Hospital. Tumor tissues were

confirmed by hematoxylin and eosin (HE) staining to ensure the

presence of cancerous cells. The inclusion criteria for patient

selection were based on clinical diagnosis, and informed consent

was obtained from all participants prior to sample collection.

The expression levels of seven key genes previously identified in

our MLLS model were measured using qPCR. The MLLS model

classifies patients based on the expression profiles of these genes,

with a focus on identifying signatures associated with prognosis and

treatment response in breast cancer. The expression data were used

to categorize the patients into distinct risk groups as per the model.

Immunohistochemical staining was conducted on formalin-fixed,

paraffin-embedded tumor tissue sections. The staining procedure

and antibody selection followed protocols described in our

previously published work (23, 24).
Results

Development of a machine learning-
derived lactylation signature for breast
cancer prognosis

In this research, we utilized lactylation-associated genes to

develop a machine learning-based lactylation signature (MLLS)

aimed at establishing a prognostic model for breast cancer

patients. By integrating 108 distinct combinations of machine

learning methods within a ten-fold cross-validation framework,

we sought to identify the most effective predictive model for patient

survival. We calculated the average C-index for each algorithm

combination within the TCGA-BRCA cohort, as well as across eight

independent validation cohorts. The Random Survival Forest (RSF)

approach, which achieved the highest average C-index of 0.66, was

selected to evaluate the predictive efficacy of the model (Figure 1A).

To identify key lactylation-related genes, we conducted 1000

random forest tests, revealing genes associated with the minimal

error rate (Figure 1B). We then constructed a relative variable

importance plot to illustrate the contributions of these genes to the

model (Figure 1C). Additionally, we employed univariate Cox

regression analysis to evaluate the prognostic significance of the

selected lactylation-related genes, calculating hazard ratios (HRs)

across the nine cohorts (Figure 1D).
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From this analysis, two positively correlated genes (ENO1 and

RIMS1) and five negatively correlated genes (IK, WBP11, SF3B1,

CBR1 and PTMA) were identified and used to construct the MLLS

model (Figure 1E). These genes are involved in critical biological

pathways such as angiogenesis, nutrient transport, and circadian

rhythm regulation, which are implicated in cancer progression and

treatment response. By incorporating these genes, we aimed to

enhance the model ’s prognostic utility, particularly in

differentiating patient outcomes based on lactylation profiles.

To assess the efficacy of the MLLS model, we determined risk

scores for each sample within the nine cohorts. The MLLS

successfully categorized patients into high-risk and low-risk

groups (Supplementary Figure S1A). The Kaplan-Meier survival

analysis indicated that patients identified as high-risk demonstrated

a notably lower survival rate than those in the low-risk group

(Supplementary Figure S1B).

Given the known molecular heterogeneity of breast cancer, we

evaluated the performance of our MLLS model across distinct

molecular subtypes. Our analyses did not identify significant

subtype-specific differences in MLLS prognostic performance,

indicating the robustness and broad applicability of the lactylation

signature across diverse breast cancer contexts.
87 Comprehensive evaluation of MLLS
predictive model with published breast
cancer signatures

To further assess the predictive accuracy and reliability of the

MLLS model, we conducted a comparison with 87 previously

established prognostic models in breast cancer across nine distinct

cohorts. Both univariate and multivariate Cox analyses revealed that

the MLLS acted as an independent risk factor when evaluated against

other clinical indicators, such as age, menopause status, and disease

stage (Supplementary Figure S2A). By employing three variables—

MLLS risk score, age, and stage (with stage included due to its

prevalent clinical usage despite the absence of statistical significance)

—we created a nomogram to estimate patients’ survival probabilities

at 1, 3, and 5 years (Supplementary Figure S2B). The nomogram’s

forecasts for overall survival (OS) among patients with different breast

cancer types were consistent with the actual survival rates observed in

the entire cohort, as demonstrated by calibration curves and decision

curve analysis (DCA) (Supplementary Figures S2C-E). This alignment

emphasizes the enhanced capability of the nomogram in predicting

patient outcomes. Additionally, the area under the receiver operating

characteristic curve (AUC) for the MLLS model (0.66) exceeded that

of other clinical variables, signifying that the MLLS risk model was

superior in predicting patient outcomes (Supplementary Figure S2F).

To enhance the assessment of the predictive capabilities and

consistency of the MLLS model, we gathered and analyzed 86

models that had been previously published, spanning nine

distinct cohorts. Among these models, the MLLS was the only

one that exhibited statistical significance across all nine cohorts
frontiersin.org
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(Figure 2A). We evaluated the average C-index for each model by

using varied datasets to measure stability. The findings revealed that

the MLLS model reliably ranked among the top models in every

cohort, securing first place in five of them, second in one, fourth in

another, and seventh in two. This performance highlights the

impressive robustness and superior effectiveness of the MLLS

model when compared to its peers (Figure 2B).
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Genetic alteration landscape associated
with MLLS

The genetic landscape of tumor cells shows notable variability

among different patients. To explore the genetic diversity between

high and low MLLS cohorts, we examined gene mutations as well as

copy number alterations (CNAs) in each group. Our initial
FIGURE 1

Development of a machine learning-derived lactylation signature for breast cancer prognosis. (A) Average C-index of 108 combination algorithms in
9 breast cancer cohorts. (B) Error rate of the RSF in 1000 iterations. (C) Importance of top genes. (D) Prognosis of top genes in 9 breast cancer
cohorts (E). Correlation coefficients of key genes used in model.
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assessment of TMB indicated that individuals in the high MLLS

cohort had a TMB that surpassed that of their low MLLS

counterparts (Figures 3A, C). Furthermore, we explored CNAs,

where red denotes copy number gains and blue denotes losses. The

findings demonstrated that the high MLLS cohort exhibited more

significant amplifications and deletions at the chromosome arm

level (Figures 3A, C). This included the amplification of specific

regions like 3q26.32, 6q21, 6p23, 8q24.21, and 10p15.1, alongside

deletions in regions such as 4q35.2, 5q11.2, 5q21.3, 11p15.5, and

19p13.3 (Figure 3A). Noteworthy is that genes including PVT1,

MYC, CCDC26, and GSDMC located on chromosome 8q24.21

were amplified significantly, while GPBP1, RAB3C, DDX4, and

ITGA1 on chromosome 5q21.3 demonstrated significant

deletions (Figure 3A).

By synthesizing information from the TCGA database related to

ten established cancer signaling pathways, we discovered that

classical tumor suppressor genes such as TP53, CNTN6,

CREBBP, and EP300RB1 had a higher frequency of mutations in
Frontiers in Immunology 06
the high MLLS group. In contrast, oncogenes like PIK3CA/B, AKT,

and RET exhibited more prevalent mutations in the low MLLS

group (Figure 3B). Additionally, mutation signatures such as SBS2,

SBS13, and APOBEC were markedly lower in the high MLLS group

(Figure 3C). In conclusion, the increased TMB along with

heightened deletions and amplifications at the chromosome arm

level in the high MLLS group may play a significant role in

contributing to poor prognostic outcomes (Figure 3D).
Single-cell analysis reveals transcriptional
and regulatory mechanisms associated
MLLS

The properties of the MLLS were further examined at the single-

cell level. We chose 15 patients, consisting of 6 with normal tissue

and 9 with breast cancer tumor tissue, for an in-depth assessment of

MLLS (Supplementary Figures S3A, B). The cells were divided into
FIGURE 2

Comprehensive evaluation of MLLS predictive model with 87 published breast cancer signatures. (A) univariate Cox analysis of models in 10 BC
cohorts. (B) Comparison of the average C-index of models in 10 breast cancer cohorts.
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20 clusters and 8 unique cell types (Figures 4A, B). We measured the

quantity of cells for each type and evaluated the proportion of each

cell type across the patients (Supplementary Figures S3C, D). Cells

were marked with specific representative markers corresponding to

each cell type, and the actual distribution of these markers was

scrutinized (Figure 4C; Supplementary Figure S3E). Single-cell

sequencing identified transcriptomic variations among cell types

between normal and tumor tissue. The findings indicated

significant infiltration of macrophages, plasma cells, B cells, T

cells, and epithelial cells within the tumor tissue (Figure 4D). The

MLLS model was employed for single-cell analysis to create a

detailed cell distribution map (Figure 4E), with epithelial cells

further grouped into high and low MLLS categories based on

peak scores (Figure 4F).

After this classification, we performed differential

gene expression analysis and functional clustering for the 8
Frontiers in Immunology 07
identified cell types to elucidate potential functional pathways

(Supplementary Figures S3F, G). To assess copy number

alterations and to distinguish tumor cells from normal epithelial

cells, the CopyKAT package was utilized (Figure 4G). Our study

demonstrated that tumor-aneuploid cells had a greater MLLS score

than tumor-diploid cells, highlighting the pivotal role of MLLS in

breast cancer progression (Figure 4H).
Identification of regulatory factors
influencing MLLS and cellular
differentiation

To gain a deeper understanding of the regulatory mechanisms

underlying MLLS, we utilized the SCENIC pipeline to construct gene

regulatory networks from single-cell RNA sequencing data,
FIGURE 3

Genetic alteration landscape associated with MLLS. (A) Genomic alteration landscape of MLEM, from up to bottom: TMB, gene mutational
signatures, gene mutation frequency, CNAs (the red represents amplification, and the blue represents deletion), and the representative genes in
region 8q24.21 and 5q21.3. (B) Mutation frequency of 10 oncogenic pathways between MLLS groups. (C) Comparison of TMB between MLEM
groups. (D) Amplification or deletion of chromosomal arm. *P<0.05, **P<0.01, ***<0.001, ****P<0.0001.
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incorporating cis-regulatory sequence information. The gene

expression data were transformed into RAS for TFs (Figures 5A, B).

Principal component analysis (PCA) and variance decomposition

were subsequently performed. PCA1 revealed TFs specific to cell

types, while PCA2 highlighted TFs specific to MLLS (Figures 5C, D).

Using Jensen-Shannon divergence, we identified the top 10 key

TFs for each cell type based on the specific scores of each regulator.

For epithelial cells, we focused on the top three regulatory factors

with the highest regulon specificity scores (RSS)—MAZ, SPDEF,

and ILF2—as the most relevant regulators, and we conducted

similar analyses for the other seven cell types (Figures 5E, F;

Supplementary Figure S4A).

To elucidate the cooperative relationships among TFs in

regulating specific biological functions in MLLS, we analyzed RAS

scores for each regulatory pair using the Leiden algorithm. This cluster

analysis identified eleven TF clusters, with Clusters B and J having the

highest contributions to MLLS development (Figures 5G, H;

Supplementary Figure S4B). Gene Set Enrichment Analysis (GSEA)

of epithelial cells revealed the activation of several pathways, while the

cell motility pathway was notably inhibited in cells with low MLLS

(Figures 5I, J). Further identification of TFs involved in regulating cell

motility and influencing MLLS progression was performed, resulting

in a regulatory network diagram depicting the relationships among

these TFs (Figures 5K, L).
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Immune profiling and identification of
immunotherapeutic targets in MLLS

To assess potential immunotherapeutic targets in patients

categorized by high and low MLLS, we utilized six different

algorithms to evaluate immune cell infi ltration within

breast cancer patients. The findings indicated that individuals in

the low MLLS category displayed considerably greater levels of

immune cell infiltration, comprising CD4+ T cells, CD8+ T cells, B

cells, NK cells, and monocytes, when compared to those in the high

MLLS category (Figure 6A). Additionally, expression levels of

critical ICIs, including PD-L1, PD-1, CTLA4, and HAVCR2, were

markedly higher in the low MLLS group, implying an enhanced

sensitivity to immunotherapy in these individuals (Figure 6B).

Immunohistochemistry (IHC) supported these conclusions

through the use of representative cell markers and clinical

ICIs (Figure 6C).

Subsequently, we applied the ESTIMATE algorithm to assess

tumor immune microenvironments, revealing that the ESTIMATE,

immune, and stromal scores were elevated, whereas tumor purity

was diminished in the low MLLS cohort (Figure 7A). Moreover, the

low TIDE, Exclusion, and Dysfunction scores noted in the high

MLLS group suggested an increased likelihood of immune evasion,

potentially influencing the diminished effectiveness of ICI therapy
frontiersin.o
FIGURE 4

Single-cell analysis reveals biological mechanisms underlying MLLS. (A) UMAP visualization illustrates the distribution of cell clusters. (B) UMAP
visualization illustrates the distribution of identified cell types. (C) Representative markers of each cell type. (D) Proportion of eight cell types
between tumor and normal tissues. (E) UMAP visualization illustrates the distribution of MLLS value. (F) Distribution of MLLS value across various cell
types. (G) Estimation of copy number using copyKAT algorithm. (H) MLLS variance between diploid and aneuploid cells in the epithelial
cell. ****P<0.0001.
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(Figure 7B). The Kaplan-Meier analysis showed that patients with

low MLLS and elevated TIDE scores had prolonged survival

compared to other group combinations (Figure 7C). Taken

together, these findings suggest that individuals with low MLLS

exhibit enhanced anti-tumor immune activity relative to those with

high MLLS (Figure 7D).
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To further investigate the ability of MLLS to predict responses

to immune checkpoint blockade therapy, we analyzed data from

both the anti-PD-L1 cohort (IMvigor210) and the anti-PD-1 cohort

(GSE78220). Patients with low MLLS demonstrated notable

therapeutic benefits and clinical improvements in both cohorts

(IMvigor210: Figures 7E–H; GSE78220: Figures 7I–L).
FIGURE 5

Identification of regulatory factors influencing MLLS and cellular differentiation. (A) umapRAS visualization illustrates the distribution of cell clusters.
(B) umapRAS visualization illustrates the distribution of MLLS. (C) Variance analysis plot highlights the PC1 impact of cell types. (D) Variance analysis
plot highlights the PC2 impact of MLLS. (E) Regulons ranking for each cell type based on RSS. (F) Three top regulons focus on epithelial cells. (G)
Interactions network of regulons constructed using the Leiden algorithm. (H) Detail network of modules B and (J, I) Functional variations linked to
MLLS in epithelial cells. (J) Representative pathways in the context of high MLLS. (K) TFs involved in cell motility. (L) Detailed regulatory network of
the interactions among TFs involved in cell motility.
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FIGURE 6

Differential expression and immunohistochemical analysis of immune markers in tumor microenvironments between MLLS subgroups. (A) Heatmap
providing a comparative view of immune cell infiltration in tumor samples with low and high MLLS, utilizing various computational algorithms for
quantification. Each row represents a different type of immune cell, with the color intensity reflecting the level of infiltration. Red text indicates
increased infiltration in the high MLLS group, while blue text indicates decreased infiltration. (B) Box plots illustrating the distribution of gene
expression levels for ICIs across low versus high MLLS conditions, with statistical significance denoted by ns for not significant; *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001. (C) Representative immunohistochemistry images showcasing the staining intensity of various immune markers
between high and low expression conditions, visually depicting the differential expression of these markers in correlation with MLLS levels.
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Identification of potential therapeutic
agents for high MLLS patients

Cancer treatment often involves chemotherapy as a standard

approach. In our research, we leveraged data from various datasets

to identify potential targeted therapies for patients with breast

cancer who present elevated MLLS scores. Our findings indicated

a positive relationship between the MLLS scores and the expression

levels of four promising therapeutic targets: CHEK1, ESRRA,

B4GALT2, and SLC25A5. In contrast, we noted a negative

relationship with their CERES scores, indicating a potential

vulnerability among patients exhibiting high MLLS scores

(Figure 8A). Additionally, these targets were associated with

several essential drug action pathways, highlighting their

importance as vital therapeutic targets for this particular group of

patients (Figure 8B).

From the CTRP dataset, we identified six compounds (BI-2536,

GSK461364, methotrexate, paclitaxel, SB-743921, and vincristine),

and from the PRISM dataset, we identified three compounds

(gemcitabine, ispinesib, and vincristine). Patients in the high

MLLS group showed lower AUC values for these compounds

compared to the low MLLS group, suggesting increased sensitivity

to these chemotherapeutic agents (Figures 8C, D). The clinical

status, experimental evidence, mRNA expression levels, and CMap

scores for each compound were further assessed through CMap

analysis, leading to the identification of methotrexate as the most

favorable treatment for patients with high MLLS, given its CMap

score of -99.82 (Figure 8E).
Discussion

Breast cancer is a highly heterogeneous malignancy originating in

breast tissue (25). Despite advancements in early detection and

therapeutic approaches, clinical outcomes for breast cancer patients

remain suboptimal. As such, there is an urgent need to identify novel

molecular markers that can improve prognostication and patient

management. Machine learning has emerged as a promising tool for

efficiently predicting relapse risk using genetic signatures, offering new

avenues for personalizedmedicine. Previous studies have demonstrated

that genetic characteristics can provide essential prognostic

information and improve risk assessment, and these approaches have

already been integrated into clinical guidelines (26, 27).

In this study, we focused on lactylation, a post-translational

modification that occurs due to lactate accumulation, which has

been shown to play a crucial role in tumorigenesis. Lactylation

modulates protein functions, such as histone lysine lactylation

(Kla), which directly affects gene expression and cellular processes

like immune evasion, cell communication, and drug sensitivity, all

of which influence tumor progression (5, 28, 29). For instance,

lactylation of MOESIN has been shown to modulate interactions

with TGF-b receptors, affecting cancer development (6). The

present study aimed to explore these dynamics and provide new

insights into breast cancer progression by developing a lactylation-

based prognostic model.
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have been implicated in distinct biological processes relevant to

breast cancer progression. For example, ENO1, a critical glycolytic

enzyme, may influence lactate production and thus lactylation

modification (30, 31). WBP11 could affect tumor cell proliferation

and metabolic reprogramming (32). However, direct evidence

linking RIMS1, IK, SF3B1, and CBR1 genes specifically to

lactylation modifications in breast cancer is lacking. Given that

these genes are known to be involved in transcriptional regulation,

RNA splicing, or immune functions, they may theoretically

influence tumor progression indirectly through the modulation of

lactylation-related pathways. Further experimental validation is

required to clearly elucidate these potential indirect mechanisms.

The MLLS model provided a novel approach to predicting

breast cancer prognosis by integrating lactylation-related genes and

machine learning algorithms. We employed the RSF algorithm,

which exhibited the highest C-index, to construct the model. This

approach demonstrated robust predictive performance in both

training and test datasets. Furthermore, we applied six algorithms

to evaluate immune cell infiltration in breast cancer patients,

revealing distinct immune responses and clinical outcomes

between high- and low-risk groups. These findings suggest that

the MLLS model is a reliable predictor of immune infiltration and

therapeutic response, indicating its potential for improving

personalized treatment strategies.

While the findings largely align with the current understanding

of lactylation’s role in cancer, there were a few unexpected

discoveries that shed new light on the role of lactylation in breast

cancer. One of the most surprising results was the inverse

correlation between MLLS scores and immune infiltration in

breast cancer patients. High MLLS patients exhibited lower

immune cell infiltration and increased immune suppression,

which is contrary to the common association between higher

lactate levels and immune activation. Lactylation, particularly

histone lactylation, has previously been linked to immune evasion

(5). Our study suggests that lactylation could be acting as a

mechanism for immune suppression, reducing immune cell

infiltration and contributing to tumor immune evasion. This

finding challenges the conventional view of lactylation as a purely

metabolic modifier and introduces the concept of lactylation as a

modulator of the immune microenvironment. This immune-

suppressive role of lactylation could have important implications

for immunotherapy in breast cancer, suggesting that targeting

lactylation may enhance immune responses against the tumor.

Lactylation, initially recognized primarily as a histone

modification, contributes to immune suppression by reshaping

the transcriptional landscape of immune-related genes. Histone

lactylation, particularly at lysine residues, has been shown to alter

chromatin accessibility, leading to transcriptional activation of

genes involved in tumor immune evasion (5, 28). Recent findings

further reveal that lactylation also targets non-histone proteins,

such as MOESIN, modulating TGF-b signaling pathways and

directly influencing immune regulatory cells like Tregs (6).

Therefore, lactylation likely suppresses immune infiltration

through dual mechanisms—epigenetic regulation via histone
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FIGURE 7

Immune profiling and identification of immunotherapeutic targets in MLLS. (A) ESTIMATE scores, immune scores, stromal scores, and tumor purity
between MLLS groups. (B) TIDE, dysfunction, and exclusion variations between MLLS groups. (C) Survival probability of patients based on the
combination of MLLS and TIDE. (D) Correlation analysis of MLLS with immune pathways and tumor immune cycle. (E, I) Violin charts display the
relationship between MLLS levels and responses to anti-PDL1 (E) and anti-PD1 (I) therapies, detailing the differential immune responses. (F, J)
Survival probabilities of low and high MLLS patients in anti-PDL1 (F) and anti-PD1 (J) cohorts, respectively, illustrating the impact of MLLS on survival
outcomes. (G, K) Analysis estimates the predictive ability of MLLS via AUC values, considering TMB combinations, in anti-PDL1 (G) and anti-PD1 (K)
cohorts, evaluating the efficacy of MLLS as a biomarker. (H, L) The percentages of complete response/partial response (CR/PR) and stable disease/
progressive disease (SD/PD) in anti-PDL1 (H) and anti-PD1 (L) cohorts are shown, based on MLLS levels, to assess treatment effectiveness.
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modifications and direct functional modulation via non-histone

protein lactylation. Further experimental studies are essential to

fully dissect these intricate mechanisms.

Another unexpected discovery was the association between high

MLLS and chemoresistance. Although lactate is often implicated in
Frontiers in Immunology 13
drug resistance due to its effects on cellular metabolism and

acidification of the tumor microenvironment, the specific

contribution of lactylation to this process was not well

understood. Our study suggests that lactylation-related genes

could play a direct role in chemoresistance, particularly in
FIGURE 8

Identification of potential therapeutic agents for high MLLS patients. (A) Spearman’s correlation illustrating the association between MLLS and the
abundance of potential therapeutic targets in breast cancer patients. (B) Network analysis highlights the intricate connections between these
therapeutic targets and their associated drug action pathways. (C) Box plots compare the AUC values of 6 compounds in the CTRP dataset. (D) Box
plots compare the AUC values of 3 compounds in the PRISM dataset. (E) Summary table outlines the multi-perspective analysis of the 9 candidate
compounds, detailing their clinical status, experimental evidence, mRNA expression levels, and CMap scores.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1540018
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Min et al. 10.3389/fimmu.2025.1540018
chemotherapy-resistant breast cancer. This aligns with recent

findings indicating that metabolic reprogramming, including

lactate accumulation, contributes to treatment failure in cancer

(33). However, the mechanism by which lactylation confers

resistance requires further investigation, as it might be linked to

alterations in drug uptake or activation of survival pathways in

tumor cells.

A surprising finding was the lack of correlation between MLLS

and TMB in some subgroups. While TMB is typically associated

with poor prognosis and immune response in many cancers,

including breast cancer, our study revealed that low MLLS

patients did not necessarily have higher TMB, yet they still

showed better immune infiltration and therapeutic response. This

discrepancy suggests that lactylation may function independently of

genetic mutations and that non-genomic factors such as epigenetic

modifications and immune modulation could play a more

dominant role in lactylation-related tumor progression. Rather

than relying solely on pathway enrichment analysis, which

yielded inconsistent results due to the diverse mutation profiles,

we integrated previously reported functional roles of commonly

mutated genes. For example, TP53 mutations are widely

documented to enhance glycolytic activity, subsequently

increasing lactate availability for lactylation modifications, thus

providing a plausible mechanistic link to our observed lactylation

signature. On the other hand, the metabolic consequences of

PIK3CA mutations differ significantly, potentially explaining their

association with distinct lactylation statuses.

Another surprising aspect was the role of lactylation in

regulating the TME. While lactate accumulation is known to

influence TME properties, our study found that lactylation itself

may directly modulate immune cell composition and immune

checkpoint expression. High MLLS patients exhibited increased

proportions of immune-suppressive cell types, such as M0

macrophages and neutrophils, while low MLLS patients showed

higher proportions of T cells. This suggests that lactylation could

be a key factor in immune evasion within the TME and might

provide a new target for therapies aimed at modulating the

immune microenvironment.

Our study provides novel insights into the role of lactylation in

breast cancer progression and therapeutic response. These findings

suggest that lactylation-related genes not only serve as prognostic

biomarkers but also play a crucial role in immune modulation and

chemoresistance. The MLLS model could become a valuable tool for

identifying patients who are at high risk of immune suppression and

chemoresistance, thereby informing treatment strategies such as

immunotherapy and targeted therapies. Our study’s novelty lies

specifically in the focus on lactylation—a unique post-translational

modification driven by lactate accumulation distinct from general

metabolic signatures or hypoxia-induced models. Unlike broad

metabolic or hypoxia models primarily reflecting general tumor

metabolic states or oxygen deprivation, our lactylation-based

signature directly captures specific epigenetic and non-histone
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progression, and treatment resistance. By targeting these

lactylation-specific processes, our model provides unique

prognostic value and potentially actionable targets beyond those

identified by generalized metabolic or hypoxia signatures.

Although our findings computationally link lactylation to

immune suppression and chemoresistance, direct experimental

validation was beyond the scope of this study. Future in vitro and

in vivo experiments, including CRISPR-based gene editing and

overexpression systems, are necessary to establish causality and to

elucidate precisely how lactylation-related genes influence immune

checkpoint expression and drug resistance mechanisms.

Furthermore, methotrexate, identified via computational analysis

as potentially effective for patients with elevated lactylation

signatures, is traditionally recognized as an inhibitor of

dihydrofolate reductase (DHFR). While methotrexate does not

directly target lactylation enzymes, it likely exerts indirect effects

by altering metabolic pathways essential for nucleotide synthesis,

potentially disrupting lactate production and lactylation-related

metabolic processes. Additional preclinical and clinical studies are

required to experimentally confirm the therapeutic relevance of

methotrexate in patients stratified by lactylation profiles.

Our study demonstrates robust predictive performance using

large-scale retrospective datasets, several limitations should be

acknowledged. First, the analyses rely solely on retrospective data,

inherently carrying risks of selection and reporting biases. Second,

while extensive computational validation was conducted,

prospective clinical validation in independent cohorts remains

essential to confirm the clinical utility and generalizability of our

findings. Future prospective and experimental studies are necessary

to solidify the clinical application of the MLLS model.
Conclusion

This study highlights the potential of lactylation-based

biomarkers in predicting prognosis and treatment response in

breast cancer. The unexpected findings regarding lactylation’s role

in immune suppression and chemoresistance suggest that targeting

lactylation could provide new therapeutic opportunities, particularly

in patients who are resistant to conventional therapies. Future

research will need to address the functional mechanisms of

lactylation in the tumor microenvironment and immune

modulation to fully realize its potential as a therapeutic target in

breast cancer.
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