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Memory T (TM) cells play critical roles in protective immunity and

immunopathology, and their generation and maintenance have attracted a lot

of interests. In recent decades, informative investigations into CD8+ TM cell

precursors have greatly enhanced our understanding of fate decision during

CD8+ TM cell differentiation. Yet, much less is known about the generation of

CD4+ TM cells and their precursors. In this review, we present advances in

identifying precursors of CD4+ TM cells under Th1, Th2 and Th17 conditions, as

well as current understanding of how intrinsic factors, extrinsic factors and

positioning profiles contribute to determining fate choices of CD4+ T cells

between effector and memory. However, the path toward a general theory of

CD4+ TM cell generation has been hindered by technological limitations and

diversity and plasticity of CD4+ T subsets at effector and memory phases. We

thoroughly discuss the differences and similarities in differentiation of CD4+ TM
cells under Th1, Th2, and Th17 conditions, and explore the prospects for

identifying common precursors of specific CD4+ TM cells under various types

of infections and exposures.
KEYWORDS

CD4 + T memory cells, memory precursor, fate decision, T memory subsets, Th1/2/17
and Tfh subsets
1 Introduction

In response to pathogen infection or antigen exposure, naive T cells primed by antigen-

presenting cells proliferate and differentiate into functional effector T cells. Following

elimination of immunologic threat, major effector cells (about 90-95%) die during

contraction phase, and only a small proportion survives and develops into long-lived

memory T (TM) cells which are capable of self-renewal and surviving in the absence of

further antigen stimulation (Figure 1) (1–3). CD8+ and CD4+ TM cells can be typically

subdivided into CD62L+CCR7+central memory T (TCM) cells, CD62L
-CCR7- effector-like

memory T (TEM) cells and CD69+CD103+or- tissue-resident memory T (TRM) cells based
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on their functions and migration patterns (4, 5). As TM cells play

critical roles in protective immunity and immunopathology,

elucidating mechanisms underlying their generation and

maintenance is essential for the design of future vaccines capable

of eliciting T cell-based immunity (6).

The core theories of memory generation are primarily derived

from studies on differentiation of CD8+ TM cells (1, 7). The

identification of CD127hiKLRG1lo memory precursor effector cells

(MPECs) and CD127loKLRG1hi short-lived effector cells (SLECs) at

the peak of primary response (day 7–8 post-infection) provides a

guiding framework for a deeper understanding of the fate decision

between effector and memory CD8+ T cells (Figure 2) (8–11).

TCF1hi cells within CD127hi MPEC pool, which exhibit stem-like

properties and undergo less cytotoxic differentiation, substantially

give rise to TCM cells, while TCF1loCD127hi population contracts

and becomes TEM cells following infection elimination (3, 12–14).

Preferential localization of TCF1hi TCM precursors in paracortex (T

cell zone) of secondary lymphoid organs (SLOs), through CCR7-

mediated chemotaxis toward CCL19/21, facilitates their encounter

with IL-7, thus enhancing their transition into CD8+ TCM cells

(Figure 2) (15–20). Meanwhile, T-bet-induced CXCR3 drives the

migration of activated CD8+ T cells to peripheral region of SLOs

and inflamed non-lymphoid tissues (NLTs), facilitating their

interaction with inflammatory signals and thereby promoting

their differentiation into CD127loKLRG1hi terminal effector cells

(9, 19, 21). CD69+CD103+ CD8+ TRM cells are suggested to derive

from a MPEC-like (CD127hi) population residing in NLTs, and

Hobit and Blimp-1 potentially identify TRM precursors in different

NLTs (22–25). Moreover, early-activated TCF1hi and TCF1lo cells

(day 2–4 post-infection), which already possess distinct memory

potential, exhibit reversible plasticity between effector and memory

fates in response to inflammatory stimulation or the withdrawal of
Frontiers in Immunology 02
such stimulation (12, 14, 26, 27). The differentiation fate of antigen-

activated CD8+ T cells between effector and memory is

collaboratively determined by intrinsic factors, extrinsic factors

and positioning profiles that facilitate intrinsic-extrinsic

interactions during the whole priming phase under acute

infection (1, 3, 28–31).

Though there is no unifying framework, the current understanding

of CD8+ TM cell generation provides a valuable guidance for

investigations into differentiation of CD4+ TM cells. However, much

less is known about generation of CD4+ TM cells and their precursors

to date (5, 32). Unlike CD8+ T cells, antigen-activated CD4+ T cells can

differentiate into Th1, Th2, and Th17 effector cells, which are typically

identified by secretion of signature cytokines, under different types of

infections and exposures (33). Th1 cells, characterized by IFNg
secretion, are induced by the master transcription factor T-bet in

response to intracellular viral and bacterial infections. IL-4-secreting

Th2 cells are promoted by transcription factor Gata3 upon exposure to

extracellular parasites/helminths and allergens. The differentiation of

IL-17-secreting Th17 cells depends on expression of transcription

factor RORgt in response to fungal and extracellular bacterial

infections. Additionally, Th1/2/17 responses are all associated with

Bcl6-dependent parallel differentiation of CXCR5+PD-1+ follicular

helper T (Tfh) cells, which play pivotal roles in promoting B cell

responses within germinal center (GC) (34). Th1/2/17 and Tfh cells

both could survive contraction and become TM cells after

immunological threat is eliminated (5, 35–39). The heterogeneity of

activated CD4+ T cells adds complexity to studying the generation of

CD4+ TM cells.

Drawing on insights from the theory of CD8+ TM cell

generation, this paper presents current advances in identifying

precursors of Th1, Th2, Th17, and Tfh memory cells, as well as

elucidating the mechanisms underlying fate decision of CD4+ TM
FIGURE 1

Dynamics of T cell memory formation. Upon infection or antigen exposure, naïve T cells are primed and activated by antigen-presenting cells (APCs)
through pMHC-TCR interaction. Activated T cells vigorously expand and differentiate into functional effector cells during priming, and contract after
antigen clearance. A small proportion of antigen-activated T cells survive contraction and become long-lived memory T (TM) cells. The
differentiation fate of activated T cells between effector and memory is suggested to be dictated by dynamic interaction of multiple intrinsic and
extrinsic factors during priming stage. Heterogeneous populations at the peak of primary response exhibit different potential to give rise to terminal
effector cells and TM cells. Central memory (TCM, CD62L

+CCR7+), effector-like memory (TEM, CD62L
-CD69-) and tissue resident memory (TRM,

CD62L-CD69+CD103+or-) cells are suggested to derive from distinct progenitors, which emerge at priming and expansion stage.
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FIGURE 2

Advancing insights into precursors of CD8+ TM cells. (A) At the peak of primary response, activated CD8+ T cells can be subdivided into
CD127hiKLRG1lo memory precursor effector cells (MPECs), which possess greater potential to generate TM cells, and KLRG1hiCD127lo short-lived
effector cells (SLECs), which mostly dismiss during contraction. TCF1hi cells within CD127hi MPEC pool, which substantially survive contraction and
generate TCM cells, are identified as TCM precursors. Meanwhile, circulating effector-like memory T (TEM) cells and tissue-resident memory T (TRM)
cells are suggested to derive from TCF1loCD127hi progenitors. Moreover, the diversification of T cell fate is suggested to occur at even earlier stage.
Activated TCF1hi and TCF1lo T cells at day 3–4 post-infection already possess distinct memory potential; however, they exhibit plasticity when
microenvironment changes. Fate commitment of CD8+ T cells between effector and memory depends on dynamic interactions of intrinsic and
extrinsic factors during whole priming stage. (B) Localization in proper niches to encounter appropriate extrinsic factors is also critical for effector
and memory differentiation. Localization of TCF1hiCD127hi TCM precursors in the paracortex (T cell zone) of lymphoid nodes (LNs), where there is
high amount of IL-7 produced by fibroblast reticular cells (FRCs), through CCR7 mediated chemoattraction towards FRC-derived CCL19/CCL21, is
essential for generation of CD8+ TCM cells. Meanwhile, CXCR3-mediated migration of CD8+ T cells to interfollicular region of LNs and non-lymphoid
tissues (NLTs), through chemotaxis towards CXCL10, facilitates their interaction with high amount of antigen and inflammatory signals, which is
essential for effector differentiation. Moreover, optimal TRM generation depends on interaction with local extrinsic factors in NLTs. Expression of
CD69 and/or CD103, which is regulated by several intrinsic (T-bet, Hobit and Blimp-1) and extrinsic (TGF-b) factors, is suggested to be required for
retention of activated CD8+ T cells in NLTs.
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cells. We also discuss the challenges and prospects for identifying

common precursor of specific CD4+ TM cells under various types of

infections and exposures.
2 Advancing insights into CD4+ TM
cell precursors during Th1 responses

2.1 Diverse effector and memory CD4+ T
cell subsets

Consistent with CD8+ TM subsets, CD4+ TM cells can be

traditionally categorized into CD62L+CCR7+ TCM cells, CD62L-

CCR7- TEM cells, and CD69+ TRM cells under bacterial and viral

infections (Figure 3) (36, 40, 41). TCM cells, which circulate through

lymph nodes, can efficiently generate secondary Th1 effectors upon

rechallenge, while TEM cells, which migrate between NLTs, are able

to rapidly produce IFNg following rechallenge (36, 37, 41, 42). TRM

cells, which mainly reside in NLTs, mediate rapid local recall

responses (43). Additionally, CCR7-CXCR5+ Tfh memory cells,

which are essential for secondary B cell responses, have been

identified as a distinct memory population, although they exhibit

phenotypic similarities with CCR7+CXCR5+ TCM cells, including

the expression of TCF1, CD127 and CXCR5 (37, 41, 44–46). The

diverse TM subsets are suggested to derive from relevant effector cell

populations at peak of primary responses (35, 39). Currently, two

commonly used approaches, based on expression of CXCR6/

CXCR5/CCR7 and Ly6C/PSGL1/FR4, are employed to identify

effector and memory populations by flow cytometry.

The first approach subdivides activated CD4+ T cells into

CXCR6+CXCR5- Th1-like cells and CXCR6-CXCR5+ Tfh-like

cells at the peak of immune response during viral infection (37,

39, 41). CXCR5-CXCR6+T-bet+ IFNg-secreting Th1 effector cells

can partially survive contraction and give rise to CXCR5-CCR7-

Th1-TEM cells (36, 38, 39, 41). CCR7+ cells within CXCR5+ Tfh-like

population at effector phase, which exhibit a less differentiated state,

primarily develop into TCM cells identified by the CCR7+CXCR5+

phenotype (37, 41, 42). CXCR5+CCR7- Tfh cells during the priming

phase can give rise to CXCR5hiPD-1hi GC-Tfh cells and

CXCR5+CCR7- Tfh memory cells (39, 46, 47). However, CXCR5

expression on Tfh cells has been shown to decrease or even

disappear during memory phase; therefore, CXCR5-/lo TM cells

might actually contain Tfh memory cells (37, 42, 45). In addition,

CXCR5-/lo TM cells also contain a CCR7+ TCM-like population (36,

41, 42). This suggests a certain degree of unreliability of this

approach in identifying above CD4+ T cell subsets during effector

and memory phases.

Another approach partitions activated CD4+ T cells into

Ly6ChiPSGL1hi, Ly6CloPSGL1hi, and Ly6CloPSGL1lo populations

at effector phase, and these populations are also observed at

memory stage (44, 45, 48, 49). Ly6ChiPSGL1hi population

primarily consist of differentiated Th1 effector cells, which can

give rise to Ly6Chi Th1-TEM cells (44, 45, 48, 49). Ly6CloPSGL1lo

population, with exclusively high expression of FR4, contains Tfh

cells at both effector and memory phases (37, 45, 48). Single-cell
Frontiers in Immunology 04
transcriptomic experiments suggest that FR4 is a reliable marker for

distinguishing effector and memory Tfh cells from CCR7+ TCM cells

and their precursors, while CXCR5 is expressed on both Tfh and

non-Tfh cells (37, 45). Ly6CloPSGL1hi effector population, which

exhibits greater memory potential, is a heterogenous population

comprising CXCR5- Th1-like cells and CXCR5+ Tfh-like cells (44,

45). This population may contain TCM precursors, as

CD62L+CCR7+ TCM cells are preferentially enriched in the

Ly6CloPSGL1hi TM cells at memory phase (37, 44, 45, 48).

Based on the above information, activated CD4+ T cells at the

peak of priming consist of at least three populations: CXCR5-

CXCR6hiLy6Chi Th1 effector cells, CCR7+CXCR5+ cells enriched

for TCM precursors, and CCR7-CXCR5+FR4+ Tfh cells (37, 39, 41,

45). It is suggested that a proportion of cells in each population

survive contraction and become CD4+ TM cells following infection

elimination (35, 39, 41, 42). Additional heterogeneity clearly exists

within these populations; however, mechanisms driving their

transition into CD4+ TM cells remain under investigation.
2.2 Intrinsic factors that determine fate
decision between effector and TM cells

Fate mapping studies have demonstrated that single naïve CD4+

T cells can give rise to effector and memory Th1 and Tfh cell

populations during infection (38, 50). Similar to CD8+ T cells,

differentiation fate of CD4+ TM cells is suggested to be determined

during the priming phase of infection (32, 39, 41). A microarray

study indicates that the generation of CD4+ TM cells relies on a

combination of programs that inhibit proliferation and apoptosis

while promoting DNA damage repair and lipid metabolism during

Th1 response in malaria infection (51). Multiple factors have been

revealed to be essential for CD4+ TM cell differentiation.

It is well-established that CD127 and TCF1 play decisive roles in

CD8+ TM cell differentiation (3, 8, 9, 12–14). However, CD127

expression is unable to distinguish CD4+ TM cell precursors from

terminal Th1 effector cells, although it is required for maintenance

and homeostasis of CD4+ TM cells (20, 37, 41, 45, 48, 52). TCF1 has

been shown to be involved in maintaining stemness and promoting

formation of TCM cells; however, it also promotes Tfh polarization

and inhibits Th1 effector differentiation under viral infections (39,

52–57). Another T cell intrinsic factor, Thpok, which is essential for

the differentiation of CCR7+ TCM precursors, also plays critical role

in Tfh cell differentiation under lymphocytic choriomeningitis virus

(LCMV) infection (41, 58). Therefore, neither TCF-1 nor Thpok

can faithfully identify CD4+ TCM precursors. In addition, Bcl6,

which is indispensable for Tfh differentiation, contributes to the

generation of CCR7+ TCM cells primarily through repressing Blimp-

1 expression (42, 59, 60). Id3 also contributes to generation of

CXCR5+CCR7+ TCM cells and CXCR5+CCR7- Tfh-like memory

cells under LCMV infection (36). It is challenging to identify

reliable precursors of TCM cells due to the shared programs

underlying differentiation of TCM and Tfh cells. Recently, OCA-B

(Pou2af1), which increases Th1-like cells and reduces Tfh-like cells

during priming, has been shown to be necessary and sufficient to
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drive the generation of CD44+CD62L+ TCM cells under LCMV

infection, and thus can prospectively identify TCM precursors (61).

Meanwhile, Th1-TEM cells have been shown to derive from in

vitro activated IFNg-secreting Th1-like effector cells (62, 63).

Expression of CD30 (Tnfrsf8) and inhibition of ACC1 are

demonstrated to enhance generation of Th1 memory cells,

although these studies did not investigate Tfh cells and diverse

TM lineages (64, 65). A recent study reveals that expression of Id3
Frontiers in Immunology 05
identifies a memory precursor-like population within CXCR5- Th1-

like cells, which can survive contraction phase and become CXCR5-

CCR7- Th1-like TEM cells (36).

Furthermore, TCR-dependent CD25 (IL-2Ra) expression is

suggested to predict the differentiation fate of activated CD4+ T

cells as early as day 3 post-infection (Figure 3A) (42, 57, 66). Indeed,

IL-2/IL-2R signaling have been demonstrated to play a crucial role

in determining fate choices between effector and memory CD8+ T
FIGURE 3

Potential memory precursors during Th1/Tfh responses under infection. (A) Activated CD4+ T cells at the peak of primary response can be
subdivided into several populations, which enrich precursors of TCM, Th1-TEM, Th1-TRM and Tfh memory cells respectively, based on expression of
Ly6C/PSGL1/FR4 and/or CXCR5/CCR7/CXCR6. Multiple factors have been revealed to regulate generation of CD4+ TM cells during Th1/Tfh
responses under bacterial and viral infections, and thus can act as putative marker for memory precursors. Moreover, IL-2/CD25 signaling plays
critical role in determining fate choices between Th1 effector and Tfh/TCM cells at early stage of priming. (B) Spatial localization of CD4+ T cells also
contributes to effector and memory differentiation under infections. CCR7 retains activated CD4+ T cells in paracortex (T cell zone), despite co-
expression of CXCR5, which is essential for generation of TCM cells. Migration to interfollicular region and entry into peripheral non-lymphoid tissues
(NLTs), which is mediated by CXCR3-CXCL9/10 chemotaxis, promotes optimal Th1 effector differentiation. NLTs residency of activated T cells, which
is partly regulated by CD69 and T-bet-induced CD18, is required for Th1-TRM generation. CXCR5-mediated positioning in germinal center (GC) is
required for GC-Tfh and Tfh memory cell differentiation. A CD62L+PD-1lo subpopulation of Tfh-like (CXCR5+BCL6+) cells, which exhibit less
preference to interact with B cells, is suggested to efficiently generate Tfh memory cells.
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cells (67). Following the initial induction of CD25 after TCR

activation, its rapid downregulation on activated CD8+ T cells

during priming and diminished IL-2 signaling is essential for

generation of CD8+ TM cells, whereas prolonged IL-2/CD25

signaling promotes terminal effector differentiation (67). Similarly,

early-activated CD25hi CD4+ T cells (day 3 post-infection), which

lack CXCR5 expression, almost exclusively develop into terminal

Th1 effector cells, whereas CD25lo cells, which generally express

CXCR5, give rise to Tfh and TCM cells (42, 57, 66, 68). Moreover,

early-activated CD25lo cells are predominantly enriched for OCA-

Bhi cells, although a proportion of CD25hi cells also express lower

level of OCA-B (61). It is indicated that high expression of OCA-B

at the early stage of priming contributes to the commitment of

CD25lo cells to a TCM cell fate. However, whether early-activated

CD25hi and CD25lo CD4+ T cells exhibit plasticity in response to

changes in the microenvironment remains to be further

investigated. Notably, it has been demonstrated that IL2/CD25

signaling promotes survival of activated T cells and thus

formation of TCM and TEM cells, through upregulating re-

expression of CD127 during contraction phase (69–71).

Nevertheless, IL-2/CD25 signaling at early stage of priming

contributes to determining the differentiation fates between Th1

effector cells and Tfh/TCM cells during Th1 response (57).
2.3 Positioning profiles that dictate
differentiation fate between effector and
TCM cells

As well as intrinsic factors, spatially distributed antigens and

cytokines within microenvironment also play essential roles in

CD4+ T effector and memory differentiation (Figure 3B) (32, 33).

Inflammatory cytokines within inflamed NLTs, such as IL-12 and

IFNg, are critical for the differentiation of IFNg-secreting Th1

effector cells, partly through promoting T-bet expression (72–76).

Meanwhile, high level of IL-7 in SLOs produced by fibroblast

reticular cells (FRCs) promotes generation of CD4+ TCM cells,

although its role in this process is not as prominent as in the

formation of CD8+ TCM cells (20). T-bet-induced CXCR3

expression on activated CD4+ T cells mediates their migration

rapidly out of lymph organs and into inflamed peripheral NLTs,

thereby promoting optimal Th1 effector differentiation during

influenza virus (IAV) infection (77, 78). Meanwhile, upregulation

of CD62L in TCF1hi cells leads to their enrichment in SLOs rather

than accumulation in lungs, and thus contributes to TCM cell

formation during Th1 response in response to IAV infection (52).

Moreover, precise localization of activated CD4+ T cells within

SLOs also contributes to determining their fate choices between

effector and memory (Figure 3B). Peripheral region within

secondary lymphoid organs (SLOs) provides abundant antigen

and inflammatory cytokines (IL-12, and IFNg), while IL-7-

producing fibroblast reticular cells (FRCs) are restricted in the

center (T cell zone) of SLOs (7, 79, 80). CXCR3 directs the

migration of activated CD4+ T cells to interfollicular region of

LNs, which is strongly correlated with increased Th1 effector
Frontiers in Immunology 06
differentiation under viral infection (81, 82). Retention of

activated T cells in the T cell zone, regulated by CCR7-mediated

chemotaxis towards FRC-produced CCL19/CCL21, facilitates their

encounter with high amount of IL-7 and protects them from

excessive inflammatory stimulation, thus promoting CD4+ TCM

generation during Th1 responses (15, 20, 83, 84). In line with this,

CCR7+CXCR5+ T cells, which enrich precursors of CD4+ TCM cells,

predominantly localize in T cell area of SLOs (37, 41, 42).

Additionally, Ly6CloPSGL1hi cells with greater memory potential

also preferentially localize in T cell zone, while Ly6Chi cells, which

mainly give rise to terminal Th1 effectors, migrate to peripheral sites

of spleen under LCMV infection (48).

Similar to CD8+ T cells, retention in T cell area of SLOs is

required for CD4+ TCM formation, whereas migration to periphery

of SLOs and entry into NLTs promote Th1 effector differentiation.

The balance between CCR7 and CXCR3 expression contributes to

dictating differentiation fate between CD4+ TCM and Th1 effector

cells. Yet, spatial requirement of Th1-TEM cell generation

remains unclear.
2.4 Identifying precursors of Tfh memory
cells during Th1 responses

There are also several factors that have recently been shown to

be involved in generation of Tfh memory cells during Th1

responses. In addition to its role in Tfh lineage polarization,

TCF1 has been shown to be essential for the generation and

maintenance of Tfh memory cells (52–56). Tox2 is also required

for GC-Tfh differentiation and Tfh memory cell generation under

IAV infection (85). Moreover, PD-1+CXCR5+ Tfh-like cells with

sustained expression of Tigit preferentially differentiate into GC-

Tfh cells, although Tigit is not functionally critical for

differentiation and function of GC-Tfh cells (84). Meanwhile,

Tigit-negative Tfh-like cells upregulate CD127 expression by day

14 post-infection (after GC formation) and give rise to CXCR5+ TM

cells with or without CCR7 expression (84). Recently, a CD62L+PD-

1lo subpopulation within CXCR5+BCL6+ Tfh cells, which highly

expresses KLF2 and CD127, exhibits memory precursor-like

transcriptional profiles and readily generates PD-1hi Tfh effector

cells upon recall (86). In addition, the CD62L+PD-1lo population

exhibits a reduced preference for B cell interaction (86). The

observation is consistent with the suggestion that avoiding

excessive stimulation from B cells is essential for Tfh memory cell

generation (46, 84, 85). Although functional requirements of Tigit

and CD62L in generation of Tfh memory cells is unclear, they can

putatively act as phenotypic markers for distinguishing between

progenitors of GC-Tfh and Tfh memory cells.

Spatial requirement for development of Tfh memory cells

appears to be different from TCM and Th1 effector cells.

Expression of CXCR5, which facilitates positioning of pre-Tfh

cells at T:B border and entry into follicle to appropriately interact

with B cells, is essential for further GC-Tfh and Tfh memory cell

differentiation (84, 87–91). Upregulation of PD-1 also promotes

accumulation of Tfh-like cells in the GC territory, partly through
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inhibiting expression of CXCR3 which can otherwise distract Tfh-

like cells from GC localization (91, 92). Meanwhile, CCR7

expression retains activated CD4+ T cells in T cell zone and thus

inhibits their differentiation towards Tfh fate, despite co-expression

of CXCR5 (84, 89, 90). Expression of CXCR5, as well as

downregulation of CCR7 and CXCR3, drives migration of

activated CD4+ T cells toward B cell follicles and GCs, thus

facilitating differentiation of GC-Tfh and Tfh memory cells.
2.5 Identifying precursors of Th1-TRM cells
in NLTs

Th1-TRM cells, which exhibit Th1 effector and memory profiles,

are suggested to derive from Th1 effector cells residing in NLTs

under bacterial and viral infections (Figure 3A) (93, 94). IL-2/CD25

signaling has also been demonstrated to enhance Th1-TRM

generation in the lung through promoting optimal effector

differentiation during IAV and LCMV infection (95, 96). Th1-

associated T-bet, Blimp-1, and Id2 are demonstrated to be required

for Th1-TRM generation in liver and small intestine during

Salmonella and LCMV infections (93, 94). Meanwhile, Hobit and

Blimp-1, which plays crucial role in CD8+ TRM cell generation, have

been shown to be dispensable for CD4+ TRM cell formation in the

colon during experimental colitis, although their deficiency impairs

the expression of pro-inflammatory cytokines in CD4+ TRM cells

(24, 25, 97). Differential requirements for Blimp-1 indicate that the

mechanisms underlying Th1-TRM formation may vary across

different tissues and types of infections. On the other hand, IL-15

receptor-mediated direct IL-15 signaling within the first week

promotes the generation of viral-specific Th1-TRM cells through

enhancing their survival and persistence in the lung during IAV

infection (96). Tfh-associated Bcl6 contributes to Th1-TRM

generation in the small intestine under LCMV infection, probably

through enhancing memory attributes (94). It is suggested that the

factors contributing to effector differentiation and survival are both

required for Th1-TRM cell generation. However, none of these

factors exhibit the ability to reliably distinguish TRM precursors

from terminal Th1 effector cells within NLTs.

Similar to CD8+ TRM cells, the transition of activated CD4+ T

cells into Th1-TRM cells also depends on their interaction with local

inflammatory (IL-2 and IL-1) and survival (IL-15) cytokines in

microenvironment of livers and lungs during bacterial and viral

infections (95, 96, 98). The factors that promote entry and retention

of activated CD4+ T cells in NLTs are essential for the generation of

TRM cells. IL-2/CD25 signaling contributes to Th1-TRM generation

through promoting residency of activated CD4+ T cells in the lung

during IAV and LCMV infection (95, 96). Blimp-1 has also been

shown to promote the accumulation of potential early TRM

precursors in small intestine, thus enhancing Th1-TRM generation

during LCMV infection (94). T-bet-induced CXCR3, which is

highly expressed on Th1 effector and TRM cells, promotes entry of

activated CD4+ T cells into liver and lung during Salmonella and

IAV infections; however, its role in TRM cell generation is unclear

(77, 98). Unlike CD8+ TRM cells, CD103 appears not to be
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various NLTs, as it is frequently absent from Th1-TRM cells (40, 43,

94, 98). CD69, which is highly expressed on Th1-TRM cells in

multiple NLTs, are currently regarded as a phenotypic marker for

TRM cells and their precursors (Figure 3B), although its role in NLTs

residency of Th1 effector and TRM cells is ambiguous (40, 95, 96,

98). Additionally, CD18, induced by highly expressed T-bet, is

suggested to be essential for positioning of activated CD4+ T cells

into liver niches and thus TRM generation under Salmonella

infection (Figure 3B) (93). Yet, whether CD69 and CD18 are

capable of identifying precursors of Th1-TRM cells within

different NLTs under various types of infections remains to be

further clarified. Variations in the programs governing the

generation of Th1-TRM cells across different types of infections

and tissues increase the complexity of identifying their

reliable precursors.
3 Potential precursors of Th2 memory
cells

In comparison to Th1 cells, memory generation of Th2 cells has

been much less studied. Th2 memory cells, including TCM cells in

lymph nodes, TEM cells, TRM cells in lungs, and Tfh-like memory

cells all can be generated after antigen clearance under helminth/

parasite infection (63, 87, 99, 100). However, Th2 and Tfh-like cells

in LNs exhibit great plasticity under parasite infection, and a

proportion of activated CD4+ T cells appear to co-express Tfh

marker Bcl6/CXCR5 and Th2 marker Gata3/IL-4 (101, 102).

Meanwhile, entry of activated CD4+T cells into lungs, which

promotes terminal IL-4+IL-13+ Th2 effector cell differentiation,

depends on downregulation of the hallmark Tfh transcription

factor Bcl6, indicating a distinction between them (99, 101). The

lack of clear delineation between Th2 and Tfh cells complicates the

investigation into their memory generation under Th2 conditions.

Without considering the existence of Tfh cells, antigen-

activated CD44hiCD62L+ CD4+T cells, which preferentially

accumulate in LNs rather than lungs, are suggested to enrich TCM

precursors (103, 104). CD44hiCD62L+ cells, with high co-

expression of CCR7, maintain a less differentiated state as

indicated by lower expression of Gata3 and IL-4 (103–105). It is

consistent with the observation that CCR7-mediated retention of

activated CD4+ T cells in T cell zone inhibits Th2 effector

differentiation (87, 106). Meanwhile, CXCR5-mediated migration

towards peripheral region of LNs, in a CXCL13-dependent manner,

is required for differentiation of both IL-4-producing Th2-like cells

and Tfh cells (87, 106). It is indicated that positioning into

periphery and center of SLOs also contributes to differentiation of

Th2 effector cells and TCM cells, respectively, during Th2 responses.

On the other hand, retention of Th2 effector cells in NLTs facilitates

their encounter with local extrinsic signals and thus promotes Th2-

TRM cell generation. Local IL-7 signaling is essential for

maintenance of Th2-TRM cells in lungs (105). IL-2/CD25

signaling has been shown to promote Th2-TRM generation

through enhancing optimal effector differentiation and residency
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of Th2 cells in lungs (99). CD69, which is highly expressed on Th2-

TRM cells, might be required for their generation through

promoting lung residency of Th2 effector cells (99). Although the

underlying mechanisms are not well-defined, these investigations

indicate similarities in spatial requirements for memory generation

between Th2 cells and Th1/CD8+ T cells. In addition, ablation of

ACC1, which is required for Th1 memory cell formation, also

enhances generation of Th2 memory cells via regulating fatty acid

oxidation under helminth infection (65). It suggests that Th2

memory cell generation depends on some mechanisms shared

with Th1 cells.

Despite the similarities mentioned above, it should not be

simply presumed that factors involved in formation of CD8+ TM

and Th1 memory cells play the same role in Th2 memory cell

generation. CD127, the key marker for identifying CD8+ TM cell

precursors, is barely expressed on Th2-like effector cells in LNs

during priming and thus cannot mark Th2 memory precursors,

although it has been shown to be essential for homeostasis of Th2

memory cells (104, 105). Ly6C and PSGL1, which are used to

identify memory precursors from Th1 effector cells, are barely

expressed on ovalbumin-specific Th2-like effector cells at the peak

of Th2 responses (104). CXCR5, a key marker to distinguish

between Th1 effector cells and Tfh/TCM cells, is expressed on

both Tfh and Th2 cells in lymph nodes during priming (87, 106).

RNA-seq data also demonstrate that TCF1, Thpok and Id3, which

are essential for TCM and Th1-TEM generation under viral infection,

are comparably expressed on CD62L- Th2 cells and TCM precursor-

enriched CD62L+ Th2 cells (104). Overall, independent

investigations into generation of Th2 memory cells are

definitely required.
4 Potential precursors of Th17
memory cells

Few investigations have been performed into memory

generation during Th17 responses, while the heterogeneity of TM

cells and the existence of Tfh memory cells have remained largely

unexamined. Th17 memory cells are shown to derive from IL-17+

or RORgT+ Th17-like effectors; however, how effector cells

contribute to the ultimate Th17 memory cell pool remains ill-

defined (107, 108). IL-7 and IL-15 have been shown to promote the

maintenance of Th17 memory cells at inflammatory site and

draining lymphoid tissues (109). IL-23/IL-23R signaling directly

drives effector to memory conversion of Th17 cells via upregulation

of CD127 and IL-15 receptor during contraction phase, while IL-2

prominently impairs IL-23-induced Th17 memory cell generation

(110). It suggests that surviving signals are also required for Th17

memory generation. CD30, which promotes Th1 memory

generation, plays critical role in generation of Th17 memory cells,

and thus can serve as a prospective marker for Th17 memory

precursors (64). Moreover, retention of Th17 cells in the lung and

skin to interact with IL-1a and local IL-23 is required for CD69+

Th17-TRM generation, although factors that mediate their residency

remain unclear (111, 112). Though the information are fragmented,
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and differences with CD8+ TM cells and Th1/2 memory cells.
5 Challenges to develop a general
model of CD4+ TM cell generation

Despite the above advances in characterizing precursors and

elucidating fate decision mechanisms of CD4+ TM cells, current

knowledge remains insufficient. A deeper understanding of

generation of CD4+ TM cells has been hindered by several

technological and biological challenges. The first challenge is to

trace antigen-specific CD4+ T cells in vivo. TCR-transgenic T cell

adoptive transfer system and peptide:MHC tetramer technology,

which are vital tools for studying antigen-specific CD8+ T cells, both

exhibit limitations in studying CD4+ T cells (5, 32). Moreover, the

number and expansion capability of antigen-specific naïve CD4+ T

cells is much lower than CD8+ T cells, and CD4+ TM cells are

suggested to be less stable over time (32, 42, 113, 114). Low number

of antigen-specific CD4+ TM cells makes them harder to be detected

in vivo.

In addition to technical limitations, the functional and

phenotypic heterogeneity of CD4+ T cells at effector and memory

phase poses significant challenges to establishing a unifying

framework for CD4+ TM cell generation. As mentioned above,

Th1/2/17 and Tfh populations both can give rise to TM cells after

immunological threat is eliminated (5, 35–39). Plenty of T cell

intrinsic and extrinsic factors, which contribute to generation and

maintenance of CD4+ TM cells, are also involved in polarization of

naïve T cells towards Th1/2/17 and Tfh lineages (5, 33, 39, 58, 115).

For instance, TCF1 and Thpok, which are shown to be required for

generation of TCM cells, also promotes Tfh cell differentiation

during Th1 responses (41, 52, 55, 58). Bcl6, which plays pivotal

role in Tfh differentiation, is also required for TCM and Th1-TRM

generation (58, 59, 94). Moreover, lack of a unifying approach to

faithfully identify Th1/Th2/Th17 and Tfh populations complicates

the study of CD4+ TM cell differentiation. Th1, Th2 and Th17 cells

are generally identified by secretion of IFN-g, IL-4 and IL-17

respectively; however, Bcl6+ follicular helper T (Tfh) cells are also

able to produce these hallmark cytokines (34). Besides, the two

commonly used approaches, based on expression of Ly6C/PSGL1/

FR4 and CXCR6/CXCR5/CCR7, both cannot unambiguously

identify the diverse CD4+ T cell subsets during effector and

memory phases of Th1 responses (32, 37, 39, 45). Expression of

CXCR5 and production of IL-4 are also not able to discriminate

between Th2 and Tfh cells under parasite infection (101, 102). The

developmental relationships between Th/Tfh polarization and

memory generation remain incompletely elucidated, largely due

to shared mechanistic pathways and phenotypic overlaps between

diverse CD4+ T cell subsets.

Furthermore, the plasticity of CD4+ T cell subsets at population

level also increases complexity in studying CD4+ T memory

generation (116). During Th1 responses, CXCR5+ TM cells give

rise to secondary Th1 and Tfh effector cells upon rechallenge,

indicating heterogeneity or plasticity of them (44). Recent data
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demonstrate that CXCR5+ memory cells contain a TCM-like

(CCR7+ or Ly6CloPSGL1+) population, which primarily gives rise

to secondary Th1 effectors and generates few Tfh cells (41, 45, 117).

However, remaining Tfh memory cells (Ly6CloPSGL1loFR4+ or

CXCR5+CCR7lo), which efficiently generate Tfh effector cells,

equally give rise to secondary Th1 effectors upon challenge (41,

45). It might be because Tfh-like memory cells indeed possess

plasticity, or they still represent a heterogeneous population. In

addition, Gata3+ Th2 and Bcl6+ Tfh cells exhibit great plasticity, as

each can give rise to both cell types following helminth challenge

(101, 102). On the other hand, a specific CD62L+CXCR5+Bcl6+ Tfh

cell population has recently been shown to efficiently generate Tfh

effectors during secondary response, indicating lineage

commitment of it (86). Besides, Th1-TEM cells (Ly6Chi and/or

CXCR5lo) almost exclusively generate secondary Th1 effector cells

upon rechallenge (38, 42, 44, 45, 49). Some other fate mapping and

single-cell studies also indicate that CD4+ TM cells exhibit minimal

plasticity and might be lineage-committed upon recall (38, 39). A

possible explanation is that the plasticity of CD4+ TM cells at

population level is associated with additional heterogeneity (116).

Nonetheless, the plasticity at the population level currently hinders

a deeper understanding of CD4+ TM cell generation.
6 Prospects for identifying potential
common precursors of specific CD4+

TM cells

As discussed above, CD4+ TM cells are suggested to derive from

antigen-activated T cell progenitors, and the memory fate is

primarily dictated during priming phase of primary response (39,

62). However, the lack of a guiding model significantly hinders

further investigations into the mechanisms underlying generation

of CD4+ TM cells. Identification and characterization of potential

common precursors of specific CD4+ TM cells under Th1, Th2 and

Th17 conditions would be beneficial for further investigating the

programs of fate decision between effector and memory CD4+

T cells.

Unfortunately, the current theory of CD8+ TM cell generation

provides only limited guidance for identifying precursors of CD4+

TM cells. As a reliable marker for CD8+ TM precursors (8, 9), role of

CD127 in generation of CD4+ TM cells has attracted considerable

attentions. Multiple studies demonstrate that CD127 mediated IL-7

signaling is required for maintenance and homeostasis of CD4+ TM

cells; however, CD127 seems to be downregulated at effector phase

and thus cannot identify memory precursors at the peak of Th1,

Th2 and Th17 responses (48, 52, 69, 84, 86, 104, 108, 110, 118).

Nonetheless, revealing programs that regulate re-expression of

CD127 in activated CD4+ T cells during contraction phase might

be a breakthrough for identifying common memory precursors, as

IL-7/CD127signaling has been shown to be essential for survival of

activated CD4+ T cells during this phase (52, 84, 110, 119). On the

other hand, the dual roles of TCF1 in CD4+ TM cell differentiation

and Tfh polarization make it an unreliable marker for memory

precursors during Th1/Tfh response under viral infections (39, 52–
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57). Besides, RNA-seq data indicates that TCF1 is not involved in

formation of TCM precursor-like CD62L+ T cells during Th2

response (104). The exact role of TCF1 in memory generation

and Th/Tfh lineage polarization still needs to be defined.

Collectively, CD127 and TCF1 are not reliable markers for

discriminating CD4+ T memory precursors from terminally

differentiated effectors.

Programs of CD4+ TM cell differentiation also exhibit great

differences under Th1, Th2 or Th17 conditions (5, 43, 94).

Commonly used markers during Th1 responses, such as Ly6C,

PSGL1 and CXCR5, seem unable to distinguish between TCM

precursors, Th2 effector cells, and Tfh cells under Th2 conditions

(101, 102, 104). Besides, whether TCM-associated factors during Th1

response, such as TCF1, Thpok and OCA-B, also participate in

regulating memory formation under Th2 and Th17 conditions

remains ill-defined (32, 58, 104). The mechanisms of TCM and

Tfh memory cell differentiation under various types of infections

and exposures are far from clear. Moreover, the generation of CD4+

TEM and TRM cells are closely related to Th1, Th2, Th17 and even

Tfh effector cell differentiation (5, 43, 94). For instance, the Th1

hallmark transcription factor T-bet is indispensable for terminal

effector differentiation and the generation of TEM and TRM cells

through multiple mechanisms during Th1 responses, whereas it is

clearly not involved in effector and memory differentiation under

Th2 and Th17 conditions (81, 93, 120). Whether Gata3 and RORgt
contributes to TEM and TRM generation during Th2 and Th17

responses remains unclear. It seems that the more we delve into the

differences between subsets of CD4+ T cells, the harder it becomes

to develop a general model of their memory generation.

Nevertheless, we cannot exclude the possibility that there exists

a common mechanism for generation of multiple CD4+ TM

populations under different conditions. TCR-dependent IL-2/

CD25 signaling at early priming stage contributes to Th1/2/17

effector cell differentiation, whereas its absence favors the

formation of Tfh and TCM cells during both Th1 and Th2

responses (57, 66, 95, 99, 121). IL-2/CD25 signaling during

priming stage is also required for Th1-TRM and Th2-TRM

generation through promoting effector differentiation and NLT

residency (95, 96, 99). Although it has been argued that IL2/

CD25 signaling promotes survival and persistence of CD4+ T

cells at later stage (69, 70), it indeed contributes to determining

the fate choice between Th1/2/17 effector cells and Tfh/TCM cells at

the early stage during priming (Figure 4). Some other factors,

including ACC1 and CD30, have also been shown to participate

in regulating the transition of Th1/2/17 effector cells into lineages-

committed Th1/2/17 memory cells under multiple conditions (64,

65). It is indicated that activated CD4+ T cells undergo some

common processes that regulate their transition into memory

cells, although decisive factors that dictate the fate decision

between effector and memory under diverse conditions have not

been revealed.

On the other hand, positioning of activated CD4+ T cells, which

facilitates their interaction with specific extrinsic signals, plays a

critical role in effector and memory differentiation of Th1, Th2,

Th17 and Tfh cells (Figure 4). Localization in periphery and center
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of SLOs to interact with inflammatory and survival signals controls

effector and TCM differentiation, respectively, during both Th1 and

Th2 responses (20, 37, 41, 42, 52, 65, 84, 103). Retention of activated

T cells in NLTs to interact with local inflammatory and survival

signals is suggested to be indispensable for TRM generation during

Th1, Th2 and Th17 responses, though factors regulating their

residency in various NLTs remain unclear (93–96, 98, 99, 105,

111, 112, 122). Localization in B cell follicle (and GC area) and

insufficient interaction with B cells both are suggested to be

required for Tfh memory generation under viral infections and

antigen exposures (84, 86). Consistent spatial requirements for

differentiation of specific CD4+ TM subsets also provide valuable

perspectives for identifying common memory precursors under

various types of infections and exposures.
7 Concluding remarks

CD4+ TM cells play critical roles in protective immunity and

immunopathology. Revealing underlying mechanisms of their

generation and maintenance is crucial for developing therapeutic

approaches targeting CD4+ TM cells in human diseases. The

intriguing MPEC/SLEC model has led to remarkable advances in
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the understanding of generation of CD8+ TCM, TEM and TRM cells.

However, there is a lack of guiding model for further investigations

into generation of CD4+ TM cells, due to the diversity and plasticity of

multiple CD4+ T subsets. Differentiation of specific CD4+ TM subsets

under Th1, Th2 and Th17 conditions depends on both common and

distinct underlying mechanisms. The shared features discussed above

might provide a path to a putative common model on generation of

CD4+TM subsets under all types of infections and exposures. Clearer

delineations of Tfh memory, TCM, TEM and TRM cell populations at

memory stage, as well as Tfh and Th1/2/17 populations at priming

stage, are definitely required. Future works are also needed to reveal

undergo programs governing memory generation under specific

conditions and to clarify the consistency of these programs across

different types of infections and exposures. Considering that

transcriptional networks and positioning in proper niches to receive

extrinsic stimulation both contributes to effector and memory

differentiation, integrating spatial transcriptomics and single-cell

RNA-seq technology will be an informative approach for further

investigations (123). In addition, the advancing MHC-II multimer

technology will be a valuable tool for studying endogenous antigen-

specific CD4+ T cells (124). Identifying potential common and distinct

precursors for each CD4+ TM cell subset would be highly beneficial for

elucidating underlying mechanisms for their generation.
FIGURE 4

Putative common model of CD4+ TM cell generation. Despite the differences between CD4+ T cell subsets, there are some common mechanisms
underlying memory generation during Th1, Th2 and Th17 responses. IL-2/CD25 signaling contributes to determining the fate choice between Th1/2/
17 effector and Tfh/TCM at early stage of priming under multiple conditions. Moreover, migration of activated CD4+ T cells toward periphery of
secondary lymphoid organs (SLOs) and inflamed non-lymphoid tissues (NLTs), facilitates their encounter with inflammatory signals and thus
promotes their effector differentiation. Meanwhile, positioning of activated CD4+ T cells into appropriate niches, avoiding excessive stimulation and
receiving survival signals, is suggested to be essential for generation of specific CD4+ TM subsets under various types of infections and exposures.
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On the other hand, recent findings have suggested that CD8+

cytotoxic T (Tc) cells also differentiate into multiple subsets, in a

manner similar to CD4+ T cells (125). Conventional IFNg-
producing Tc1 cells, IL-4-producing Tc2 cells, and IL-17-

producing Tc17 cells, which are polarized by specific cytokine

microenvironments, are all capable of differentiating into long-

lived TM cells (125–127). However, whether each CD8+ TM cell

subset derives from distinct or common precursor populations and

whether they exhibit plasticity remains largely unclear. Elucidating

the mechanisms underlying the generation of multiple CD4+ TM

cell subsets may provide valuable insights into the differentiation of

memory CD8+ Tc1, Tc2, and Tc17 cells.
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