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Exposure of renal tubular epithelial cells (RTCs) to kidney stones or calcium oxide

crystals triggers the production of reactive oxygen species (ROS), leading to

oxidative stress. This oxidative milieu incites cellular injury and elicits an

inflammatory cascade within the RTCs. Notably, the cellular membranes of the

compromised cells facilitate the adherence and subsequent retention of crystals,

which is instrumental in the pathogenesis of kidney stones. The pathways of ROS

production are diverse, involving numerous signaling cascades. Recent

researchers’ endeavors have elucidated that selective antioxidants can

attenuate intracellular ROS concentrations by modulating these intricate

signaling cascades. This reduction in ROS levels has been empirically

demonstrated to significantly curtail the accumulation of calcium oxalate

crystals within renal tissues in animal models, heralding a novel therapeutic

paradigm for the amelioration of nephrolithiasis. In this review, we endeavor to

elucidate the contributory role of ROS in kidney stone and explore the protective

mechanisms by which certain antioxidants safeguard renal function.
KEYWORDS
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1 Introduction

Urolithiasis, a prevalent disorder within the urinary system, emerges as the third

most common urological affliction, trailing only behind urinary tract infections and

prostate-related disorders. This pathological state of biomineralization, primarily

manifesting within the renal system, is characterized by the crystallization and
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solidification of urinary constituents. The primary manifestation

of this condition, kidney stones, impinges upon approximately 10-

15% of the global populace (1). Existing literature delineates a

differential propensity for nephrolithiasis influenced by factors

such as gender, ethnicity, and geographic localization.

Contemporary studies underscore a notable ascendancy in

prevalence amongst females, a trend potentially ascribed to

shifts in dietary and lifestyle paradigms (2). Specifically, in

Eastern nations such as China and Japan, the embracement of

Western dietary practices, marked by elevated protein

consumption, correlates with an amplified incidence of

nephrolithiasis (3). Calcium oxalate (CaOx) stones, constituting

the quintessential component of urinary calculi, account for

upwards of 80% of all diagnosed cases (4). It is generally

believed that the formation process mainly includes urine

supersaturation, heterogeneous nucleation, crystal growth and

aggregation, and crystal adhesion and deposition in renal

tubular cell, though the precise mechanisms remain enigmatic.

Despite the advent of minimally invasive surgical interventions,

the recurrence of urinary stones persists at a formidable rate, with

a 50% recurrence within a five-year span and a potential surge to

75% over a decade, thereby levying substantial burdens upon

individuals and healthcare infrastructures alike (5). This backdrop

accentuates the imperative for the delineation and deployment of

efficacious therapeutic strategies for nephrolithiasis, with an

emphasis on minimizing adverse effects.

Recent research has elucidated a significant correlation between

the injury of RTCs, the insurgence of calcium oxalate (CaOx)

crystals presence, and the concomitant inflammatory responses

and stone formation, thereby illuminating their contributory role

in the pathophysiology of nephrolithiasis. A pivotal factor in this

process is the induction of oxidative stress (OS) through ROS,

which significantly contributes to stone formation. The injury of

RTCs membrane integrity engenders a conducive environment for

calcium crystal adhesion, thereby precipitating further stone

development. Oxidative stress typically results from an imbalance

between ROS production and antioxidant defenses. Under

physiological conditions, the levels of ROS production are low

and can be cleared by the endogenous antioxidant system. In

contrast, an overproduction of ROS, outstripping the scavenging

capacity of antioxidants, leads to oxidative stress, contributing to

stone development (6–8).

The origins of ROS within the human body are multifarious,

entailing the involvement of an array of signaling pathways. Recent

investigations suggest that modulating some of these pathways,

such as the MEK-ERK pathway and redox-sensitive pathways

implicated in viral infections, can reduce ROS levels in vivo,

correlating with diminished stone formation in animal models

(9). This review aims to dissect the role of ROS in the etiology of

nephrolithiasis and assess the potential of antioxidants as

therapeutic agents in the management of calcium oxalate kidney

stones, underpinning the prospective therapeutic ramifications of

oxidative stress mitigation in the prevention of stone recurrence.
Frontiers in Immunology 02
2 ROS

2.1 Definition and production pathway of
reactive oxygen species

ROS, including free radicals, atoms, or molecules with unpaired

electrons and their metabolites, comprise oxygen radicals like

superoxide anion radicals (O2•−) and hydroxyl radicals (•OH), as

well as non-radical oxidants such as hydrogen peroxide (H2O2) and

singlet oxygen (¹O2). ROS’s reactive nature facilitates its role in

various regulatory processes and signal transduction pathways.

These include regulating proliferation, activating or deactivating

biomolecules, and controlling transcriptional activity. However,

excessive ROS may cause harmful effects through oxidative

modifications of cellular components, particularly damaging

proteins, lipids, carbohydrates, and nucleotides (10).

The primary cellular sources of ROS include mitochondria and

NADPH oxidase (NOX) (7). The electron transport chain (ETC),

situated on the inner mitochondrial membrane (IMM), plays a

crucial role within mitochondria. NADH and FADH2 introduce

electrons into the ETC through complex I (CI) and complex II

(CII). Electrons then move from complex I (CI) and complex II

(CII) to complex III (CIII). Normally, electrons pass from CIII to

complex IV (CIV) and combine with oxygen to form water.

However, under specific conditions such as reduced oxygen levels,

diminished mitochondrial membrane potential(MMP), or impaired

mitochondrial function, electron transfer can become abnormal.

Abnormal electron transport may result in the return of electrons

from CIII to CI, which is known as reverse electron transfer (RET).

Reverse electron transfer results in a cyclic flow of electrons moving

back and forth between CI and CIII. During this cycle, interaction

of the electrons with oxygen generates superoxide anion (O2•−).

Subsequently, superoxide can undergo conversion into other forms

of ROS, like hydrogen peroxide (H2O2) (11) (Figure 1).

In the cytoplasm, NADPH oxidases (NOXs) are crucial in

maintaining cellular redox balance (12). The process begins with

glucose metabolism through glycolysis, yielding pyruvate as the end

product. This pyruvate is then transported to the mitochondria to enter

the tricarboxylic acid (TCA) cycle. This process generates reducing

equivalents, specifically NADH and FADH2, which subsequently enter

the mitochondrial electron transport chain for oxidative

phosphorylation. NOXs operate by facilitating the electron transfer

from NADPH to oxygen, resulting in the generation of superoxide.

This regulation of NOXs activity is controlled by transforming growth

factor b (TGF-b) (13). Notably, in vivo exposure of renal tubular cells to
oxalic acid triggers reactive oxygen species (ROS) production via the

TGF-b1-NADPH-ROS pathway (14). Moreover, ROS generated by

NOX can prompt mitochondrial ROS production, serving as a crucial

pathway for ROS amplification or propagation (15). Given the high

energy demands of the kidney, with its mitochondrial content and

oxygen consumption being second only to the heart, RTCs are

particularly vulnerable to damage from ROS imbalance, eventually

leading to crystal accumulation and aggregation.
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2.2 Physiological and pathological effects
of reactive oxygen species

The role of ROS as crucial signaling molecules in cell

proliferation and survival has been well established (16). At

physiological levels, ROS facilitate cell proliferation and

differentiation, making the maintenance of basal ROS levels

essential for normal cell growth and development (17). Moreover,

ROS act as signaling molecules that activate transcription factors

and upregulate the expression of protective genes such as

antioxidant enzymes, thus bolstering cellular resistance to

oxidative stress (18). Additionally, ROS also interact with

antioxidant molecules such as glutathione and peroxidase, playing

a vital role in regulating intracellular redox homeostasis and thereby

influencing cellular function. However, deviations from optimal

ROS levels, either excessively high or low, can lead to

detrimental effects.

Organisms have developed numerous antioxidant defense

systems to mitigate damage from ROS. These defenses include

non-enzymatic systems, such as vitamins C and E, carotenoids,

reduced glutathione, and polyphenols, and enzymatic systems like

superoxide dismutase (SOD), catalase (CAT), and glutathione

peroxidase (GPX). Together, these systems synergistically

safeguard cells against oxidative damage (19).
Frontiers in Immunology 03
3 The role of ROS in the formation of
calcium oxalate renal stones

It is now well-recognized that the injury to RTCs and

subsequent formation of stones attributed to oxalate is due to the

interaction of oxalate with the kidney generating ROS (20).

Oxidative stress (OS) is defined as a state of excessive oxidation

within an organism, primarily caused by either an overproduction

or inadequate clearance of ROS in response to harmful stimuli in

both the internal and external surroundings. This results in the

accumulation of ROS within the body or cells, leading to oxidative

damage and disruption of the body’s oxidative/antioxidant balance

system. It manifests as harm to cellular membranes, proteins, DNA,

and lipids (21).

Studies conducted in vitro on cells, in vivo on animals, and

clinical case studies have all shown that RTCs exposed to oxalate

and/or calcium oxalate crystals generate excessive ROS, triggering

oxidative stress and inflammatory reactions. Prolonged oxidative

stress exacerbates damage to these cells. As oxidative stress

continues to exacerbate damage to RTCs, the ability for

phosphatidylserine (PS), situated on the cell’s inner side, to move

outward increases and its ability to move inward decreases,

resulting in PS flipping to the cell surface. Phosphatidylserine

(PS), as a phospholipid of the renal tubular epithelial cell
FIGURE 1

Production of reactive oxygen species (ROS). The generation of reactive oxygen species (ROS) primarily originates from the oxidative respiratory
chains within mitochondria. Alterations in the internal environment, such as a decrease in the level of oxygen, mitochondrial membrane potential, or
mitochondrial function, trigger reverse electron transfer (RET), facilitating electron circulation between C I and C II. Ultimately, this process
culminates in the reaction of electrons with oxygen and subsequent ROS production.
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membrane that can adsorb crystals, flips to the cell surface,

enhancing the adhesiveness of stone crystals at the flipped sites (22).

Joshi et al. discovered that a diet high in oxalate causes increased

OS in the kidneys. They noted that under conditions of elevated

ROS levels, intracellular TXNIP (thioredoxin-interacting protein)

detaches from the antioxidant enzyme Trx1 (thioredoxin 1). This

detachment leads to the activation of NLRP3, mediated by TXNIP

(23). Activating the NLRP3 inflammasome releases inflammatory

factors such as IL-1b and IL-18, triggering an inflammatory

response. This response causes damage and necrosis in RTECs,

setting the stage for CaOx stone formation (24). And increased ROS

production can lower MMP, potentially causing mitochondrial and

lysosomal dysfunction. This dysfunction can impair macrophages’

phagocytosis, reducing their capacity to eliminate calcium oxalate

crystals during stone formation. Consequently, this can further

encourage stone formation (25) (Figure 2A).

Additionally, Wiger et al. discovered that high ROS levels

increase AP-1 (activator protein-1) and NF-kB (nuclear factor

kB) levels, subsequently increasing the expression of matrix

metalloproteinases (MMPs). MMPs, crucial components of the

extracellular matrix (ECM), serve as effective crystal-binding

molecules that play a significant role in the adhesion,

internalization, and eventual formation of renal stones. Notably,
Frontiers in Immunology 04
MMP-9 facilitates dendritic cell migration, triggers the cleavage of

the E-calmodulin receptor CD103 on dendritic cells, and

encourages epithelial-mesenchymal transition, leading to

sediment adhesion and aggregation. Additionally, MMP-9’s

activity in degrading collagen and osteoblast cleavage products

enhances inflammatory cell recruitment, a process linked to

kidney stone development (3) (Figure 2B).

Furthermore, Under physiological conditions, urinary proteins

including osteopontin and uromodulin (Tamm-Horsfall protein)

inhibit kidney stone formation and support renal function (26, 27).

However, elevated reactive oxygen species (ROS) under oxidative

stress induce oxidative modifications of these protective proteins.

Such redox alterations enhance calcium oxalate crystallization

processes by promoting crystal nucleation, growth, and

aggregation, thereby increasing lithogenic risk (28).

Tight junctions serve as crucial barriers in renal tubular

epithel ia l cel ls , preventing the entry of water , ions,

macromolecules, and pathogens into the renal tubules through

the spaces between cells. Impairment of these tight junctions can

obstruct intercellular channels, leading to damage of tubular

epithelial cells and inciting inflammatory responses. This damage

facilitates the accumulation of kidney stones within the tubules.

Additionally, excessive production of ROS can degrade and
FIGURE 2

Exposure to oxalate and/or calcium oxalate crystals triggers renal tubular epithelial cells to produce excess reactive oxygen species (ROS), leading to
oxidative stress (OS) and inflammatory responses. This process is driven by several molecular mechanisms: (A) Activation of the NLRP3
inflammasome releases inflammatory factors, worsening tubular epithelial damage. (B) Elevated ROS levels upregulate MMP-9 expression, increasing
crystal adherence.
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redistribute tight junction proteins, such as ZO-1 and occludin, via

the Akt/ASK1/p38 MAPK signaling pathway. This disruption of

tight junction integrity contributes to stone formation (29).

Furthermore, the membranes of RTCs predominantly consist of

phospholipids with unsaturated fatty acids. ROS have a high affinity

for the unsaturated bonds in these fatty acids, leading to lipid

peroxidation. This oxidative damage impairs the RTCs and enhance

the adhesiveness of calcium oxalate stones to these cells.

Consequently, this enhances the aggregation, nucleation, and

growth of stone crystals in the kidneys.
4 Antioxidant

4.1 Sources and classification of
antioxidants

Antioxidants are compounds that inhibit the oxidation of other

compounds. The process of oxidation involves the transfer of

electrons from a substance to an oxidizing agent, resulting in the

generation of free radicals that initiate a cascade reaction. When this

chain reaction occurs within a cell, it results in cellular damage or

apoptosis. Antioxidants’ role is to eliminate free radicals, terminate

chain reactions, and inhibit further oxidative reactions, while they

themselves are oxidized (30, 31).

Antioxidants are abundant in daily life, with major sources

including endogenously synthesized antioxidants, such as water-

soluble and lipid-soluble antioxidants and antioxidative enzymes;

natural antioxidants from food, such as various types of flavonoids,

flavanols, anthocyanins, etc.; and common synthetic antioxidants

such as butyl hydroxybenzoate (BHA), butylated hydroxytoluene

(BHT), EDTA, etc. (32). Antioxidants are categorized into

enzymatic antioxidants (including superoxide dismutase (SOD),

catalase (CAT), glutathione peroxidase (GPx), and thioredoxin

(Trx) systems) and non-enzymatic antioxidants (such as flavanes,

phenols, and carotenoids) (33). Additionally, certain minerals like

selenium and zinc function as antioxidants. These minerals are

crucial components of antioxidant enzymes and are essential for

maintaining their activity.
4.2 Mechanisms of antioxidant action

Antioxidants play a crucial role in the body by inhibiting

oxidative reactions and reducing cellular damage. They can

protect cell membranes; for example, vitamin E acts as a peroxide

scavenger, capturing peroxyl free radicals to halt free radical chain

reactions, which helps prevent lipid peroxidation (34). Rachel et al.

demonstrated that antioxidants like superoxide dismutase (SOD)

can convert superoxide into oxygen and hydrogen peroxide, thereby

protecting cells against harm caused by free radicals (35).

Moreover, antioxidants affect various biological processes,

including apoptosis, inflammation, and immune responses. For
Frontiers in Immunology 05
instance, vitamin C can inhibit endothelial cell oxidative stress

induced by tumor necrosis factor-alpha (TNF-a), thus protecting

vascular endothelial cells from damage (36). Additionally, phenolic

compounds, another type of antioxidant, can halt the propagation of

free radicals by exchanging protons with them (37). Furthermore,

antioxidants can modulate the activity of inflammation-related

transcription factors like NF-kB, thereby diminishing inflammatory

responses (38). They also regulate the activity of other transcription

factors such as AP-1, Sp-1, affecting gene expression (39).

While antioxidants offer numerous benefits to the body, it’s

important to be mindful of their dual effects. At low concentrations,

antioxidants protect against oxidative cell damage; however, at high

concentrations, they may become toxic and disrupt cellular redox

balance. Additionally, antioxidants can chelating metal ions,

reducing their oxidizing capacity. Yet, this interaction might also

result in increased levels of reactive hydroperoxides from these ions,

eventually generating harmful free radicals (40). Consequently, the

exploration and application of antioxidants in therapeutic contexts

present significant challenges that need to be addressed.
5 The role of antioxidants in the
treatment of kidney stones

5.1 The role of SOD in the treatment of
kidney stones

Superoxide Dismutase (SOD) is a crucial antioxidant enzyme in

cells, playing a pivotal role in shielding them from oxidative stress

damage (41). There are three types of SOD: Cu/Zn-SOD (SOD1)

found primarily in the cytoplasm, Mn-SOD (SOD2) located in

mitochondria, and EC-SOD (SOD3) present in the extracellular

matrix of mammalian tissues (42, 43). SOD1 catalyzes the reaction

between superoxide (O2•−) and hydroperoxide (H2O2), aiding in

the reduction of intracellular superoxide levels (44). SOD2 helps

maintain intracellular redox balance by countering oxidative stress

in mitochondria (45). They differ in their genetic structure,

evolution, and expression patterns. These enzymes play a crucial

role in organisms by helping to maintain oxidative balance and

protect cells from the effects of oxidative stress.

Kang et al. discovered that increasing SOD activity significantly

lowers the incidence of kidney stone formation and kidney injury,

highlighting SOD’s ability to inhibit autophagy and endoplasmic

stress response (46).The process of kidney stone formation is highly

intricate, such as mitochondrial dysfunction, which disrupts energy

metabolism, intracellular calcium ion balance, and the antioxidative

defense system, and can lead to tubular cell damage, apoptosis, and

the formation of stones through the combination of cellular

inclusions and mitochondrial debris with calcium oxalate crystals

in the tubular lumen (47). Antioxidant supplementation, by

restoring the enzymatic activities of SOD, catalase (CAT),

glutathione peroxidase, and glutathione (GSH), can prevent or

mitigate the severity of stone deposits (48). Therefore, SOD,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1540075
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ying et al. 10.3389/fimmu.2025.1540075
particularly Mn-SOD in mitochondria, plays a critical protective

role against kidney stone formation.
5.2 The role of vitamin E in the treatment
of kidney stones

Vitamin E, a fat-soluble antioxidant, plays a critical role in

protecting polyunsaturated fatty acids within cell membranes from

oxidative damage, thereby preserving cell membrane integrity (49).

Known for its potent antioxidative properties, vitamin E counters free

radical damage and has shown potential benefits in a range of diseases,

including cancer, cataracts, Alzheimer’s disease, asthma, allergies, and

diabetes. Specifically, Thamilselvan et al. demonstrated that vitamin E

therapy can prevent calcium oxalate crystal deposition in the kidneys

induced by hyperoxaluria, enhancing the antioxidant status of renal

tissues (50). By trapping free radicals, vitamin E reduces their cytotoxic

effects, which in turn helps protect cells from oxidative harm and may

inhibit the attachment of calcium oxide apatite crystals, thereby

preventing kidney stone formation (51). Furthermore, vitamin E is

suggested to have a protective role in progressive renal failure,

especially as oxidative stress exacerbates the progression of chronic

inflammatory nephropathy (52).
5.3 The role of tea polyphenols in the
treatment of kidney stones

Tea contains a collection of polycyclic phenolic compounds

known as tea polyphenols, primarily consist of flavanols like

catechins, along with flavan derivatives such as theaflavins (TF)

and thearubigins (TR) (53). These compounds function as

antioxidants by donating hydrogen atoms to inhibit free radical

production, thus protecting cells from oxidative damage (54).

Research has found that NF-kB can regulate the expression of

genes encoding adhesion molecules, COX-2, and inflammatory

cytokines (such as TNF-a, IL-6, and CRP). These factors

contribute to kidney stone formation by activating NADPH

oxidase, which stimulates ROS production and impairs endothelial

function through a vicious cycle mechanism [2]. Tea polyphenols

counteract this by enhancing cellular antioxidant defenses,

stimulating the Nrf2-Keap1-ARE signaling pathway, while

suppressing the NF-kB signaling pathway (55). Catechins, the main

substances in tea polyphenols, trap free radicals, thereby preventing

oxidative stress-induced cellular damage. Their protective effect

extends to inhibiting apoptosis caused by oxidative stress and

chelating metal ions like copper and iron to reduce free radical

production (56). Furthermore, Ye et al. found that theaflavins can up-

regulate the expression of SIRT1, attenuating oxidative stress injury

in the kidney induced by calcium oxalate. This phenomenon is partly

attributed to the suppression of miR-128-3p, which normally

suppresses SIRT1, suggesting new potential therapeutic targets for

calcium oxalate kidney stones (57).
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5.4 The role of sulforaphane in the
treatment of kidney stones

SFN (sulforaphane), is an isothiocyanate produced through

glucosidase hydrolysis in cruciferous plants, known for its

antioxidant properties (58). Nrf2 is a key transcription factor in

the oxidative stress response, binding to the antioxidant response

element (ARE) in the promoter regions of cytoprotective genes.

Normally, nuclear factor erythroid 2-related factor 2 (Nrf2) is

regulated by the Keap1 complex and degraded in the cytoplasm.

However, under oxidative stress, Nrf2 dissociates from Keap1,

avoiding degradation. This stabilized Nrf2 then enters the

nucleus, forms heterodimers with Maf protein, and activates

genes associated with antioxidant and detoxification by binding to

AREs. This action reduces ROS levels and alleviates renal damage

caused by oxidative stress (59) (Figure 3).

Liu et al. found that SFN significantly lowers Toll-like receptor 4

(TLR4) and interferon regulatory factor 1 (IRF1) levels in a CaOx

kidney stone model by activating Nrf2. This activation promotes

M2 macrophage activation, which can help reduce renal

inflammatory injury and aid in preventing kidney stones (60).

Additionally, SFN has been noted to encourage mitochondrial

biogenesis through the Nrf2-PGC-1a (peroxisome proliferator-

activated receptor gamma cofactor 1a) signaling pathway. This

enhances mitochondrial number and function in reaction to

damage caused by OS (61).
6 Conclusion

The link between ROS and the formation of CaOx has led to

deep reflection on the pathogenesis of urinary stones. First, the

presence of ROS may be a primary driving factor of oxidative stress

in the urinary system. Their highly reactive nature allows

interactions with in vivo biomolecules, leading to oxidative

damage and inflammatory responses (62). These effects can

intensify the crystallization of calcium oxalate in urine, thus

creating conducive conditions for stone formation (63). Secondly,

the relationship between ROS and the formation of urinary stones

highlights the key role of redox balance in maintaining urinary

stability and preventing stone formation. Oxidative stress disturbs

this balance, creating an unstable cellular environment that can

damage DNA, proteins, and lipids, as well as cause inflammation

and harm to renal epithelial cells (64). Increased oxidative stress

also results in heightened urinary solute supersaturation, a key

factor in kidney stone formation (65).

Further research indicates that dietary and lifestyle factors

significantly influence the generation and elimination of ROS.

Habits such as smoking, excessive alcohol consumption, and

having a sedentary lifestyle can lead to OS, which is an imbalance

between the production of ROS and the body’s antioxidant defenses

(66). Diets high in salt and fat, low in fiber, along with insufficient
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physical activity and other poor lifestyle habits, may exacerbate this

stress, thus heightening the risk of calcium oxalate stones (67, 68).

For those predisposed to stone formation, dietary and lifestyle

modifications can be crucial in reducing ROS levels and the

associated risk (69).

Additionally, the ROS-urinary stone connection offers insights

for new therapeutic approaches. Exploring the potential of ROS

scavengers or antioxidants in preventing and treating CaOx holds

promise for innovative clinical treatment directions. This

therapeutic strategy, by alleviating oxidative stress and blocking

key stages in stone formation, could offer more effective and

personalized treatment options for patients.

Antioxidants, compounds that aid in the elimination of ROS,

have wide-ranging prospects for kidney health maintenance. Firstly,

various antioxidants like vitamin E, flavonoids, and polyphenols

have demonstrated efficacy in counteracting oxidative stress and

reducing its impact on the body (70). By scavenging free radicals

and other reactive oxygen molecules, antioxidants help to minimize

oxidative harm to nucleic acids, proteins, and cell membranes, thus

preserving the structural and functional integrity of kidney cells.

Secondly, antioxidants may play a positive role in inhibiting

inflammatory responses (71). Inflammation is an essential
Frontiers in Immunology 07
element in the progression of renal diseases, and antioxidants

could potentially alleviate the extent of renal tissue damage by

dampening the inflammation induced by oxidative stress (72).

Furthermore, antioxidants may positively influence renal vascular

health (73). Since oxidative stress is associated with vascular

dysfunction, the application of antioxidants could protect the

renal microcirculation by maintaining endothelial function and

reducing vascular permeability, thereby helping to prevent some

vascular complications related to kidney diseases.

Antioxidants hold significant potential in promoting kidney

health. By improving the effectiveness of the body’s antioxidant

defense system, antioxidants are expected to mitigate cell damage

and inhibit inflammatory responses, thereby slowing the formation of

CaOx. Future research should aim to unravel the specific mechanisms

of various antioxidants in the kidney, focusing on their influence on

cell signaling pathways, gene expression, and the modulation of

inflammatory mediators. This will help clarify the precise impact of

antioxidants on kidney health. Additionally, detailed investigations

into how ROS contribute to the formation of calcium oxalate stones

are essential. These studies will offer a more comprehensive view of

the impact of oxidative stress on the urinary tract system and aid in

the development of precise and targeted interventions.
FIGURE 3

Under normal physiological conditions, the Keap1 complex binds to Nrf2, promoting its ubiquitination and subsequent degradation by the 26S
proteasome. However, oxidative stress alters specific cysteine residues in Keap1, causing a conformational change that disrupts Nrf2 ubiquitination.
This allows Nrf2 to translocate to the nucleus and bind to the antioxidant response element (ARE) of target genes via heterodimerization with sMAF
protein, inducing the expression of cellular protective genes.
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