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Among various pathogens, viruses pose significant threats to the livestock and

poultry industry, resulting in substantial annual costs due to production losses

and vaccination. The MHC-I presentation pathway is a crucial surveillance

mechanism for preventing viral infections. Consequently, many viruses have

evolved sophisticated strategies to inhibit the presentation of viral peptides by

MHC-I to CD8+ T-cells, thereby evading the immune system. Understanding the

mechanisms that suppress the MHC-I pathway and identifying specific binding

peptides are essential for comprehending viral immune evasion and developing

effective animal vaccines. This review summarizes the viral strategies for evading

immune recognition, including the inhibition of MHC-I molecules synthesis,

degradation, transport, and assembly, which affect MHC-I surface expression

during viral infections. We also present evidence that MHC-I surface expression is

frequently lost during numerous viral infections in livestock and poultry and offer

new insights into the underlying mechanisms through which viruses inactivate

the MHC-I antigen presentation pathway. Collectively, these advanced findings

on viral evasion from the MHC-I pathway could inform the development of more

effectives strategies to restore immunological control over viral infections and

improve vaccines for the livestock and poultry industry.
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MHC-I, adaptive immune responses, immune evasion, MHC-I assembly, MHC-I
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1 MHC-I is the key to promoting
cellular immunity during antiviral
infections

The Major Histocompatibility Complex (MHC) is a set of genes

extensively studied for its critical roles in adaptive immunity. MHC

initiates the adaptive immune response by presenting peptides to T

cells across various pathological conditions, including pathogen

infections, cancers, and autoimmune disease. MHC class I (MHC-I)

molecules specifically present peptides to the T cell receptor of

CD8+ T-cells, whereas MHC class II (MHC-II) molecules present

peptides to CD4+ T-cells. Cytotoxic CD8+ T-cells are crucial

components of the cellular immune response, playing significant

roles in controlling viral infections. During viral replication, viral

proteins are processed into small peptides by the proteasome. These

peptides are transported to the endoplasmic reticulum (ER) lumen

by the transporter associated with antigen processing (TAP), a

member of the ATP-binding cassette (ABC) transporter family.

Within the ER, virus-derived peptides may undergo further

trimming by endoplasmic reticulum aminopeptidase 1 (ERAP1)

and ERAP2 (1–3). Subsequently, these peptides associate with

MHC-I molecules via the peptide-loading complex (PLC), which

includes tapasin, TAP, calreticulin, and ERP57 (4). Alternatively,

TAP-binding protein related (TAPBPR), not incorporated into the

PLC, can also assist in this process (5). After assembly in the ER,

MHC-I-peptide complexes travel to the Golgi apparatus and are

transported to the cell surface via the secretory pathway, where they

can be recognized by receptors on CD8+ T-cells, leading to

apoptosis of infected cells (6). Both human and animal MHC-I

contain a-chain + b2 microglobulins that form an antigen-binding

groove and present endogenous short peptides (8-11aa), which

deliver antigens to CD8+ T cells, triggering an immune response.

Differences include extremely high HLA-I polymorphism (>20,000

alleles) in humans and lower in animals (e.g., mouse H-2), as well as

a preference for hydrophobic peptides in human TAPs and

positively charged residues in mice (7). The MHC-I-mediated

antigen presentation pathway is a major component of antiviral

immunity, thus protecting organisms against viral infections.

MHC-I is a “safety label” for NK cells, and its normal expression

inhibits NK cell activation, while its absence or abnormality triggers

killing. The dynamic balance between the two maintains immune

homeostasis and provides a key target for anti-tumor and anti-

infection therapy (8).
2 MHC-I is the target molecule for
virus escape

Given the pivotal role of MHC-I in antiviral immunity, it is

unsurprising that the MHC-I-restricted antigen presentation

pathway is a frequent target for viral immune evasion. This is

evident from the close association between MHC-I surface

expression and the adaptive immune response to virus-infected

cells. Previous studies have reported that many viruses reduce
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MHC-I surface expression to evade T cell recognition (9–11).

Mechanisms such as inhibition of proteasome function, TAP-

mediated transport, retention of MHC-I in the ER, and

interference with MHC-I synthesis and degradation regulate

MHC-I surface expression. For instance, herpesviruses express

numerous proteins that degrade MHC-I and inhibition TAP,

thereby reducing MHC-I surface expression (12, 13). Influenza A

or B virus infection causes a pronounced reduction in surface

MHC-I expression in the late stages of infection through

regulating proteasomal degradation and endocytosis of surface

MHC-I, respectively (14). Viruses commonly manipulate multiple

processes of the MHC-I presentation pathway to limit surface

expression and evade immune recognition. This may explain why

some vaccination programs fail to provide satisfactory protection

against viral infection and clinical diseases. Elucidating the precise

mechanisms underlying their interference with MHC-I dependent

antigen presentation could be crucial for identifying responsible

genes and designing improved vaccines. Designing vaccines can

incorporate NK cell activation because NK cells are activated when

MHC-I is down-regulated, so vaccines can be designed to stimulate

both T cell and NK cell responses, such as adjuvants containing NK

cell-activating ligands (15).
3 Viruses modulate the MHC-I
processing pathway to achieve
immune evasion

Viruses have evolved sophisticated strategies to prevent the

presentation of viral peptides by MHC-I to CD8+ T-cells by co-

evolving one or more gene products to interfere with MHC-I

antigen processing. In the course of evolution, viruses have

acquired abilities to regulate MHC-I degradation, inhibit MHC-I

transcription, block TAP-mediated peptide transport, trap MHC-I

molecules in intracellular compartments, interfere with chaperone-

facilitated peptide loading, or rapidly reinternalize pMHC-I

complexes, thereby evading the immune surveillance. In this part,

we summarize the viral immune evasion mechanisms (Figures 1, 2),

including regulation of MHC-I synthesis and degradation, MHC-I

transport, and MHC-I assembly. These insights contribute to the

understanding how viruses modify MHC-I for immune evasion and

aid in developing therapies and vaccines against viruses.
3.1 Regulation of MHC-I synthesis and
degradation

3.1.1 Inhibition of MHC-I synthesis by shutdown
of host gene expression

Many viruses have been found to induce the shutdown of host

gene expression, a strategy known as host shutoff, to modulate

cellular machinery and evade host immunity (16). There is

substantial evidence that some viruses can lead to dramatic

downregulation of MHC-I expression at the cell surface through a

general shutdown of host-cell protein synthesis (17). It has been
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reported that downregulation of MHC-I occurs as early as 3 h post

bovine herpesvirus 1 (BHV1) infection and reaches a maximum

level at 8 h post BHV1 infection, partly attributed to the virion host

shut-off (vhs) protein (18).

3.1.2 Transcriptional regulation of MHC-I genes
The tight regulation of genes encoding MHC-I is crucial for the

adaptive immune response. NLRC5, a member of the NOD-like

receptor (NLR) protein family, has been recently discovered to play

a crucial role in the regulation of MHC-I transcription both in vivo

and in vitro (19–21). NLRC5 acts as a novel MHC-I transactivator

(CITA) and forms an enhanceosome with the transcription factors

at the promotor of MHC-I, such as the RFX complex, to induce

MHC-I gene expression (22). These findings reveal that NLRC5-

mediated expression of MHC-I molecules plays a vital role in

modulating MHC-I antigen presentation. Recently, considerable

evidence has shown that NLRC5/MHC-I transactivators constitute

a target for immune evasion in cancer (23). However, little

information is known about its association with viral immune

evasion mechanisms, except for a study by Yoo et al, which finds

that the SARS-CoV-2 ORF6 protein inhibits the induction of the

MHC-I presentation pathway through direct suppression of the

CITA function of NLRC5 via preventing NLRC5 nuclear

importation (24).

3.1.3 Viral modulation of MHC-I function through
post-translational modifications

Viruses can alter the post-translational modifications (PTMs) of

MHC-I molecules to disrupt their stability, trafficking, and antigen-
Frontiers in Immunology 03
presenting capacity. SARS-CoV-2 infection exemplifies this strategy

by inducing allele-specific changes in the glycosylation patterns and

abundance of human leukocyte antigen (HLA) class I molecules.

Integrated immunopeptidomics and glycoproteomics analyses

revealed that SARS-CoV-2 infection dynamically modifies the

glycosylation o HLA proteins, particularly those associated with

antigen-free intracellular pools. For instance: SARS-CoV-2

infection increases mono-glucosylated glycopeptides [e.g., Hex

(10) HexNAc (2)] on HLA-C*15:02, indicative of improper

folding and endoplasmic reticulum (ER) retention. These aberrant

glycans are enriched in intracellular HLA pools, suggesting

impaired trafficking to the cell surface (25).

3.1.4 Regulating MHC-I endocytosis for
internalization and lysosomal degradation

Endocytosis is a complex process, which is a process of

transporting substances outside the cell into the cell through the

deformation movement of the plasma membrane (26). It has been

found that endocytosis plays a crucial role in the regulation of

antigen presentation. Previous studies have shown that several

members of alphaherpesvirus induce MHC-I downregulation

through endocytosis. Human herpesvirus-8 (HHV8) has been

shown to downregulate the cell surface display of MHC-I (27).

To further identify the functional genes responsible for MHC-I

downregulation, it was found that K3 and K5 enhance endocytosis

and direct internalize of MHC-I molecules to endolysosomal

vesicles for degradation (28). It has been found that infection

with equine herpesvirus-1 (EHV1) results in enhanced

endocytosis of MHC-I molecules from the cell surface of an
FIGURE 1

Viral strategies to prevent viral peptides presentation. The present diagram summarizes the viral strategies of evading MHC-I presentation, mainly
including inhibiting MHC-I molecules synthesis and degradation, MHC-I transport, and MHC-I assembly to affect the MHC-I surface expression,
which are frequent occurrence during viral immune evasion.
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equine skin fibroblast cell line, thereby leading to downregulation of

MHC-I at the cell surface (29).

3.1.5 Targeting MHC-I for endoplasmic
reticulum-associated degradation

Endoplasmic reticulum-associated degradation (ERAD) is a

conserved cellular quality control system that ensures the removal

of misfolded or unassembled proteins from the ER. This process

involves three key steps (1): recognition and tagging of aberrant

proteins by chaperones and ubiquitin ligases, (2) retrotranslocation

(dislocation) of the substrate from the ER lumen to the cytoplasm,

and (3) proteasomal degradation following polyubiquitination. The

ubiquitin-proteasome system plays a central role, as ERAD substrates

are covalently modified with ubiquitin chains, which serve as signals

for extraction and subsequent degradationER-associated degradation

(ERAD) (30). Interestingly, some viruses hijack mammalian ERAD

machinery to target MHC-I for proteasomal degradation in the

cytoplasm (31). For example, human cytomegalovirus (HCMV)

encodes glycoproteins US2 and US11, which redirect ERAD
Frontiers in Immunology 04
components to degrade major histocompatibility complex class I

heavy chains (MHC-I HCs). These viral proteins bind newly

synthesized MHC-I HCs in the ER shortly after infection,

triggering their rapid ubiquitination. This step critically depends on

ER-resident E3 ubiquitin ligases, such as TRC8 and TMEM129,

which conjugate ubiquitin to MHC-I HCs (31). Following

ubiquitination, US2/US11 facilitate the retrotranslocation of MHC-

I HCs from the ER lumen to the cytoplasm—a process typically

reserved for misfolded host proteins. Once in the cytoplasm, the

MHC-I HCs undergo deglycosylation by N-glycanase (PNGase) and

are rapidly degraded by the 26S proteasome. Remarkably, this viral

strategy reduces the half-life of MHC-I HCs to 1–10 minutes,

effectively preventing their cell surface expression and subsequent

antigen presentation to cytotoxic T cells (32). These findings

highlight the dual role of ERAD: while it primarily safeguards ER

proteostasis, pathogens like HCMV co-opt this pathway to

undermine adaptive immunity. Understanding how viral proteins

interface with ERAD components provides insights into immune

evasion mechanisms and potential therapeutic targets.
FIGURE 2

Mechanisms underlying the interaction between viruses and MHC-I pathway. After virus infection, viral proteins are processed into small peptides by
the proteasome. The resulting viral peptides are transported to the lumen of ER through TAP. In the ER, the peptides are selected and then loaded
on to the peptide binding groove of MHC-I complex to form the heterotrimeric MHC-I complex (pMHC-I). After assembly in ER, the pMHC-I then
travels to Golgi apparatus and subsequently transport to the cell surface following secretory pathway, where they can be recognized by TCR on
CD8+ T-cells. These viruses are commonly found to reduce the surface expression of MHC-I, while only a part of them are further identified to
interfere with some events during the antigen processing. BPV suppresses the expression of MHC-I molecules, and also induces the proteasomal
and lysosomal degradation of MHC-I molecules. Besides, BVDV causes reduction in expression of many proteins associated with MHC-I,
endocytosis, and TAP. PRV, BHV1, CPXV, and MDV are demonstrated to inhibit the TAP functions to block peptides translocation into ER. CPXV
causes retaining of MHC-I in ER, while BPV and ORFV causes MHC-I retaining in Golgi. ASFV impairs the exocytosis process of MHC-I to prevent the
MHC-I membrane expression. Moreover, PDCoV upregulates the MHC-I surface expression via upregulating NLRC5 expression.
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3.1.6 Rerouting MHC-I to lysosomes for
degradation

Human immunodeficiency virus (HIV)-1 Nef disrupts the

transport of MHC-I by rerouting newly synthesized MHC-I from

the trans-Golgi network (TGN) to lysosomal compartments for

degradation (33). Adaptor protein (AP)-1 is a cellular protein

complex that has been identified to be implicated in TGN to

endolysosomal pathways. The ability of HIV-1 Nef to disrupt

MHC-I trafficking is dependent on the expression of the mu1

subunit of AP-1 (34). It has been found that herpesviral protein

pUL56 cooperates with pUL43 and participates in the

downregulation of cell surface MHC-I to achieve immune evasion

(35). The pUL43 is localized within Golgi vesicles, and lysosomes

are responsible for degradation of pUL43. Cell surface expression of

MHC-I is reduced in pUL43 and pUL56 co-expressing cells, and the

rerouting of vesicles containing pUL43, pUL56, and MHC-I to the

lysosomal compartment is observed (36). In addition, the

transmembrane proteins pUL56 and pUL43 of Marek’s disease

virus (MDV) interfere with the host’s MHC-I antigen presentation

pathway through a synergistic effect, thereby suppressing the

cellular immune response. Studies have shown that pUL56

promotes the degradation of host MHC-I molecules in lysosomes

via a clathrin-dependent endocytosis pathway, while pUL43 may

further inhibit the synthesis or surface expression of MHC-I (37). In

summary, pUL43 and pUL56 drive the sorting of MHC-I for

lysosomal degradation.
3.2 Viral disruption of MHC-I assembly and
trafficking

3.2.1 Retention of MHC-I in early secretory
compartments

The ER-Golgi intermediate compartment (ERGIC) serves as a

transient hub for cargo transport from the endoplasmic reticulum

(ER) to the Golgi apparatus (38). Viruses exploit this pathway to

block MHC-I surface expression. For instance, the m152-encoded

gp40 protein from mouse cytomegalovirus (MCMV) binds MHC-I

molecules, retaining them in the ER, ERGIC, or cis-Golgi via

retrograde retrieval. Additionally, CPXV203 from cowpox virus

sequesters MHC-I in the ER under Golgi-like acidic conditions by

binding with pH-dependent affinity (39).
3.2.2 Targeting the TAP complex for antigen
processing disruption

The transporter associated with antigen processing (TAP),

composed of TAP1 and TAP2, transports cytosolic peptides into

the ER for MHC-I loading (40). Viruses disrupt TAP through

diverse strategies. BoHV-1 UL49.5 triggers TAP degradation via the

proteasome (41). Equine herpesvirus UL49.5 blocks ATP binding to

TAP, halting peptide translocation (42, 43). Herpesviruses ICP47

binds TAP to inhibit peptide binding and ATP hydrolysis (44).

Human cytomegalovirus (HCMV) US6 prevents ATP binding and

conformational changes in TAP, blocking peptide transport.
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3.2.3 Inhibition of MHC-I assembly via tapasin
subversion

MHC-I assembly in the ER requires tapasin, a chaperone within

the peptide-loading complex (PLC) that stabilizes MHC-I and

optimizes peptide binding. Viruses disrupt this process by

different strategies. HCMV US3 binds tapasin to inhibit peptide

loading, causing MHC-I retention in the ER. Molluscum

contagiosum virus MC80 induces tapasin ubiquitination and

degradation, leading to TAP loss and impaired peptide delivery.

HCMV infection suppresses tapasin synthesis, destabilizing the

PLC and MHC-I assembly.
3.3 Others

It appears that an ATP/ubiquitination/proteasome-dependent

mechanism is responsible for the proteasome degradation of the

majority of antigens presented by the MHC-I pathway. An

increasing body of evidence indicates resistance of viral proteins

to this proteasome degradation system. The Epstein–Barr virus

(EBV)-encoded nuclear antigen (EBNA) 1 was shown to inhibit the

presentation of MHC-I since it is resistant to ATP-dependent

degradation (45). Thus, resisting proteasomal degradation may be

another strategy for blocking the MHC-I pathway. Viral infections

can induce host cell apoptosis or necrosis, which in turn affects the

expression and function of MHC-I molecules. In a study byWu et al

(46), goose nephritic astrovirus (GNAstV) infection led to the

degeneration and necrosis of splenic lymphocytes and renal

epithelial cells. Conversely, during avian influenza virus (AIV)

infections, the PB1-F2 protein of low pathogenicity H7N7 was

found to restrict apoptosis in avian cells, thereby prolonging the

survival of infected cells (47). Recent studies have also

demonstrated that herpesviruses have evolved another immune

evasion strategy: epitope evasion through the depletion of high-

affinity peptides that fit into the MHC I binding cleft (48).
4 Interaction between MHC-I and
viruses in livestock and poultry

Infectious diseases, caused by pathogenic microorganisms, are

major factors limiting productivity and causing severe economic

loss in the global livestock and poultry industry. Among these

pathogens, viruses pose a significant threat to the livestock and

poultry industry due to annual costs associated with production

losses and vaccination. Viral infection triggers a series of innate and

adaptive immune responses in the host. It is well established that

MHC-I molecules play a crucial role in antiviral immunity by

presenting intracellular antigens to CD8+ T-cells and enabling the

elimination of virus-infected cells by natural killer cells. The CD8+ t

cells are the core effector cells of adaptive immunity, functioning by

specifically recognizing and killing abnormal cells, and the nk cells

are part of the innate immune system, with a rapid, non-specific

killing capacity, both of which have unique and complementary

functions that are essential for protection against infection.
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Therefore, the identification of MHC-I binding peptides has been

utilized in the design of peptide vaccines for therapeutic

applications targeting pathogen-specific immunity in animals.

MHC-I conjugate peptide vaccines have high safety and

individualized therapeutic potential by targeting specific antigenic

epitopes to activate CD8+ T cells, but their application is limited by

insufficient MHC polymorphisms and immunogenicity, and they

need to be combined with adjuvants, novel delivery technologies, or

combination immunotherapies to enhance clinical efficacy. This

chapter aims to give an overview of the mechanisms underlying the

roles of MHC-I in antiviral immunity and viral immune evasion

among viruses affecting livestock and poultry (summarized in

Table 1). These data could advance our understanding of how

these viruses manipulate MHC-I molecules and might help inform

the development of therapies and vaccines against these viruses.
4.1 Porcine reproductive and respiratory
syndrome virus

PRRSV is one of the most relevant porcine pathogens

worldwide, affecting the swine industry in most swine-producing

countries (49). It has been documented that PRRSV can evade host

defense mechanisms during the early stages of infection, as

evidenced by a delay in the development of effective immunity in

both infected and vaccinated pigs. To explore this mechanism,

changes in phenotypic and functional properties of bone marrow-

derived immature DCs (BM-imDCs) have been examined following

PRRSV infection (50). The percentage of cells expressing MHC-I in

BM-imDCs infected with PRRSV is significantly decreased
Frontiers in Immunology 06
compared to mock-infected controls at 48 h post-infection, along

with an increase in the expression of CD80/CD86 on the cell

surfaces. Thus, PRRSV infection results in the downregulation of

MHC-I expression in BM-imDCs, which might help the virus evade

detection and destruction by cytotoxic T-cells. Furthermore,

PRRSV also causes a downregulation of MHC-I expression in

lung dendritic cells (L-DCs) (51).
4.2 Foot-and-mouth disease virus

FMDV is a picornavirus that causes a highly contagious and

rapidly spreading disease in cloven-hooved animals. Previously,

researchers found that FMDV infection of epithelial cell lines,

including porcine kidney cells (PK-15 and ESK-4), result in a

rapid reduction of MHC-I surface expression to approximately

70% at 3 h post-infection, which renders the FMDV-infected cells

unable to present viral peptides to T lymphocytes, aiding virus

evasion (52, 53). FMDV has evolved to target epithelial cells as its

main target for efficient replication and dissemination. FMDV-

infected DCs have been demonstrated to induce the production of

IFN-g, which is an important regulator responsible for sustaining

MHC-I presentation (54). Researchers found that the percentages of

MHC-I increased in FMDV-infected DCs at 24 h post-infection

(55). The ERK1/ERK2 pathway is involved in this modulation of

MHC-I presentation.ERK1/2 regulates MHC-I antigen presentation

at multiple levels, including gene transcription, antigen processing,

interferon synergism, and endoplasmic reticulum assembly, and its

activity directly affects the immune surveillance function of CD8+ T

cells. Targeting ERK signaling may provide strategies to enhance
TABLE 1 Mechanisms underlying viruses interfering with MHC-I.

Virus Functional proteins Mechanisms of actions interfering with MHC-I References

ASFV EP153R Impairing the exocytosis process of MHC-I (58, 59)

PRRSV unknown Inhibiting the expression of MHC-I molecules (51).

PDCoV unknown Inducing the expression of MHC-I molecules via NLRC5 (61)

FMDV unknown Regulation of MHC-I surface expression (55)

PrV
one or more PrV
early proteins

Interfering with the peptide transport activity of TAP (56, 57)

BPV E5
Regulating transcription of MHC-I heavy chain (HC); regulating degradation of MHC-I HC; causing
retention of MHC-I in the Golgi apparatus

(63–65)

BHV1 UL49.5 Regulating transport of MHC-I molecules via inhibiting TAP functions (43, 71)

BVDV unknown Inhibiting the expression of many proteins associated with MHC-I, endocytosis, and TAP (74)

ORFV unknown
Downregulation of MHC-I surface expression through disturbing carbohydrate trimming and maturation
of MHC-I; causing structural disruption and fragmentation of the Golgi apparatus to impair the
intracellular transport of MHC-I

(80)

CPXV
CPXV012 Inhibiting the TAP-mediated transport of antigenic peptides to interfere with the MHC-I assembly (77)

CPXV203 Interacting with MHC-I molecules and retaining them in the ER (76)

MDV UL49.5 Downregulation of MHC-I surface expression; interfering TAP degradation (43)

CAV VP2 Downregulation of MHC-I surface expression (87)
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anti-tumor immunity or control excessive immune responses.

Besides, they discovered that inactivated FMDV (iFMDV)

infection shows a relatively moderate upregulation of MHC-I

molecules on DC membranes only after 2 h post-infection, which

may explain the immune differences observed between infectious

and inactivated particles.
4.3 Pseudorabies virus

Infection with PRV has previously been found to down-

modulate the expression of MHC-I antigens in both murine and

porcine cells (56). Further investigations have focused on the

mechanism of MHC-I down-regulation. Researchers have

confirmed previous findings, as evidenced by a progressive down-

regulation of MHC-I expression in both PRV-infected PK-15 cells

and PRV modified live virus (MLV) vaccine strains-infected PK-15

cells. Furthermore, inhibition of TAP activity in a dose-dependent

manner is observed in PRV-infected PK-15 cells as early as 2 h post-

infection, reaching a maximum level at 6 h post-infection. The

results indicate that TAP inhibition may be one of the mechanisms

underlying the down-regulation of porcine MHC-I molecules. They

also found that one or more PRV early proteins, but not late

proteins, are responsible for the down-regulation of MHC-I

molecules (57).
4.4 African swine fever virus

ASFV is the sole member of the Asfarviridae family and belongs

to the genus Asfivirus. It causes a highly lethal disease in domestic

pigs, leading to substantial economic losses for the global pork

industry. Several ASFV genes, including A238L, A179L, A224L,

EP402R, and EP153R, have been identified as modulators of host

defense mechanisms. Specifically, protein EP153R has been

demonstrated to modulate the surface membrane expression of

MHC-I antigens (58). Researchers have constructed a 3D model of

the C-type lectin domain of EP153R and found that a dimer of this

protein can asymmetrically interact with an MHC-I molecule to

regulate its membrane expression. Further studies suggest that this

modulation may occur through disruption of the exocytosis

process (59).
4.5 Porcine deltacoronavirus

While MHC-I induction is typically associated with host

antiviral responses triggered by cytokines such as interferons (60),

its functional implications in PDCoV pathogenesis require careful

interpretation. Mechanistically, PDCoV activates the RIG-I/IFN-

baxis, which subsequently elevates NLRC5 expression (61). As the

major transactivator of MHC-I genes (CITA), NLRC5 forms an

enhanceosome with RFX transcription factors to drive MHC-I

promoter activity (60). Notably, PDCoV also enhances IRF1
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expression, which directly stimulates NLRC5 promoter activity

(61), creating a feedforward loop to amplify MHC-I synthesis.

This pattern suggests two non-exclusive possibilities: As a

component of host antiviral defense, elevated MHC-I may

enhance viral antigen presentation to CD8+ T cells. Paradoxically,

certain viruses exploit MHC-I upregulation to evade immune

surveillance, such as through excessive self-antigen presentation

that induces T cell exhaustion. While current evidence favors the

first scenario due to the IFN-dependent pathway activation,

PDCoV’s late-stage induction of MHC-I warrants further

investigation into potential immune subversion strategies,

particularly given that delayed MHC-I expression could allow

viral immune evasion during early infection while promoting

immunopathology at later stages.
4.6 Bovine papillomavirus

BPV is an oncogenic virus that induces papillomas in the

cutaneous or mucosal epithelia of cattle. Over thirteen distinct

BPV genotypes have been identified (62). BPV-4, one of the most

extensively studies BPVs, has been linked to MHC-I modulation.

The E5 oncoprotein, localized in the Golgi apparatus (GA) and ER

during infection, plays a critical role in regulating MHC-I transport

to the cell surface (63). Previous studies demonstrated that E5

physically interacts with the MHC-I heavy chain, reducing both

total protein and mRNA levels in E5-transformed cells. The

interaction between E5 and the MHC-I heavy chain can lead to

reduced mRNA levels through several potential mechanisms. E5

may directly interfere with the transcription of the MHC-I gene by

interacting with transcriptional regulators or modifying the

chromatin structure, thereby decreasing mRNA synthesis (64).

The physical interaction between E5 and the MHC-I heavy chain

might disrupt the proper folding and processing of the MHC-I

molecule, leading to its retention in the ER or GA (65). This

retention could trigger cellular quality control mechanisms, such

as the unfolded protein response, which may downregulate the

expression of MHC-I at the mRNA level to prevent the

accumulation of misfolded proteins. E5 might affect the stability

of MHC-I mRNA by recruiting RNA-binding proteins or altering

the cellular environment, leading to increased mRNA degradation.

These mechanisms collectively contribute to the reduced mRNA

levels of MHC-I in E5-transformed cells. However, treatment with

IFN-b or IFN-g can restore HC synthesis. Notably, MHC-I is

retained intracellularly in E5-expressing cells, with its surface

expression downregulated (63). Subsequent studies revealed that

BPV E5 expression leads to MHC-I retention in the GA due to

impaired acidification, preventing its transport to the cell surface

(66). Moreover, E5-mediated inhibition of MHC-I transport is

irreversible (67). In addition to inhibiting MHC-I HC

transcription, E5 also promotes HC degradation, which can be

reversed by treating with proteasome and lysosome inhibitors.

Taken together, the BPV-4 E5 oncoprotein profoundly affects

MHC-I expression, degradation, and transport.
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4.7 Bovine herpesvirus 1

BHV1 establishes a lifelong infection in cattle, manifesting as

infectious bovine rhinotracheitis and infectious pustular

vulvovaginitis (68). BHV1 evades the host immune system by

interfering with antigen processing and presentation. Following

infection, MHC-I expression on the cell surface decreases as early as

8 h post-infection, reaching significant levels at 12 h. The immediate

early and/or early proteins of BHV1 are implicated in mediating

this effect (69). Besides, BHV1 impairs intracellular transport of

MHC-I molecules and inhibits TAP in human melanoma cell lines

(70). Comprehensive studies indicate multiple mechanisms

contribute to BHV1-induced downregulation of MHC -I

molecules (43). In particular, the BHV1-encoded UL49.5 protein,

a homolog of the conserved glycoprotein N (gN), reduces MHC-I

molecules on the cell surface and hinders their detection and lysis

by cytotoxic T-cells. Several studies confirm that UL49.5 acts as a

potent TAP inhibitor (43, 71). Based on findings from Wei et al.

(72), specific residues in the UL49.5 luminal domain (residues 30-

32) and CT region are crucial for promoting TAP inhibition and

MHC-I downregulation.
4.8 Bovine viral diarrhea virus

BVDV is considered a group of multiple viruses affecting

virtually all organs and systems in the body, including both

innate and adaptive immune responses (73). Previous studies

have reported that cytopathic (cp) BVDV infection alters

professional antigen presentation in bovine monocytes (74).

Notably, 9 MHC-I proteins are significantly downregulated in

bovine monocytes after cp BVDV infection. Accession numbers

AAZ73460 and ABA39524 have been identified only in cp BVDV-

infected bovine monocytes. In addition, several proteins associated

with endocytosis and TAP, such as small GTP-binding protein Rac1

and TAP-binding protein (tapasin), are abnormally regulated by cp

BVDV, potentially contributing to the inhibition of their antigen

presentation to immunocompetent T cells (74). However, the exact

mechanism remains unclear.
4.9 Cowpox virus

CPXV is a member of the orthopoxvirus family that can infect a

variety of mammalian species, with rodents serving as its dominant

reservoir. Like other orthopoxviruses, CPXV encodes an array of

immunomodulatory genes targeting antiviral responses. In

numerous studies, CPXV has been established to disrupt MHC-I

antigen presentation in both human and murine cells. Two unique

CPXV-encoded proteins, CPXV012 and CPXV203, are responsible

for blocking antigen presentation (75). The combined deletion of

CPXV012 and CPXV203 restores the surface expression of MHC-I

and stimulates CD8+ T-cells by CPXV-infected cells. CPXV203 is a

soluble protein that binds MHC-I lumenal domains and exploits the

ER retention pathway by a mechanism dependent on its C-terminal
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KTEL sequence, resembling the canonical ER retention motif KDEL

recognized by the KDELR, thereby preventing MHC-I transport to

the cell surface (76). CPXV012 is a short-lived type II

transmembrane protein that co-immunoprecipitates with the

PLC, inhibits TAP-mediated transport of antigenic peptides from

the cytosol to the ER, thereby interfering with MHC-I assembly

(77). Through these different mechanisms, CPXV adeptly evades

immune responses.
4.10 Orf virus

ORFV is a zoonotic Parapoxvirus causing lesions in small

ruminants, such as goat and sheep (78). It has been described

that ORFV infection does not alter MHC-I transcription but

disrupts carbohydrate maturation and maturation of the

structural integrity of MHC-I molecules (79). ORFV also affects

the Golgi apparatus’s fragmentation and structural disruption of the

MHC-I molecule (80). Taken together, these findings impair the

intracellular transport of MHC-I through these mechanisms to

interfere with antigen presentation to immunocompetent T cells.
4.11 Marek’s disease virus

MDV is a herpesvirus that causes Marek’s disease, a severe

neoplastic disease in chickens (81). Research has shown that MDV

interferes with the expression of MHC-I molecules in chicken

embryo fibroblasts (82, 83). This downregulation of MHC-I in

MDV-infected cells can be counteracted by chicken interferon

(IFN) produced by these fibroblasts (84). A recent study

evaluated the role of MDV protein pUL49.5 in reducing MHC-I

surface expression during MD pathogenesis. In vitro assays revealed

that MDV pUL49.5 directly downregulates MHC-I in both

transfected and infected cells (85). Previously, it was reported that

the cytoplasmic tail of pUL49.5 plays an essential role in mediating

this downregulation by targeting TAP degradation via the

ubiquitin–proteosome pathway (43). Additionally, Jarosinski et al.

(86) demonstrated that the cytoplasmic tail of MDV pUL49.5

significantly contributes to the downmodulation of MHC-I on the

cell surface.
4.12 Chicken anemia virus

CAV is an immunosuppressive pathogen of chickens. Surface

expression of MHC-I is markedly downregulated in cells infected

with wild-type CAV. It is likely that viral protein 2 (VP2) is a

multifunctional protein during CAV infection and replication. Site-

directed mutagenesis of VP2 was designed to explore the role of

VP2 in MHC-I regulation (87). The results show that mutations

R101G and H103Y significantly abrogate the CAV-induced

downregulation of MHC-I. Besides, mutation Q131P partially

abrogate the effect of CAV on MHC-I downregulation. These

findings confirm that MHC-I downregulation in CAV-infected
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cells is a virus-specific result and suggest that VP2 is an essential

mediator of MHC-I downregulation. To date, the mechanistic

events involved in MHC-I modulation remain unanswered.
4.13 Other viruses

CD8+ T-cells play a major role in the clearance of Respiratory

Syncytial Virus (RSV) and mediate some of the damage to the lung

epithelium following RSV infection. Interestingly, the expression of

MHC-I is increased by human RSV (HRSV) infection in human

respiratory epithelial cells and bronchial epithelial cells, which could

be blocked by the addition of neutralizing Abs to IFN-b (in large part)
and IL-1 a (a lesser extent) (88). Emerging evidence has shown that

Bovine RSV (BRSV) shares many of the epidemiological and

pathological features of HRSV in infants. Thus, some researchers

speculate thatMHC-I presentationmay be altered by BRSV infection.

Researchers have identified potential cytotoxic T-cells epitopes of

BRSV, however, the regulation of MHC-I presentation by BRSV has

not yet been elucidated (89). Besides, several other viruses such as

Rous Sarcoma Virus (RSV) (90) and Duck Hepatitis A Virus type 1

(DHAV-1) (91) have been found to reduce MHC-I expression,

although the mechanism remains limited.
5 Conclusions and perspectives

Due to the rising demand for animal-origin food, industrial

livestock production has significantly intensified. This

intensification has inadvertently facilitated the spread of various

pathogens, predominantly viruses, leading to poor growth,

mortality, and substantial economic losses, thereby posing major

challenges. While vaccination remains fundamental to disease

control, many existing vaccines are ineffective against certain

viruses or emerging strains. Consequently, there is an urgent need

to develop more efficacious vaccine products to better manage or

prevent viral infections. Achieving this goal requires a deep

understanding of the mechanisms by which viruses infect and

evade immunity.

CTL immunity is crucial for host antiviral responses and plays a

pivotal role in eliminating many viral infections. The antigen

recognition and presentation via MHC-I molecules are integral to

this response. MHC-I molecules select appropriate viral epitopes

from infected target cells and present them to CD8+ T lymphocytes,

prompting CTL cells to destroy virus-infected cells. However,

viruses have evolved sophisticated strategies to evade immune

surveillance, particularly by targeting MHC-I synthesis,

degradation, transport, and assembly. These tactics effectively

block the MHC-I antigen processing pathway, thus evading

immune detection. Identifying viral epitope peptides and

elucidating their regulation of MHC-I function are critical for

understanding viral immune escape mechanisms and developing
Frontiers in Immunology 09
more effective vaccines. Several studies have shown that certain

livestock and poultry viruses interfere with MHC-I expression, yet

the molecular mechanisms by which these viruses down-regulate

MHC-I remain largely unknown. Further research is needed to

uncover how viruses regulate the surface expression and antigen

presentation processes of MHC-I molecules. Unidentified

functional proteins may also play roles in this process, and their

discovery could significantly enhance our ability to develop vaccines

that effectively prevent or control viral infections in livestock

and poultry.

The potential for MHC-I to guide vaccine development is

immense. By focusing on how viruses manipulate the MHC-I

pathway, researchers can design vaccines that counteract these

evasion strategies. For example, integrating peptides resistant to

viral interference can enhance vaccine effectiveness. Additionally,

understanding the precise points of viral intervention in the MHC-I

pathway may aid in developing adjuvants that stabilize MHC-I

expression, ensuring robust immune responses even during viral

infections. Advances in bioinformatics and immunology have also

paved the way for personalized vaccines. Tailoring vaccines to

specific MHC-I haplotypes of individual animals can achieve

higher levels of immunity, which is particularly beneficial for

high-value breeding animals or endangered species.

To further enhance the effectiveness of MHC-I - based vaccines,

one experimental approach could be to combine RIG - I agonists

with the vaccine formulation. Since RIG - I plays a key role in the

upregulation of MHC - I molecules as seen in the PDCoV example,

activation of RIG - I by agonists may lead to increased MHC - I

expression in vaccine - treated cells. This can potentially enhance

antigen presentation and subsequent activation of CD8+ T

lymphocytes, which are crucial for cell - mediated immunity

against virus - infected cells. For example, small molecule RIG - I

agonists could be co - formulated with the vaccine containing MHC

- I epitopes (65). This could involve measuring the activation of

CD8+ T cells, the production of cytokines related to cell - mediated

immunity, and the overall protection of the animals against

pathogen challenge.AI - driven epitope prediction offers a

powerful tool to address this challenge in MHC - I - based

vaccine design. Machine - learning algorithms can analyze large

datasets of viral genomes and their corresponding MHC - I binding

epitopes. By considering factors such as amino acid sequences,

antigenicity, allergenicity, and toxicity, these algorithms can predict

potential epitopes that are less likely to be affected by viral

mutations. This has been widely used in the pre-preparation of

vaccines for a variety of viruses (92, 93).

In conclusion, while viral infections pose significant challenges

for industrial livestock production, the prospect of MHC-I-guided

vaccine development offers a promising strategy to address these

issues. Continued research into the molecular mechanisms of viral

immune escape and the identification of novel functional proteins

involved in MHC-I regulation will advance this field. As we gain a

better understanding of these complex interactions, the path to
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developing more effective vaccines will become clearer, potentially

enhancing disease control and increasing livestock productivity.
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41. Magda W, Celeste R, Magdalena JŚ, Małgorzata G, Lukasz SB, Wenjie Q, et al.
The herpesvirus ul49.5 Protein Hijacks a Cellular C-Degron Pathway to Drive Tap
Transporter Degradation. Proc Natl Acad Sci U S A. (2024) 121:e2309841121.
doi: 10.1073/pnas.2309841121

42. Jincheng Z, Beibei X, Deqing M, Jialing S, Xiao L, Ping W, et al. Identification of
marek’s disease virus pul56 homologue and analysis of critical amino acid stretches
indispensable for its intracellular localization. Virus Res. (2022) 313:198741.
doi: 10.1016/j.virusres.2022.198741
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