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Applications of cell penetrating
peptide-based drug delivery
system in immunotherapy
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Dongyuan Wang2,3* and XianShi Ma4*

1Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei
Polytechnic University, Huangshi, China, 2Department of Pharmacy, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China, 3Hubei Province Clinical
Research Center for Precision Medicine for Critical Illness, Wuhan, China, 4Department of
Hepatobiliary Surgery, Yangxin County People’s Hospital, Huangshi, China
Cell penetrating peptides (CPPs) are usually positive charged peptides and have

good cell membrane permeability. Meanwhile, CPPs are facile to synthesize, and

can be functionalized to satisfy different demands, such as cyclization,

incorporating unnatural amino acids, and lipid conjugation. These properties

have made them as efficient drug-delivery tools to deliver therapeutic molecules

to cells and tissues in a nontoxic manner, including small molecules, DNA, siRNA,

therapeutic proteins and other various nanoparticles. However, the poor serum

stability and low tumor targeting ability also hindered their broad application.

Besides, inappropriate chemical modification can lead to membrane disruption

and nonspecific toxicity. In this paper, we first reviewed recent advances in the

CPP applications for cancer therapy via covalent or non-covalent manners. We

carefully analyzed the advantages and disadvantages of each CPP modifications

for drug delivery. Then, we concluded the recent progress of their clinical trials

for different diseases. Finally, we discussed the challenges and opportunities

CPPs met to translate into clinical applications. This review presented a new

insight into CPPs for drug delivery, which could provide advice on the design of

clinically effective systemic delivery systems using CPPs.
KEYWORDS

cell penetration peptide, covalent conjugation, non-covalent delivery, cancer
immunotherapy, clinical application
1 Introduction

Due to the hydrophobic nature of the therapeutic molecules and their low

bioavailability in vivo, many promising therapeutic drugs, especially those targeting

intracellular therapeutic molecules, face challenges in fully realizing their therapeutic

efficacy (1, 2). Enabling these molecules to cross the cell membrane so that they can

have a therapeutic effect is a huge challenge.
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In the late 1980s, while studying the human immunodeficiency

virus (HIV), Green’s group discovered that the protein-transduction

domains (PTD) of the transcription-activating protein Tat was able to

penetrate cell membranes in vitro, and further studies revealed that the

amino acid sequence corresponding to residues 48-60 of Tat

(RKKRRQRRR) played a key role in cellular uptake (3–5).

Subsequently, peptides found to penetrate cell membranes were

commonly defined as cell-penetrating peptides (CPPs). CPPs have

short sequences (typically less than 40 amino acids) and are usually

cationic peptides, such as the two earliest identified CPPs (Tat and the

Antp) (3, 4, 6), which have been shown to be capable of transporting a

large number of cargoes into the intracellular environment. In addition

to naturally derived sequences, many chimeric and synthetic peptides

have been designed for drug delivery. Based on the type and

arrangement of amino acids, CPPs are categorized as cationic,

anionic, amphipathic and hydrophobic peptides (7). CPPs are

usually structurally composed of 5-30 amino acids, which are divided

into natural peptides and pure synthetic peptides depending on their

source. They are able to pass through cells and tissues through various

mechanisms, for example, cationic CPPs interact electrostatically with

negatively charged carboxyl and phosphate groups on the cell

membrane, whereas hydrophobic peptides may be transported by

interacting with hydrophobic regions of the cell membrane (8–10).

To date, CPPs have been widely used to deliver cargoes such as small

molecule drugs, proteins, nucleic acids, etc. However, the specific

mechanism of cellular uptake of CPPs is not yet fully understood,

which may depend on the type and concentration of cargoes and the

temperature (11). In conclusion, the discovery of CPPs provides an

opportunity to deliver molecules with intracellular therapeutic activity.
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This review will focus on the study of CPPs in facilitating

intracellular delivery of a variety of cargo molecules, including the

strategies of covalent conjugation and self-assembly. We will also

present recent advances in the use of CPPs for clinical trials

targeting different diseases and summarize the barriers to the

translation of CPPs into clinical drugs.
2 Covalent conjugation of CPPs

As a class of peptides with special functions, CPPs are able to carry

a variety of biomolecules across the cell membrane (Figure 1),

including small molecule drugs (12–14), proteins (15, 16),

nanomaterials (17), and nucleic acids (13, 18, 19), which provide

novel delivery strategies for molecules that are impermeable to cells. In

recent years, covalent coupling of vehicles to therapeutic molecules has

been one of the hot topics in drug delivery system researches, such as

antibody drug conjugates and peptide drug conjugates (20, 21). ADC is

formed by connecting monoclonal antibodies and potent cytotoxic

payloads through chemical linkers, while PDC is formed by combining

cargo peptides and cytotoxic payloads through linkers, both of which

enhance their tumor selectivity and permeability. Covalent coupling

involves the formation of a chemical bond to maintain the integrity of

the CPP and the cargo while forming a stable complex. This approach

ensures that the cargo binds tightly to the CPP during circulation,

which keeps its free from enzymatic degradation and increasing its

half-life and bioavailability (1). In addition, covalent conjugation avoids

non-specific distribution of cargoes, improves drug accumulation in

the target cells and reduces off-target effects to a certain extent (22).
FIGURE 1

Covalent conjugation strategies based on CPPs and biomolecules in drug delivery system (12–19).
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2.1 Covalent conjugation with small
molecule drugs

Small molecule drugs have been widely used in the treatment of

cancer, bacterial and viral infections (23–25). However, the half-life of

small molecule drugs is too short and their poor membrane

permeability restricts their ability to reach the treatment site

effectively. Therefore, an excessive amount of small molecule drugs is

usually required to achieve therapeutic effects. Additionally, some small

molecule drug candidates exhibit off-target cytotoxicity. In recent years,

more studies have focused on how to effectively combine peptides with

anticancer drugs for targeted delivery (26).

The Hristova group has reported a cellular transmembrane

peptide, called CL peptide, containing a helical motif (RLLRLLR)

and a polyarginine tail (r7). The peptide-cargo coupling increased

the transport of small-molecule cargoes by approximately 10-fold and

efficiently released cargoes (27). In 2012, the Qi group developed a

conjugate (ACPP-DOX) of activatable cell-penetrating peptide (ACPP)

with the antitumor drug adriamycin (DOX) for tumor-targeted

therapy. Cellular uptake of ACPP-DOX was enhanced upon

enzyme-triggered activation, and the internalized DOX was effective

in inhibiting the proliferation of HT-1080 cells (28). Singh et al.

designed and synthesized an octreotide-oxaliplatin concatenate (pcp-

oxal). This coupling rapidly delivers oxaliplatin into cells, thereby not

only improving intracellular delivery efficiency, but also enhancing

passive targeting in vivo. The internalized oxaliplatin effectively

inhibited tumor growth and exhibited considerable antitumor

activity, indicating that the conjugate demonstrates good efficacyin

vivo (29). Backlund et al. conjugated CPP with 10 peptides representing

neoantigens, tumor virus antigens, and the tumor associated antigens

in their study, and concluded that nine of the peptides exhibited

enhanced T cell primers, demonstrating that conjugating CPP with

antigens in vaccine administration could enhance therapeutic control

of tumors (30). In 2024, Shi’s group developed a cell penetrating

peptide induced chimeric conjugates (cp-PCCs) and used them to

induce degradation of palmitoyltransferase DHHC3. This method

disrupted the immunosuppressive function of PD-L1 by reducing its

palmitoylation and membrane retention, thereby enhancing the

immune response to tumors (31). In conclusion, delivery of small

molecule drugs by covalently coupled CPPs is a promising research

area that not only expands the possibilities of drug delivery but also

brings new hope for the treatment of diseases.
2.2 Covalent conjugation with proteins

The lipophilic components of the plasma membrane can act as a

barrier, preventing proteins from easily reaching intracellular

targets. Peptide-based delivery systems offer various advantages

such as low immunogenicity, a high safety profile, and controlled

dosage of administration (32, 33). The “YGRKKRRQRRR”

sequence from the HIV Tat protein, commonly referred to as the

Tat peptide, has been widely utilized. In 1994, Fawell et al.

chemically crosslinked Tat peptides to a variety of proteins,
Frontiers in Immunology 03
including b-galactosidase, horseradish peroxidase, and the

structural domain III of Pseudomonas exotoxin A (PE). The Tat

successfully translocated different types of proteins into the cell,

indicating that Tat-mediated uptake might allow delivery of

macromolecules previously thought to be impermeable to living

cells (34). Since then, researchers have developed various covalent

conjugates to CPPs.

CPP-protein fusions with recombinant DNA technology have

been used for many cargo proteins, including enzymes (35, 36),

antibodies (37, 38), and antigens (39–42). Berne’s group

constructed recombinant fusion proteins by fusing five different

CPPs to the antibody, respectively, and demonstrated that the CPP-

antibody fusions significantly enhanced antibody penetration into

cells. This study offers new insights for further exploration of

therapeutic antibodies against intracellular targets (38). Jiang’s

group genetically constructed a GFP-Tat fusion protein that

incorporates sequencing enzyme-mediated protein cyclization and

cell-penetrating peptide (CPP)-mediated intracellular delivery

improved the efficiency and stability of intracellular protein

delivery (43). Cyclized GFP-Tat (cGFP-Tat) highly retained the

photophysical properties of the protein and significantly improved

stability in vitro with better intracellular delivery efficiency and

tumor retention in vivo.

With the advancement of click chemistry, azide-functionalized

CPPs were chemically coupled to alkyne-functionalized proteins by

copper-catalyzed azide-alkyne cycloaddition (CuAAC) in order to

construct stable site-specific structures. Christian’s group utilized

the azide-functionalized polyphosphorylated adenosine and alkyne-

functionalized polyphosphorylated adenosine to obtain cyclic and

linear conjugates (44). The resulting cyclic CPP-GFP coupling was

efficiently internalized into living cells, whereas the linear CPP

analogue failed to facilitate GFP transduction. Kulkarni’s group

constructed a coupling consisting of a growth factor receptor-

binding protein 7 (GRB7) inhibitor, fitc-labeled penetrant peptide

(CPP), and nuclear localization signal (NLS). The resulting GRB7-

CPP-NLS structure greatly enhanced cellular uptake and

localization to the cytoplasm and nucleus of breast cancer cells (45).

The covalent conjugation of CPP with cargo peptides or

proteins could be achieved through chemical means. This

involves the use of specific linkers to conjugate disulfide and

amine bonds, ensuring the inherent proximity of the CPP to its

cargo, thereby promoting cargo release once the linker is

internalized into the cell. Through this method, CPP could be

used as a carrier for peptide and protein delivery, and applied to

target cancer (46–49). Currently, protein/peptide therapy is mainly

used for regulating diseases in the extracellular space. In 2023, Zhao

et al. developed peptides with pH dependent membrane

perturbation activity by replacing Arg/Lys residues in cationic

CPP with histidine, which facilitated intracellular escape of

chromosomes in the context of CPP. They found in their study

that the fusion of trastuzumab hsLMWP BID with 16 residue

peptide (hsLMWP) and pro apoptotic protein BID (BH3

interacting domain death agonist) had potent anti-tumor efficacy,

and demonstrated minimal side effects (50).
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2.3 Covalent conjugation
with nanoparticles

Nanoparticles are materials with sizes between 1-1000 nm,

including metals, polymers, vesicles (e.g., micelles and liposomes),

and carbon-based materials (e.g., nanotubes, fullerenes, and

nanodiamonds) (51). In recent decades, nanomaterials have

received increasing attention in the medical field due to their

large surface area and favorable properties for controlled

absorption and release. The diversity of nanomaterial types

influences the mechanisms and effectiveness of their conjugation

with CPPs. Based on these distinct categories, nanomaterials can be

classified into several groups, including inorganic nanomaterials

(e.g., gold and silver) (52) magnetic nanoparticles (53), polymer-

based nanoparticles (54), liposomes, and vesicular systems such as

micelles. Owing to their unique physicochemical properties, these

various classes of nanomaterials exhibit specific advantages and

application potentials when conjugated with CPPs, thereby

providing a range of solutions for nanomedicine.

Because of their superior internalization and transmembrane

transport capabilities, CPPs are considered an effective carrier for

moving NPs through cell membranes. In 1999, Weissleder et al. (55)

made the first attempt to produce CPP sequence-derived particles,

which showed a 100-fold higher rate of internalization of the

conjugate in lymphocytes compared to unmodified particles.

Since then, researchers have continuously sought to bind CPPs to

NP surfaces using covalent coupling techniques. Among metal

nanoparticles, gold nanoparticles (GNPs) currently attract the

most attention in drug delivery systems (53, 56–59). GNPs are

suitable for targeted delivery, bioimaging, and theranostics due to

their reduced toxicity, ease of modification, and excellent

biodistribution when conjugated with CPPs. CPP-conjugated

GNPs have enhanced cellular internalization and are suitable for

various biomedical applications as nano-conjugates.

Additionally, polymer nanoparticles are attractive options for

the delivery of cargoes. Among various polymer nanoparticles (54,

60–63), poly(lactic-co-glycolic acid) (PLGA) NPs have proved to be

remarkably successful in combating a wide range of conditions

including infectious diseases and cancer. Researchers successfully

attached CPP to the surface of NPs using different surface-

modification chemistries such as avidin and DSPE-PEG.

Compared with unmodified NPs, CPP-modified NPs greatly

improved cellular internalization, offering a promising delivery

option for NP applications (62, 64, 65).A PROTAC strategy

utilizing a covalent nanobody (GlueBody), known as GlueTAC,

has been proposed for the targeted degradation of membrane

proteins. Zhang et al. developed GlueBody through a mass

spectrometry-based screening platform and successfully

constructed a GlueTAC chimera that is covalently linked to cell-

penetrating peptides and lysosomal sorting sequences (66). This

chimera effectively triggers the internalization and degradation of

programmed death ligand 1 (PD-L1), thereby providing a novel

approach for targeting and degrading cell surface proteins.

Leveraging the tunable chemical and physical properties of

nanoparticles, along with surface functionalization strategies,
Frontiers in Immunology 04
allows for enhanced cell specificity. The integration of cell-

penetrating peptides (CPPs) with nanoparticles (NPs) shows

significant potential for enhancing cellular uptake, facilitating

targeted drug delivery, and advancing anti-cancer therapies (54).

As targeted delivery systems undergo continuous refinement,

advancements in the CPP-NPs domain are poised to further

enhance the application of CPPs in cancer research.
2.4 Covalent conjugation with
nucleic acids

Due to their high internalization efficiency, low cytotoxicity,

and flexible design, CPPs are a promising strategy for delivering

nucleic acid drugs, including genes, short oligonucleotides, and

small interfering RNAs (67, 68).

As a promising gene therapy strategy, specific gene silencing by

RNAi has required the delivery of RNA into the cytoplasm. However,

since RNA is negatively charged, it is difficult to cross the cell

membrane due to strong repulsion by the negatively charged plasma

membrane (69, 70). CPPs are cationic peptides capable of delivering

oligonucleotides, which makes them highly promising delivery vectors.

Jagrosse et al. reported a structure-function study of CPPs-RNA

conjugation using a series of modified cyclic amphipathic cell-

penetrating peptides (CAPs), which have been shown to effectively

deliver RNA. The researchers examined the effects of different

peptide sequences on siRNA binding efficiency, cellular delivery

and knockdown efficiency, and endocytosis uptake mechanisms

(71). The results demonstrate that the strong cationic character and

the aromatic residues capable of participating in CH-p interactions

make CAP sequences the most effective in interacting with siRNA.

The cyclic cationic CAP has exhibited a high siRNA translocation

efficiency, contributing to the efficient knockdown of siRNA targets.

Most CAP-siRNA complexes achieved siRNA delivery by clathrin-

and caveolin-mediated endocytosis (72).
3 Non-covalent conjugation strategies
of CPPs in immunotherapy

CPPs not only easily penetrate cell membranes but also enter

specific organelles, improving the accuracy of targeted therapy.

Targeting specific organelles is critical when treating cancer, as

targeted delivery of anticancer drugs to specific intracellular targets

improves therapeutic efficacy and reduces drugs toxicity. Current

research shows that CPPs, combined with nanomicelles, liposomes

and nanoparticles loaded with anticancer drugs, enhance drug

transport across the blood-brain barrier and improve targeted

treatment of tumor cells, offering greater control over drug delivery

(Figure 2) (73). Due to the inherent and easily modifiable properties

of most CPPs, they are particularly suitable for CPPs assembly

and drug delivery applications to achieve higher therapeutic efficacy

(74–77). In conclusion, CPPs are promising tools for improving

cellular uptake, and CPPs binding lipid nanoparticles loaded with

anticancer drugs have promising applications in cancer therapy (78).
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3.1 Self-assembling into micelles

Nanomicelles, with their outstanding biocompatibility, low

toxicity, high drug carrying capacity, tiny size, and prolonged drug

release time, and can be employed to reduce anticancer medication

toxicity and avoid drug resistance (79). So far, nanosystems based on

micelles for diagnosis and therapy have been extensively studied, and

nano-drugs derived frommicelles have emerged as a major treatment

option for cancer. These micelles have a nanoscale structure, and

their size (10-100 nm) allows them to penetrate deep into vascular

tissues, such as tumors, by utilizing a porous vascular system. The

effectiveness of CPP assembled micelles can be regulated by various

external triggering factors, such as local arginine concentration, pH

value, and temperature. Scientists have developed a series of

strategies, including modified block copolymers coupled with cell

penetrating peptides that better assemble into micelles, form stable

complexes with siRNA, or load anticancer drugs and effectively

delivering them to brain tissue via intranasal delivery (80).

In recent years, various studies on the combination of

nanomicelles have been conducted, with the goal of providing

new cancer therapy alternatives. Tat, a cell-penetrating peptide

derived from HIV Tat (GRKKRRQRRRCG), and MPEG-PCL Tat

are synthesized by Tat using disulfide bonds. They first self-

assemble into micelles and then form stable complexes with

siRNA, or can be loaded with anticancer drugs for effective

delivery. Kanazawa et al. demonstrated the efficiency of drug/
Frontiers in Immunology 05
siRNA co-delivery and nasal brain delivery using MPEG-PCL-Tat

nanomicelles in the treatment of glioblastoma and also exhibited its

potential for treating brain and central nervous system-related

diseases (81). In another work, Weinberger et al. designed drug

molecules to self-assemble into spherical micelles, and then

decorated soft nanospheres with an arginine-rich CPP (Tat)

sequence on the membrane to restore the binding between CPP

and lipid bilayers, improving the efficiency of CPP in delivering

drugs in vivo and providing a more effective method for CPP-based

cancer treatment (82).

To provide more targeted treatment for glioblastoma, efforts

have been made to enhance the specificity of nanomicelle-related

drugs for glioblastoma. For example, Zhu et al. proposed tandem

nanomicelles co-functionalized with glioblastoma-targeting and

cell-penetrating peptides, Angiopep-2 and Tat. Tandem

nanomicelles with 20 mol% Angiopep-2 and 10 mol% Tat highly

enhanced the specificity of anti-glioma therapy, improved survival

rates, and had minimal side effects (83). Another study showed that,

RRR-a-tocopheryl succinate-grafted-e-polylysine conjugate (VES-

g-e-PLL) self-assembled ultra small micelles (NMs) served as

delivery vehicles for chemotherapy, such as the hydrophobic

model drug docetaxel (DTX). This study demonstrated that DTX

micelles (DTX NMs) with a drug loading of 3.08% combined with

ultrasound-targeted microbubble disruption (UTMD) could induce

more significant apoptosis in C6 tumor cells, effectively overcoming

the blood-brain barrier and treating glioblastoma (84).
FIGURE 2

The main carrier system based on CPP functionalization is used for delivering therapeutic agents, which are loaded in their respective
carrier systems.
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3.2 Self-assembling into liposomes

The delivery of anti-tumor drugs from the systemic circulation to

tumor sites is impeded by various physiological and biological

barriers, including the blood-brain barrier (BBB) and the limited

permeability of these drugs within tumors. To address this challenge,

Pirhaghi et al. demonstrated experimentally that covalent coupling or

modification of various peptides with liposomes loaded with anti-

tumor agents can significantly enhance the capacity of these

liposomes to traverse the blood-brain barrier (85). Given their

relatively high cellular permeability, liposomes are extensively used

to improve drug entry efficiency into cells (86, 87).

For instance, poly-L-arginine acts as a cell-penetrating peptide

(CPP), significantly improving the endocytosis efficiency of the

liposomes. Sharma et al. investigated a novel dual-ligand liposome

carrier incorporating transferrin and poly-L-arginine to enhance the

efficacy of drug delivery across the blood-brain barrier. Specifically,

transferrin served as a targeting ligand, covalently conjugated to specific

chemical moieties on the liposome surface, such as amide bonds or

thiol groups, thus facilitating targeted delivery to the brain (88).

Furthermore, Liu et al. developed a dual-mediated targeted liposome

called transferrin-cell-penetrating peptide-electrostatically stabilized

liposome (TF-CPP-SSL). This system integrated transferrin receptors

(TF-R) and cell-penetrating peptides (CPP), promoting efficient drug

delivery to gliomas. During this process, the researchers employed PEG

modification to enhance the stability of the liposomes in circulation and

optimized both the concentrations and modification densities of TF

and CPP to ensure optimal cellular targeting and endocytosis efficiency.

The findings indicated that TF-CPP-SSL could effectively traverse the

blood-brain barrier (BBB), undergo endocytosis in C6 glioma cells,

escape lysosomal degradation, and release drug components, such as

doxorubicin into the cytoplasm for pharmacological action (89). In a

subsequent study, Lakkadwala et al. developed a dual-functional

liposome delivery system that used transferrin (Tf) to modify the

surface of liposomes for enhanced receptor-mediated transport while

concurrently introducing a cell-penetrating peptide (Pen) to improve

cellular uptake efficiency. This formulation effectively encapsulated the

chemotherapeutic agents doxorubicin (Dox) and erlotinib (Erlo),

enabling precise traversal across the blood-brain barrier and targeted

delivery to glioblastoma. Experimental results indicated that Tf-Pen

liposomes significantly increased drug accumulation in brain tumors,

with approximately 12-fold enhancement for Dox and approximately

3.3-fold for Erlo, while demonstrating favorable anti-tumor effects—

over 90% tumor regression—and extending the median survival time of

mice to 36 days (90, 91).

In further investigations, Shi et al. developed paclitaxel-loaded

liposomes (PTX-TR-Lip) by combining TR peptide with pH-

responsive and integrin avb3-specific carriers, effectively

promoting penetration through the blood-brain barrier to target

gliomas (92). Additionally, Li et al. constructed paclitaxel-loaded

liposomes by incorporating the cell-penetrating peptide dNP2 along

with pH-sensitive folic acid (FA), significantly enhancing cellular

permeability and augmented the tumor-targeting efficacy of

chemotherapeutic agents (93). Furthermore, Shi et al. developed a
Frontiers in Immunology 06
dual-functionalized thermosensitive lipid system (DOX@P1NS/

TNC-FeLP) that integrates a glioma-specific cell-penetrating

peptide (P1NS) with an anti-glioma antibody (TN-C), enabling

precise traversal of the blood-brain barrier (94). Subsequently, Li

et al. found that the co-utilization of transport protein (TP) peptides

significantly enhanced the cellular uptake efficiency of liposomes.

As an amphipathic cell-penetrating peptide, TP peptides facilitate

paracellular uptake of liposomes via specific receptors and

demonstrate high sensitivity to inhibitors targeting macrophage

phagocytosis pathways. This finding establishes a foundation for the

novel applications of TP peptides in cancer therapy (95).
3.3 Self-assembling into nanoparticles

CPPs, as a class of polycationic molecules, effectively facilitate

the intracellular uptake of nanoscale cargo. The CPP-nanoparticle

hybrid system represents an innovative approach in the fields of

drug delivery and molecular biology This hybrid system integrates

the cell-penetration capabilities of CPPs with the versatility of

nanoparticles to enhance the delivery efficiency of therapeutic

agents and genetic materials, effectively targeting tumor cells,

reducing side effects, and improving therapeutic outcomes. To

further explore the applications of CPPs, Moataz Dowaidar et al.

conducted studies on their classification, absorption mechanisms,

and hybrid carrier systems involving nanoparticles, highlighting the

potential of CPPs for transporting siRNA and other cargo (96).

Researchers have extensively utilized nanoparticles modified with

CPPs to deliver anticancer chemotherapeutic drugs to the brain for

glioma treatment. For instance, Lakkadwala et al. developed a dual-

functional liposome delivery system by combining CPPs with

transferrin lipid nanoparticles while loading 5-fluorouracil (5-FU),

successfully crossing the blood-brain barrier and significantly

increasing 5-FU accumulation in tumor cells, along with its

antitumor efficacy (97). Additionally, Kang et al. described a novel

CPP characterized by an amino acid sequence comprising serine-

isoleucine-tyrosine-valine (SIWV), which demonstrated significant

homing ability toward glioblastoma brain tumors both in vitro and

in vivo. They also investigated the potential combination of this CPP

with porous silicon nanoparticles (psiNPs), which markedly enhanced

selectivity and therapeutic efficacy in glioblastoma mouse models (98).

Besides, tumor imaging is also a crucial step in the process of tumor

treatment In 2021, Dai et al. explained that combining highly active

aggregation-induced emission nanoparticles with PEG-polymers

enhanced the biological activity of nanoparticles, which was more

beneficial for tumor imaging and increased the accuracy of tumor

diagnosis (99).

Furthermore, Silva et al. performed functionalization experiments

on well-characterized nanolipid carriers (NLCs) using a

straightforward and efficient adsorption method with three distinct

peptide sequences. Zeta potential analysis confirmed successful peptide

adsorption and indicated that various non-covalent interactions may

be involved in this process. Computer simulations revealed a

substantial interaction between CPP MAP and the NPY Y1 receptor,
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suggesting its potential significance in biological applications (100).

Lastly, in 2023, Sugimoto et al. developed a highly functional KK-(EK)4

lipid and assessed its efficacy as a novel CPP-modified lipid for

enhancing intracellular nanoparticle transport. They found that,

compared to unmodified exosomes (EVs) and mRNA-encapsulated

lipid nanoparticles (mRNA-LNPs), KK-(EK)4-lipid-modified carriers

exhibited significantly improved cell-binding capacity and enhanced in

vitro protein expression levels—further underscoring the promise of

CPPs for intracellular delivery applications (101). Collectively, these

studies underscore that the integration of CPPs with nanoparticles

provides critical support for advances in modern medicine

and biotechnology.
4 Application of CPPs in clinical trials

CPPs have demonstrated significant potential for clinical

applications in oncology, particularly in cancer prevention and

treatment, garnering increasing attention from researchers (102).

These peptides not only exhibit a remarkable capacity to efficiently

traverse cell membranes but also possess the ability to selectively

target specific cellular organelles with large biomolecules, thereby

greatly enhancing drug delivery efficiency while minimizing side

effects. This advancement offers novel insights and directions for

cancer prevention and treatment (103, 104). Some studies have

shown that some CPPs have been used in clinical studies to inhibit

tumor growth. For example, based on the evidence provided by

clinical pharmacological research that there is no significant toxicity

or immunogenicity, p28 has entered phase I clinical trials. In clinical

practice, the combination of CPP DTS-108 and the antirectal cancer

drug irinotecan significantly reduces gastrointestinal cytotoxicity

compared to using irinotecan alone (105). Fifteen patients received

intravenous injections of p28, which showed good tolerability and

safety, indicating that p28 appears to have anti-tumor activity in

advanced cancer patients (106). These findings underscore the

extensive clinical applicability of CPPs in tumor management.

Previous preclinical investigations indicate that CPP-based

therapeutic strategies not only yield promising outcomes in

oncology but also offer fresh perspectives on treating various other

diseases. As clinical research progresses, it is anticipated that CPPs

will assume an increasingly pivotal role in oncological treatments.
4.1 The clinical trial of activatable cell
penetrating peptides

ACPPs are a novel class of in vivo targeted drugs, formed by a

CPP that binds to a polyanion through a cleavable linker. Jiang et al.

proposed the mechanism of ACPPs, where cleaving the linker to

break down its structure, allowing the cationic peptide and its cargo

to attach or enter the cell. Then, matrix metalloproteinases (MMPs)

were used to cleave ACPP and combine with fluorescent groups for

tumor imaging. This could concentrate molecules on cells and in

areas adjacent to extracellular lytic activity within cells, ACPP
Frontiers in Immunology 07
became a new strategy for selectively delivering molecules to

tumor cells (107). Subsequently, various studies were conducted

on ACPP. For example, in 2009, Olson et al. demonstrated through

their study of the structure and in vivo effects of ACPPs that ACPPs

have the advantages of high resolution, enzyme specificity, and in

vivo tumor imaging. Additionally, due to their elevated

permeability, ACPPs can serve as an effective sensor for in vivo

proteases. At the same time, they also showed that ACPP could

target numerous xenograft tumor models from different cancer

sites, including spontaneous breast cancer transgenic models (108).

These studies indicate that ACPP has great potential in

tumor research.
4.2 The clinical trial of therapeutic
agent p28

p28 is an effective therapeutic agent that can serve as a tumor-

targeting carrier molecule to preferentially penetrate cancer cells

(109). It is highly water-soluble and stable, and no significant side

effects or immunogenicity were observed in clinical treatment. The

primary objective of the study through the Phase I clinical trial was

to determine the level of no observed adverse effects (NOAEL) and

maximum tolerated dose (MTD) of p28 in adult patients with

advanced solid tumors. These patients had advanced tumors that

did not respond to conventional treatments and were expected to

survive for approximately six months in this setting. Fifteen patients

received p28 intravenously under an accelerated titration 3 + 3 dose

escalation design. p28 was well tolerated with no significant adverse

events, suggesting that it appeared to have antitumor activity in

patients with advanced tumors (106). Another Phase I trial of p28 as

a single agent in children with central nervous system (CNS)

tumors was conducted. Children with recurrent or progressive

CNS tumors received p28 intravenously at a dose of 4.16 mg/kg/

dose (the recommended Phase II dose for adults) using a rolling 6

study design. While adult p28 doses were tolerated in adolescents,

similar results were observed, further suggesting that p28-based

treatments could be administered in all age groups. Results from

these trials established that p28 was safe and well tolerated at the

recommended Phase II dose (RP2D). Although p28 shows

preliminary efficacy, further development of the drug in

combination with other agents may prove more promising (110).
4.3 The clinical trial of ST101

ST101 is a leucine zipper peptide with the ability to penetrate

cells, and it is expected to be used for clinical treatment of cancer

(106). ST101 is currently undergoing clinical trials for brain cancer

and other solid tumors. In particular, ST101 has shown impressive

anti-tumor activity in subcutaneous xenograft models. According to a

report by ClinicalTrials.gov in July 2020, a “ Phase I-II study of ST101

in advanced solid tumor patients” (NCT04478279) was conducted.

The abstract presented for the first time at the November 2022
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meeting of the Society for Neuro-Oncology reported the results of a

Phase II study of the first class peptide antagonist ST101 in recurrent

glioblastoma. This study recruited adult cancer patients who relapsed

after a standard treatment regimen. The treatment with ST101

involves intravenous injections of 500 mg per week. After 18 weeks

of observation, only 1 out of 7 patients showed a partial response

according to mRANO criteria. Although the study is still in its early

phase, the apparent safety and efficacy of the drug are currently

encouraging (111, 112).
5 Conclusions

Over the past decade, numerous studies have elucidated that cell-

penetrating peptides (CPPs), acting as carriers for therapeutic agents,

hold significant promise in the treatment of various cancers by

efficiently delivering multiple biologically active cargos into cells,

particularly in the context of tumor therapy. CPPs not only exhibit

low cytotoxicity and high transduction efficiency but also facilitate the

selective delivery of anticancer drugs, thereby reducing toxic effects on

normal tissues. Although CPPs have extensive application potential in

both fundamental research and clinical trials, CPPs still face challenges

such as insufficient biochemical stability, short half-life, and the

tendency to form cleaved peptides upon modification with drug

molecules. Consequently, covalently coupling CPPs with

biomolecules to form stable chemical bonds, ensuring the integrity of

both the CPP and cargo, or non-covalently assembling of CPPs with

nanocarriers, liposomes or micelles to significantly enhance delivery

efficiency, while utilizing non-natural amino acids to improve

pharmacokinetic properties, has become a focus of future research.
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