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Multiple sclerosis (MS) is a chronic autoimmune, inflammatory and

neurodegenerative disease affecting the central nervous system (CNS). MS is

associated with a complex interplay between neurodegenerative and

inflammatory processes, mostly attributed to pathogenic T and B cells. However,

a growing body of preclinical and clinical evidence indicates that innate immunity

plays a crucial role in MS promotion and progression. Accordingly, preclinical and

clinical studies targeting different innate immune cells to control MS are currently

under study, highlighting the importance of innate immunity in this pathology.

Here, we reviewed recent findings regarding the role played by innate immune

cells in the pathogenesis of MS. Additionally, we discuss potential new treatments

for MS based on targets against innate immune components.
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Introduction

Multiple sclerosis (MS) is an autoimmune disorder associated with significant

neurodegeneration and neuroinflammation. This disease is triggered by an autoimmune

response directed against myelin producing demyelinated areas in both the white and gray

matter of the brain and spinal cord. These lesions indicate loss of myelin and myelin-

producing oligodendrocytes, resulting in disrupted conduction of electrical impulses (1).

MS can be divided into 3 subtypes: relapse remitting MS (RMSS), primary progressive MS,

and secondary progressive MS (2). The most common type of MS is RRMS, which is

characterized by recurring episodes of neurological dysfunction, followed by clinical

recovery. The disease symptoms are heterogeneous and depend on the location of the

lesions in the CNS and range from sensory disturbances, bladder dysfunction, cognitive

deficits, limb weakness, ataxia, and fatigue (3).
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Even though the pathogenesis of MS is not fully understood,

there are many pieces of the puzzle that are starting to shape up,

with factors that may induce a primary inflammatory disease or a

primary oligodendroglial pathology followed by inflammation (4).

The multifactorial and complex interaction between genetic and

environmental factors plays an important role in triggering the

disease. The prevalence of the MS-risk allele HLA-DR15 and many

single nucleotide polymorphisms of genes that are important for the

differentiation or effector function of pathogenic T cells strengthens

the concept of immune-mediated disease with the contribution of

different risk factors: childhood obesity (3, 5), cigarette smoking (6–

8), Epstein-Barr virus infection (9–11), vitamin D deficiency (12–

14) and night shift work at young age (15–18).

If we recapitulate in the actual biological knowledge, MS is thought

to be caused by an autoimmune response towards central nervous

system (CNS) self-antigens in genetically susceptible individuals, where

autoreactive T cells are supposed to be the disease-initiating immune

cells (19). In the last decades, B cells were recognized as crucial immune

cells in this process, including antibody-dependent and independent

effects in the compartmentalized inflammation (20–22). Also, myeloid

cells are important contributors to the pathology, being central actors

in the disease progression, cortical atrophy, neurodegeneration, and

disability (23).

The acute inflammation consists of an invasion of monocytes and

lymphocytes into white matter (WM), with a lesser degree into deep

gray matter, with concomitant activation of microglia and astrocytes.

This demyelination leads to the formation of acute focal WM lesions,

formed by dense infiltration of myelin-laden macrophages,

lymphocytes, and important axonal loss followed by neurological

disorders and physical disabilities (24). Chronic inflammation results

from diffuse glial activation at the rim of chronic active lesions, which

can reach considerable distances into normal- appearing white

matter, with predominant lymphocytic inflammation in the

meninges and perivascular spaces. Meningeal inflammation is

typically diffuse but may also form follicle-like structures (25).

The available therapies for MS aim to shift the immune cell

repertoire from a pro-inflammatory towards an anti-inflammatory

phenotype, involving regulatory T (Treg) and B cells (mainly) and

anti-inflammatory macrophages (in clinical trials). Despite the clear

association of dysfunctional T and B cells in MS, during the last

years, mounting evidence of different innate immune cell types

involved in the pathogenesis of MS has emerged. This review gives a

conceptual overview on the different innate immune cell types

involved in MS pathology, discussing potential new targets for

treatment (26).
Innate immune cells in MS

Dendritic cells

Dendritic cells (DCs) are highly specialized antigen presenting

cells (APCs) with the unique ability to stimulate naïve T cells. First

discovered by Steinman et al. in 1973 and named because of their

dendritic shapes (27), DCs are constantly sensing pathogen signals

or damage-associated molecular patterns, patrolling in different
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anatomical locations (28). In this immature state, DCs have the

ability to capture and process antigens in a very efficient way, while

their capacity to activate naïve T cells is weak, because of the lower

expression of costimulatory molecules and cytokines (29). Once

DCs capture and process pathogens or damage-associated

molecular patterns, DCs go through a maturation process,

increasing the expression of costimulatory molecules and loading

antigen fragments into the major histocompatibility complex

(MHC), while they migrate into lymph nodes where they

efficiently activate and differentiate effector T cells (29).

Additionally, mature DCs in the presence of Interleukin (IL)-10

and IL-27 can block T cell activation and promote Treg expansion,

inducing immune tolerance (30). According to the developmental

origin, surface markers and transcriptome profiles, DCs can be

divided into three major subsets: Conventional DCs (cDCs), which

can be further divided into cDC1s and cDC2s, plasmacytoid DCs

(pDCs) and monocyte-derived DCs (moDCs) (31, 32). During

steady state, cDCs are distributed in lymph and non-lymphoid

tissues, and they are the main APC among DCs subsets, with cDC1

activating CD8+ T cells and cDC2 mainly activating CD4+ T cells

(33, 34). pDCs are mostly confined to lymphoid tissues in

homeostatic conditions and are capable of rapidly responding to

virus infection by producing high levels of type I interferons (IFNs)

(33, 34). moDCs develop from monocyte DCs progenitor under

inflammatory conditions, working together with cDCs in response

to inflammation or infection (35). Because DCs act as a bridge

between innate and adaptive immunity, they are key players in

autoimmune processes such as MS.

Even though it was first believed that the CNS was an

immunoprivileged site, early studies during 1990´s in rats showed

the presence of DCs in the meninges and the choroid plexus in

healthy conditions, and infiltration of DCs into the brain after

inflammatory conditions, suggesting that DCs could be playing an

important role in neuroinflammatory processes (36, 37). The use of

transgenic animals expressing enhanced yellow fluorescent protein

downstream of the DCs-associated CD11c promoter, confirmed the

presence of a small population of DCs in the CNS in homeostasis

and during different pathological conditions (38–40). An animal

model commonly used to study MS immunopathology is the

experimental autoimmune encephalomyelitis (EAE) mouse

model. As with MS, EAE is accompanied by lesion formation and

paralysis caused by immune cells invading the CNS. By using this

model, Matyszaki et al. found infiltration of DCs, characterized by

the expression of CD103 and MHC class II (MHCII), in different

lesions, mostly in perivascular regions but some DCs were also

found in the brain parenchyma (41). Soon after, DCs infiltration

into perivascular regions and in lesser extent into parenchymal

regions of brain and spinal cords were also observed in mice at the

peak stage of EAE (42). Although it was clear that DCs are capable

of invading the CNS during EAE, the contribution of DCs to induce

neuroinflammation during EAE was unclear, with contradictory

studies suggesting from one side that DCs inhibit T cell activation

reducing neuroinflammation (43, 44), while other studies showing

direct contribution of DCs to the induction and maintenance of

neuroinflammation in EAE (45, 46), although different DCs

maturation stages analyzed could in part explain these
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contradictory results. In fact, the intracerebral microinjection of

DCs cultured in different medium conditions showed that fully

mature DCs exacerbated the onset and clinical course of EAE, while

intracerebral microinjection of semi-mature DCs delayed EAE

symptoms (47). To try to clarify the role of DCs in EAE, the use

of constitutively or inducible DCs-depleted mice models were

developed, but again, contradictory results were obtained, with

some groups showing that DCs depletion leads to the loss of

tolerance to self-antigens and increased EAE symptoms while

other studies showed no major effect of DCs depletion over EAE

symptoms and progression (47–50). However, the finding that

CD11c is expressed in other APCs such as microglia, monocytes

and macrophages, makes it very difficult to distinguish the real

contribution of DCs in EAE versus the other immune cell types in

these CD11c-expressing cell ablation systems. To overcome this

problem, single cell mapping technology and the use of new

transgenic mice has been developed in the last years, to

specifically identify different DCs subsets and to interrogate the

contribution of each of these subsets in the development of EAE.

Thus, by mass cytometry technique together with high-dimensional

data mining, Mundt et al. found different APC populations,

including cDC1, cDC2 and pDCs, specifically in the outer

membrane of the meninges, the dura mater, at steady-state (51).

Next, by using the Cx3cr1CreERT2 strain, that allows specific

targeting of macrophages, monocytes or DCs depending on the

time that tamoxifen is given, where early tamoxifen treatment target

long-lived, self-maintaining cells such as microglia and

macrophages, whereas late tamoxifen injection target also DCs

and monocytes, this group found that cDCs, particularly cDC2

subset, but not microglia or macrophages, are necessary for the

activation of T cells in the CNS and to promote EAE pathogenesis

(51). By using a different approach based on single-cell RNA

sequencing analysis (scRNAseq) of different CNS compartments,

Jordão et al. analyzed multiple myeloid cell populations in steady-

state as well as during different stages of EAE (52). Again, although

DCs numbers are low at homeostatic CNS, this population increase

during EAE, and reduction of MHCII levels in DCs decreased EAE

severity, confirming a critical role of DCs during EAE (52).

Mechanistically, C-X-C chemokine receptor type 1 (CXCR1)

expression on DCs seems to be important in this process, since

specific ablation of CXCR1 on DCs reduces EAE severity in part

by reducing proinflammatory cytokine production by DCs (53).

All these results highlight the role of DCs, specifically cDCs, as the

main APC in the CNS during EAE and suggest that targeting DC

function could be a good strategy to treat MS. In fact, a recent study

showed that reducing cDC1 subset by the use of CXCR1-specific

chimeric antigen receptor (CAR)-T cells, decreased EAE symptoms

in a CD4+ T cell-induced passive EAE (54). Thus, targeting DCs

subsets could be a good therapeutic strategy to treat MS, although

more studies are needed to confirm these observations.

Soon after the observation of DCs in the CNS of different

animal models of MS, two populations of DCs, myeloid and pDCs,

were observed in the cerebrospinal fluid (CSF) from healthy

volunteers with increased numbers of pDCs in the CSF of

people with MS (pwMS) (55). In fact, pwMS during relapses

showed an increased number of pDCs in the CSF (56).
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Increased number of DCs inside of spinal cord and brains from

pwMS were observed, specifically in perivascular regions of MS

lesions where they contained myelin components, potentially

presenting antigens to CD8+ T cells (57). The increased number

of DCs in MS lesions could be explained in part by the increased

concentration of the chemokines monocyte chemotactic protein

(MCP) -1, -2 and -3 and CXCL10 (58, 59). Additionally, increased

expression of the chemokine regulated on activation normal T cell

expressed and secreted (RANTES) and macrophage inflammatory

protein (MIP)-1a/b in the CSF of pwMS have been detected,

together with increased expression of their receptor CCR5 in

peripheral cDCs of pwMS (60–62). Moreover, scRNAseq

analysis of cells from CSF of RMSS patients showed the

presence of cDCs and pDCs (63). A different single-cell analysis

study showed an increased proportion of cDCs in the CSF

compared to the blood from untreated relapsed pwMS (64). All

these data suggest that the accumulation of different DCs subsets

in perivascular regions of the CNS from pwMS could be

contributing to the increase of neuroinflammation by actively

presenting myelin antigens to T cells leading to their activation

and the perpetuation of the damage and suggest that, targeting

DCs could be a good strategy to reduce neuroinflammation

in pwMS.
Macrophages

Macrophages represent a heterogeneous group of immune cells

that can phagocytose, playing a key role in the initiation, triggering, and

resolution of an immune response, as well as repairing inflammation-

damaged tissues (65). Macrophages are found in almost all the tissues

in the body, where they have specific and different functions,

depending on specific stimuli within their microenvironment (66).

Based on in vitro experiments, macrophages can be broadly divided

into two different functional and metabolic states: M1 and M2

macrophages (67). While M1 or pro-inflammatory macrophages are

involved in inflammation and tissue destruction, M2 or anti-

inflammatory macrophages are related with inflammation resolution

and tissue repair (68). Although it is now clear that M1 and M2

macrophage classification is an oversimplification and represents the

extremes of a heterogeneous cells with a very high level of plasticity, it is

still useful today to evaluate the role of macrophages in different

inflammatory context such as MS (69).

Under homeostatic conditions, macrophages in the CNS can be

found in the meninges, perivascular space, and choroid plexus,

which are referred to as CNS-associated macrophages (CAMs) (also

known as border-associated macrophages (BAMs)) (70). CAMs are

highly heterogeneous and can be further divided depending on their

anatomical positions into meningeal macrophages (mmF), choroid

plexus macrophages (cpmF), and perivascular macrophages (pvmF)

(71). CAMs are constantly monitoring the CSF, searching for

harmful antigens, and also contributing to the drainage of CNS-

derived antigens (70, 72, 73). In pathological conditions, CAMs

expand and secrete pro-inflammatory cytokines and chemokines

that promote the recruitment of different immune cell population

leading to neuroinflammation (52).
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The first evidence that macrophages are important during the

development of EAE came from a study showing that macrophage

depletion with silica, a treatment that preferably depletes macrophages

but not DCs, reduces severity and delays the onset of clinical symptoms

when is administrated prior to EAE induction, and reduces EAE

symptoms when is injected after the appearance of the first clinical

signs (74, 75). By using mannosylated liposomes containing

dichloromethylene diphosphonate to deplete macrophages, Huitinga

et al. showed that intraperitoneal injection of the liposomes after the

appearance of clinical symptoms efficiently depletes macrophages,

drastically reducing EAE symptoms and diminishing the number of

infiltrating macrophages into the CNS (76). Moreover, intraventricular

injection of mannosylated clodronate liposomes, to specifically deplete

CAMs, showed reduction of clinical symptoms in the EAE mouse

model (77). However, these treatments failed to show specific

macrophage depletion, since other APCs could also be affected (78,

79). Thus, new strategies were developed to overcome these difficulties.

By using a combination of parabiosis experiment where two mice are

joined together resulting in a shared circulatory system, and

myeloablation, Ajami et al. found that monocyte infiltration and

differentiation into macrophages are essential for the EAE

progression and pathogenesis (80). Matrix metalloproteinase

[MMP]-2 and MMP-9 are two proteins mainly produced by

macrophages involved in leukocyte transmigration into the CNS

(81). By using the MMP-2 and MMP-9 double knockout mice,

Agrawal et al. showed that decreasing leukocyte transmigration and

macrophage accumulation in the CNS reduces EAE symptoms,

suggesting an active role of macrophages in neuroinflammation (81).

Specific subsets of macrophage infiltration occur at different times

during EAE progression. Thus, CNS is infiltrated with high levels of

M1 macrophages during the onset of the disease, but there is a gradual

increase in M2 macrophages during the recovery phase that is

associated with improved neurological impairment (82). By using

different strategies to either induce M2 macrophage polarization or

directly injecting M2 macrophages, it has been showed that this anti-

inflammatory macrophage population can reduce EAE symptoms (83–

86). Due to the high heterogeneity of macrophage populations (CAMs

and monocyte-derived macrophages) that infiltrate the CNS during

EAE, new experimental technologies were developed to study the

changes and contribution of these macrophage subsets during EAE

progression. By using scRNA-seq analysis of the different immune cell

types at different stages of EAE, Jordão et al. showed that during EAE,

CAMs are transcriptionally distinct from their counterparts during

homeostasis, demonstrating the plasticity of macrophages (52).

Moreover, local proliferation of CAMs, with increased expression of

MHCII, were evident during the onset of the disease, reaching the

highest proliferation at the peak of EAE (52). However, MHCII

ablation specifically in CAMs did not affect the development of EAE,

suggesting that CAMs are redundant at least for antigen presentation in

the CNS during EAE. All these results highlight the high heterogenicity

of macrophage populations, with different involvement during EAE,

but also suggest that treatments that favor M2 macrophage infiltration

could be a good therapeutic target to treat neuroinflammation.

Macrophage infiltration into MS lesions was described over

almost forty years ago (87). These macrophages express the
Frontiers in Immunology 04
inducible nitric oxide synthase (iNOS), a M1 marker, suggesting a

proinflammatory phenotype (88). In an attempt to further

characterize the phenotype of macrophages in MS lesions, Vogel et

al, using a panel of typical M1 and M2 markers showed that myelin-

laden macrophages in the demyelinated lesion area express high

levels of the M1 markers CD40, CD86, CD64 and CD32 (89).

Interestingly, M2 markers CD206 and CD163 were also strongly

expressed by pvmF. Moreover, co-expression of CD40 and CD206

showed close to 70% of infiltrating macrophages positive for both

markers, indicating an intermediate activation status (89). By using

iron-sensitive magnetic resonance imaging, it was recently confirmed

the increase in CD163 expression in myeloid cells from chronic brain

active lesion of postmortem in pwMS (87). Applying imaging mass

cytometry, Park et al. found the presence of macrophages

phagocyting in active lesion of pwMS with differential phenotype

depending on the position, from highly activated macrophages in the

edges into less activated macrophages in the lesion center, that is in

line with the simultaneous expression of pro- and anti-inflammatory

markers by macrophages in MS lesions described by Vogel et al. (89).

Thus, macrophages in the MS lesions are an heterogenous population

with mixed pro- and anti-inflammatory phenotypes, capable of

phagocyting myelin and interacting with other immune cells.

Whether targeting macrophage population could alleviate MS

symptoms needs to be addressed.
Microglia

Microglia are highly specialized parenchymal-resident

macrophages, important in mediating inflammatory and immune

responses inside the CNS. While in developmental stages microglia

regulates synaptic plasticity by modulating synaptic formation and

elimination and shaping embryonic brain circuits, in adult stages

microglia contributes to maintain homeostasis by participating in

myelination and pruning processes or responding to pathological

threats, acting as a first line of defense against pathogens or tissue

injury, actively phagocyting and presenting antigens to T cells (90–

92). Under homeostatic conditions, microglia are found in a resting

state, characterized by a rod-shaped soma, several ramifications and

decreased phagocytic conditions, while in an activated state microglia

acquire an amoeboid shape, retracting their ramifications and

increased their phagocytic and migratory capabilities (93).

Microglia, in a similar way than macrophages, can be divided into

a M1 and M2 population, although a continuum of intermediate

phenotypes can be found (94). M1 microglia produces

proinflammatory cytokines such as TNF-a, IL-6 or IL-1b and is

involved in inflammation, while M2 microglia produces mainly IL-4

and IL-13 and is related to anti-inflammatory and healing processes

(95). Because this dual role of microglia in inflammation and healing

processes, these cells are considered to be a double-edged sword,

where M1 microglia are necessary to fight against infection, but later

M2 microglia need to expand to reduce inflammation and start

healing processes, suggesting that a subtle balance in timing and

expansion of M1 and M2 microglia are important for keeping the

CNS homeostasis, and, as a corollary, a disbalance of both cell
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populations could contribute to neuroinflammatory and

neurodegenerative disorders (96).

A relationship between microglia and MS came from early studies

in animal models showing the presence of microglia in spinal cord

lesions, together with the capacity of purified microglia to support an

effector response by an encephalitogenic myelin basic protein-reactive

CD4+ T cell line (97, 98). In fact, microglia activation occurs prior to

the development of symptoms, suggesting that microglia are necessary

for the development of EAE (99). First attempt to dissect the role of

microglia in EAE came with a study byHeppner et al. where, by using a

CD11b-HSVTK transgenic mice, all CD11b+ cells, including

macrophages and microglia, express the herpes simplex thymidine

kinase and after ganciclovir administration, it blocks cell activation,

generating a “paralysis” of microglia andmacrophages, that ameliorates

EAE symptoms (100). However, because of the similarities between

microglia and macrophages markers, it was difficult to specifically

dissect the role of microglia during EAE progression. In line with this

observation, the inhibition of the Colony-Stimulating Factor 1 Receptor

(CSF1R) by the PLX5622, reduced both microglia and infiltrating-

macrophage population and reduced EAE pathogenesis (101, 102). The

use of scRNA-seq analysis as an alternative to overcome this limitation

has shown heterogenicity ofmicroglial populations both at homeostasis

and during EAE (52). At the peak of the disease, microglia expand

dramatically, although reducing MHCII expression in this population

did not affect EAE progression, suggesting a redundant function of

microglia on T cell activation (52). Recently, it has been shown that

CD83 expression in microglia is important for regulating their

function, by a study showing that specific deletion of CD83

expression in microglia promoted an over-activated phenotype,

increasing the production of TNF and exacerbating EAE symptoms

and neuroinflammation, suggesting that microglia, by modulating the

microenvironment, could participate in the propagation of the neuro-

inflammatory damage in the CNS during EAE (103). However, more

studies are necessary to specifically dissect the role of microglia during

EAE. Additionally, to the possible role in promoting inflammation and

damage during EAE, some studies have suggested that microglia could

be playing protective roles during the development of MS, by the

production of immunosuppressive factors that could mediate myelin

regeneration or myelin clearance, that ultimately leads to better

recovery (104–106). An explanation for this dichotomous behavior

could be attributed in part to different activation states; the rapid

expansion of different microglia populations during disease; or the

interaction with other immune cell types during neuroinflammation.

The search of new specific markers to differentiate microglia from

infiltratingmacrophages, together with the development of new genetic

or pharmacological approaches to specifically target microglia will be

necessary to have a clear picture of the specific role of microglia

during EAE.

Clusters of microglia, called microglia nodules, in brain lesions

of pwMS have been described for over 30 years (107, 108). The

appearance of these microglia nodules occurs before the MS lesion

formation and persist throughout the entire course of the disease

(109–112). Microglia nodules are highly phagocytic, produce

inflammatory cytokines and radical oxygen species (ROS), which

could contribute with axonal damage and degeneration (113–115).

A recent study has tried to characterize the microglia nodules in MS
Frontiers in Immunology 05
lesions by using different genetic, molecular, and cellular

approaches (116). Strikingly, microglia nodules are in areas with

active axon demyelination; they have increased pro-inflammatory

and ROS-related gene expression; they are in close contact with

other immune cell types such as infiltrating macrophages; and

correlated with severe MS pathology, suggesting that microglia

nodules are participating in the initiation of lesions and the

promotion of neuroinflammation in pwMS (116). Further studies

considering the time course of the disease are necessary to confirm

these findings, to consider microglia as a therapeutic target for MS.
Neutrophils

Neutrophils are the most abundant leukocyte in the blood,

representing around 40% to 70% of all white blood cells in humans

and 10-25% in mice (117). Neutrophils are generated in the bone

marrow and released into the blood, where they can live for some

hours, around 10 h in mice and 18 h in humans, and they can be

rapidly recruited to sites of infection, by following chemoattractant

gradients to reach compromised tissues, working as a first line of

defense against invading microorganisms (118–120). ROS

production, phagocytosis, and the formation of neutrophil

extracellular traps (NETs) are among the main mechanisms used

by neutrophils to fight pathogens (121, 122).

Although it was thought that the antimicrobial activity was the

main function of neutrophils, emerging evidence from the last 15 years

has showed that neutrophils are able to produce cytokines, to interact

with other immune cell types and also to express MHCII, suggesting

that they can activate CD4+ T cells, modulating adaptive immunity

(123–126). In fact, neutrophils can be found in non-inflamed tissues

and in lymph nodes during homeostasis, suggesting that neutrophils

can be also contributing to tissue homeostasis (125, 127). Due to its

varied functions, several lines of evidence suggest that neutrophils

dysfunction could be implicated in the pathogenesis of different

autoimmune disorders including MS (128).

First evidence suggesting a role of neutrophils in EAE came from

studies showing neutrophils accumulation in blood, spleen,

peripheral lymph nodes, meninges and CNS during different stages

of EAE progression (129–133). Blockade of neutrophil accumulation

in circulation or neutrophil depletion, particularly at early stages,

reduces EAE severity, suggesting a direct involvement of neutrophils

in EAE progression (132, 133). Glutamic acid-leucine-arginine-

positive (ELR+) chemokines (CXCL1, CXCL2 and CXCL6), which

are produced by Th17 cells, and granulocyte-colony stimulating

factor (G-CSF), produced by fibroblasts and epithelial cells after

stimulation by Th17 cells, are important chemokines that mediate

neutrophil recruitment into the CNS (133, 134). In the CNS,

neutrophils seem to be involved in the blood-brain barrier (BBB)

breakdown, and to support the activation of microglia and CNS-

infiltrating macrophages, amplifying neuroinflammation (135, 136).

NETs formation in the brain and spinal cords of animals suffering

EAE has been also recently reported, which could facilitate the

recruitment of Th1 and Th17 cells into the CNS (137). In the

periphery, neutrophils seem to be important in the clonal

expansion of autoreactive T cells in peripheral lymph nodes, as
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suggested by a recent study showing that reducing neutrophil

accumulation in lymph nodes attenuate CD4+ T cell expansion

and decreases EAE clinical score, by a mechanism dependent on

TLR9 (132). Thus, neutrophils seem to contribute to EAE

pathogenesis in different anatomical location; in the periphery, by

activating and expanding autoreactive CD4+ T cells in peripheral

lymph nodes and possibly the meninges, and in the CNS, by directly

affecting BBB permeability, together with supporting the activation of

microglia and CNS-infiltrating macrophages and promoting the

recruitment of autoreactive T cells into the brain and spinal cord,

all of which leads to neuroinflammation.

Initial studies about the role of neutrophils in pwMS were

conflicting, with some studies showing increased neutrophil

priming and neutrophil-producing molecules while other papers

showed unaltered or even reduced neutrophil activity in peripheral

blood from pwMS (138, 139). The difficulty of specifically analyzing

neutrophils from other leukocytes in the blood could explain these

contradictory results. In fact, the development of better neutrophil

markers has confirmed elevated neutrophil count during MS clinical

relapses compared to remission (140). Moreover, the neutrophil-to-

lymphocyte ratio (NLR), has been found to be higher in blood from

pwMS compared to healthy controls, although no differences between

RRMS and progressive MS patients were found (141). A recent

retrospective study confirmed the potential use of NLR as predictor

of increased relapse rate and severity in MS (142). Blood neutrophils

from RRMS patients have higher inflammatory markers, produce

more pro-inflammatory cytokines and ROS and are resistant to

apoptosis (143). Detection of neutrophils in the CSF of pwMS,

particularly at early stages, suggests a direct involvement of

neutrophils in the autoimmune damage (144). Additionally,

increased levels of NETs and neutrophil elastase have been found

in blood from pwMS compared to healthy volunteers, specifically in

RRMS patients, suggesting an active role of neutrophils during

inflammation (145). All these results suggest that neutrophils have

a more activated phenotype in pwMS, and by different modes of

action, involving increased production of pro-inflammatory

cytokines, NETs formation, and ROS production, could contribute

to the autoimmune damage in pwMS.
Innate lymphoid cells

Innate lymphoid cells (ILCs) represent a subset of immune cells

that share characteristics with classical lymphoid T cell subsets but

are devoid of the antigenic presentation requirement for their

activation. These cells express transcriptional regulators and

effector cytokines similar to helper T cell subpopulations and,

based on their molecular expression profile, are classified into

three groups. ILC1s, which consists in conventional natural killer

(NK) cells and so-called helper ILC1; both expressing the

transcription factor T-bet and promoting type 1 immunity, are

critical for controlling intracellular microbial infections and

restraining tumor development. Functionally, NK cells have

strong cytotoxic potential, expressing granzymes and perforins,

whereas helper ILC1s produce much higher concentrations of

IFN-g than NK cells (146). Group 2 ILCs are dependent on the
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transcription factors GATA3 and RORa and produce the type 2

cytokines IL-4, IL-5, IL-9, and IL-13 (147–149). ILC2s plays

protective roles in the expulsion of intestinal parasites and tissue

repair, but also mediate detrimental host immune responses

depending on timing, location, and physiological context.

Interestingly, ILC2s, despite its scarcity, is the dominant innate

lymphoid cell population in the lung, indicating a key role as first

responder and amplifier upon immune challenge at this site (150).

Group 3 ILCs includes fetal lymphoid tissue-inducer (LTi) as well as

adult ILC3s, both depend on RORgt, but their distribution and

functions are distinct. Specifically, LTi cells mediate the

development of lymphoid tissues during embryogenesis via the

production of lymphotoxin, while ILC3s is highly enriched in the

gut, where they sense and integrate a wide range of cell-derived

signals and environmental cues coming from microbiota and diet,

shaping their phenotype and functions (151). ILC3s secrete

different effector cytokines including IL-22, IL-17A, IL-17F, GM-

CSF and lymphotoxin-a3 (LTa3) (147, 149, 152, 153). Intestinal

ILC3s participates in the proper expression of tight junctions on

gut epithelial cells, preventing the activation of innate immune

cells through the stimulation of pathogen-associated molecular

pattern receptors and avoiding the activation of autoreactive T

cells by molecular mimicry (154–156). ILC-T cell interactions can

contribute to immune tolerance by depleting commensal bacteria-

specific T cells during homeostasis (157, 158), but also by

stimulating antigen-specific T cells and pathogenic Th1 cell

expansion in inflammatory conditions (158–161). Finally, ILCs

are not only present on mucosal surfaces but indeed can be found

in CNS during steady-state and inflammation. Even when ILC

subsets were initially described as tissue-resident cells that

proliferate locally, recent studies demonstrated that, in response

to inflammation, gut ILCs acquire migratory patrolling attributes

(162). ILCs can be recruited into extraintestinal tissues under

inflammatory conditions, such as mesenteric lymph nodes, lung

and CNS to promote an inflammatory T cell activation (163–165);

however, the exact mechanism driving the recruitment of ILCs into

the brain are still not well understood. Additionally, the role of ILCs

in MS is still not completely understood as controversial findings

have been reported assigning them either a protective or disease-

accelerating role, depending on the analyzed subset.

Studies in mice models have shown that in homeostatic

conditions, the three groups of ILCs reside both in the meninges

and choroid plexus (166), giving CNS-resident ILCs an advantageous

anatomical site to act as cerebral immune gatekeepers. Like their

adaptive counterparts, Th2 cells have been described as having a

neuroprotective role for CNS-resident ILC2s. Meningeal ILC2s has

emerged as a novel regulator of microglial activation and BBB

stability mediated by their IL-10 production (167). As MS

pathology is well known to be sexually dimorphic, hormone

differences between genders are associated to decreased levels of IL-

33 and restricted ILC2 activation in a female transgenic mouse model

of EAE, thus promoting increased susceptibility to developing the

disease (168). Activation of ILC2s through IL-33 stimulation limits

the Th17-dominated response characteristic of susceptible females

and drives a non-pathogenic Th2 anti-myelin response. This

evidence indicates that increased ILC2 function is associated with
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improved neurological outcomes in EAE. On the other hand, during

EAE, both ILC1s and ILC3s are able to infiltrate the brain

parenchyma, accumulating into the CNS. In particular, NK cells

are directly involved in the process of demyelination (3). Nonetheless,

the major fraction of CNS-infiltrating ILCs during disease belongs to

RORgt+ ILC3s and this accumulation is largely due to cell recruitment

rather than local proliferation, indicating migration from peripheral

tissues (169, 170). ILC3s in the CNS uniquely expresses the trafficking

receptors CCR6, CCR5, a4b7 and CXCR3, that are critical for the

entry of lymphocytes into the inflamed CNS through the circulation

(163). These receptors respond to ligands CCL20, CCL3/4, V-CAM1

and CXCL11, respectively, which are released from the CNS upon

neuroinflammation (171). Interestingly, T bet-dependent NKp46+

ILCs (a group that includes NK, ILC1 and ILC3) controls the

CNS parenchymal infiltration of myelin-reactive Th17 cells by

generating a proinflammatory-cytokine environment in the

meninges that is necessary for the reactivation and maintenance of

IL-17A-producing CD4+ T cells in the CNS (172), consequently

contributing to the propagation of neuroimmune response to CNS

injuries. In addition to pro-inflammatory cytokines IL-17 and GM-

CSF, meningeal ILC3s constitutively express CD30L and OX40L,

denoting that ILC3s sustain neuroinflammation by supporting T cell

survival and reactivation in the meninges (169). Inflammatory ILC3s

derived from circulation infiltrates the CNS, are located in the

proximity of T cells, and works as APCs that restimulate

autoreactive T cells, performing complementary but non-redundant

roles with conventional DCs that also act restimulating T cells after

entry into the CNS (163). This complementary role might be

regulated by the distinct localization of these cell types; ILC3s are

enriched within focal lesions of the CNS parenchyma, while DCs are

mostly concentrated at border-associated brain dura meninges and

spinal cord leptomeninges. Collectively, this evidence indicates that

ILCs are essential in CNS inflammation and reveals the potential of

harnessing peripheral tissue ILCs for the prevention of MS.

Human studies have showed that NK cells participate in the

process of demyelination, supporting the notion of a disease-

accelerating role in this cell type. Saikali et al, showed that

oligodendrocytes from pwMS express ligands for the activating NK

cell receptor NKG2D that were not detected in healthy control samples,

and that blocking NKG2D on NK cells significantly inhibited the

killing of oligodendrocytes, suggesting a NKG2D-mediated killing

mechanism for tissue injury in MS (173). Accordingly, EAE

symptoms are reduced in NKG2D-deficient mice (174). In fact,

NKG2D ligands, particularly UL16-binding protein 4 (ULBP4), was

found to be highly expressed in active and chronic active lesions and

normal-appearing white matter of pwMS compared to healthy controls

(175). NKG2D ligands can also be shedding and soluble NKG2D

ligands are elevated in the serum of pwMS (176). NK cells, CD4+ and

CD8+ T cells seem to be the main immune cells involved in the killing

mechanism mediated by NKG2D, although more experiments are

needed to specifically dissect the contribution of each of these cell types

in this process (177).

Epstein-Barr virus (EBV), a herpesvirus present in 90% of adults

worldwide, has been considered to be an important factor in MS

pathogenesis, mainly because molecular mimicry of EBV antigens

and proteins expressed in glial cells that generate autoimmune
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responses (178, 179). However, only a small percentage of EBV-

infected people develop MS, indicating that additional mechanisms

should be compromised to developMS in this population. Recently, it

was shown that NK cells, particularly NKG2C+ and NKG2D+ NK

cells, are capable of controlling autoimmune damage by killing

autoreactive glial cells, and this process is dampened in pwMS

(180). This study highlights a protective role of a subset of NK cells

in MS pathogenesis, althoughmore studies are necessary to clarify the

specific role of different NK cell subsets in MS.

Cytomegalovirus (CMV), a herpesvirus, has a controversial role

regarding MS pathogenesis, with a study associating CMV with

lower MS susceptibility (181), while other study suggesting CMV

infection with enhanced MS symptoms (182). NK cells, together

with CD8+ T cells, are the main cells capable of eliminating CMV-

infected cells (183). Accordingly, pwMS have increased NKG2C

expression in NK cells compared to healthy donors, with the highest

expression in the CMV-seropositive pwMS compared to CMV-

seronegative pwMS, suggesting that CMV could promote NKG2C

expression in NK cells, although the mechanism involved or the

impact over NK cell function and MS pathogenesis are currently

unknown (184). Thus, the relationship between CMV, NK cells and

MS requires further studies.

Recent investigations showed a higher frequency of CD56bright NK

cells during relapse, indicating an immediate response to disease

reactivation, while CCR6-related shifts among this population

suggest altered ILC migration to the CNS during MS (185).

CD56bright NK cells are enriched in MS lesions and the choroidal

tissue from MS donors and display an activated and migratory

phenotype, similar to that of CD56bright NK cells in the circulation

(186). As such, the enrichment of CD56bright NK cells in the CNS of

pwMS could result from selective infiltration from the blood towards

the brain. NK are not the only ILC subset with the ability to migrate

into the CNS during MS, since ILC3s have also been detected in the

cerebrospinal fluid of pwMS and the frequency of these cells positively

correlates with the presence of higher lesions (163). Interestingly, both

ILC1 and ILC3 subsets expressed Sphingosine-1-phosphate receptor 1

(S1PR1), which explains their reduced absolute numbers in the

peripheral blood of RRMS patients treated with Fingolimod, a

sphingosine 1-phosphate receptor modulator used as a first-line

therapy for RRMS, compared with treatment-free pwMS (187),

suggesting that S1PR1 agonist sequesters peripheral blood human

ILCs in lymph nodes. Collectively, these data suggest that ILC1 and

ILC3 subsets migrate to the CNS and promote cytotoxicity and

inflammation in pwMS.
Mast cells

Mast cells (MCs), first described by Paul Ehrlich in 1878, are

multifunctional and heterogeneous cells characterized by the

expression of CD117, ST2 (also known as Interleukin 1 receptor-

like 1) and the high affinity receptor for immunoglobulin (Ig) E

(FceRI), and classically involved in a IgE-dependent allergic

responses against parasitic invasion. They circulate as progenitor

cells and populate different tissues, where they become mature MCs

by interacting with local stem cell factors. Thus, MCs are located at
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sites of contact with antigens and allergens: skin, around blood

vessels, bronchioles, mucous glands, and gut (188, 189). Upon

activation, MCs release granules containing histamine, proteases

(tryptase and chymase), prostaglandins, heparin, leukotrienes,

cytokines, chemokines, and growth factors (190, 191). MCs are

also located in the CNS, particularly in the leptomeninges, dura

mater, choroid plexus, parenchyma of the thalamic-hypothalamic

region, and cerebral side of BBB, suggesting that they could be

involved in CNS pathologies (192, 193). Under physiological

conditions, MCs maintain bidirectional communication with

neurons so that MCs-heparin secretion blocks calcium flow,

reducing neuronal communication, while neurons, through the

secretion of neuropeptides, stimulate adhesion, degranulation,

and secretion of cytokines and chemokines by MCs (191).

The role of MCs in the pathogenesis of EAE has been challenging

due to their non-circulating state in the blood, low representation in

tissues, and manipulation. Initially, a deleterious role of MCs in EAE

arose from studies using the mast-cell-deficient KitW/W-v mouse

model, that showed reduced clinical symptoms and delayed onset

of EAE, effect that was reverted by the transplantation of bone-

marrow derived MCs (194). Interestingly, bone marrow derived MCs

transplantation failed to repopulate MCs in the CNS, suggesting that
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peripheral MCs are important mediators in EAE (195). Even though

this early evidence, the use of a different MC-deficient mouse model,

the Kitw-sh mice, showed exacerbated EAE disease and increased T

cell response against myelin (196). The discrepancies between these

two models of MCs deficiency, could be explained in part by the

different immunization protocols, since the same group showed that

KitW/W-v animals showed reduced EAE symptoms at high, but not

low doses of antigen and adjuvants (196). Further studies showed a

pathogenic role of MCs located in the meninges, by contributing to

the infiltration of T cells into the CNS, in a process dependent on the

production of TNF byMCs (197). High numbers ofMCs are found in

the meninges, and KitW/W-v mice showed reduced T cell and

neutrophil infiltration into the meninges and brain parenchyma, a

process that can be reverted by intracranial mast cell reconstitution

(197). Other studies have shown that MCs could be involved in the

activation of different immune cells through the production of

proinflammatory cytokines and chemokine secretion such as MCP-

1, IL-6, and IL-33 (190, 198). MCs could also act as APCs,

establishing a fine bidirectional communication with T cells, where

MCs degrade myelin through their proteases and present antigens to

T cells, which in turn stimulate MCs to secrete MMP-9, IL-6, and

proteases, enhancing myelin destruction (199). Moreover, it has been
FIGURE 1

Overview of innate immune cells and pathways compromised during MS. During homeostasis conditions, besides microglia covering the brain and
spinal cord in a resting state, few innate immune cell types can be found in the CNS, mostly in the meninges and choroid plexus where they work
sensing and controlling possible threats such as pathogen infection. However, during MS, increased infiltration of innate immune cells in perivascular
regions and in the brain parenchyma is observed, promoting inflammation, immune cell infiltration and T cell activation that leads to
neuroinflammation, neurodegeneration and myelin damage. Additionally, innate immune cells in the periphery support inflammation by activation
and polarization of autoreactive T cells, that further contribute to MS pathogenesis.
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demonstrated that MCs, upon activation of the NLRP3

inflammasome, secrete IL-1b, which induces the release of GM-

CSF by T cells, a cytokine that enhances EAE pathogenesis (200).

Failure in NLRP3 function reduces demyelination and promotes

resistance to the development of EAE (193). Additionally, MCs, by

secreting IL-4, IL-10, IL-13, TGF-b, TNF-a, and IL-6, can promote T

cell differentiation into Th1, Th2, and Th17, while in an OX40L-

dependent way, MCs can suppress Treg function (190, 193, 201). It

has also been demonstrated that MCs interact with Th9 cells, which

have been implicated in the pathogenesis of EAE, and that through

the secretion of IL-9, they recruit MCs from the spleen to the CNS,

indicating that not only resident MCs but also peripheral MCs are

associated with EAE (202).

It seems that MCs have a dual role inside CNS in humans, since

the secretion of IL-6 by MCs at low concentrations is

neuroprotective and stimulates the proliferation of neuronal stem

cells; however, at high concentrations, it promotes neurotoxicity

(203). Similarly, the binding of TNF-a to its Tumor necrosis

factor receptor (TNF-R) 2 receptor induces neurogenesis, while

TNF-R1 activation is associated with neurodegeneration (191).

In addition to producing cytokines, MCs produce approximately

20-40% of cerebral serotonin, a neurotransmitter that may play

a dual role in MS depending on which receptor it binds to, since

H2Rs and H3Rs are neuroprotective, while H1Rs and H4Rs are

inflammatories (204). MCs also promote angiogenesis through the

secretion of VEGF, FGF-2, and Osteopontin (OPN), which in turn

stimulates VEGF secretion establishing synergy. Thus, MCs

promote increased recruitment of immune cells to the CNS (205).

Therefore, depending on the immune context and inflammatory

environment, MCs can act as detrimental or protective agents in

MS. In summary, the use of new MCs-deficient mice models is

necessary to help clarify the exact role of MCs during MS.
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Basophils

Basophils are short-lived innate immune cells characterized by

the presence of basophilic granules in the cytoplasm, representing

less than 1% of all leukocytes in the peripheral blood. Basophils

share several features with mast cells, including the expression of

the FceRI, but basophils express high level expression of IL-3 R

alpha/CD123, and they do not express CD117/c-kit (206).

Basophils, by expressing MHCII and co-stimulatory molecules,

are capable of presenting antigens to CD4+ T cells and are

believed to be important in promoting Th2 cell differentiation

through the production of IL-4 (207). However, additionally to

IL-4, basophils can produce IL-6, a cytokine important in mediating

a Th17 response, suggesting that they are important mediators in

Th17 cell-mediated immune responses (208). The role of basophils

in EAE has been first drawn by a seminal study showing that

basophils, by actively secreting IL-6, support Th17 polarization by

DCs (209). Because Th17 cells are important mediators in EAE, this

study suggests that basophils could contribute to the autoimmune

damage by indirectly supporting Th17 cell polarization. In fact, by

using basophil-deficient mice, the authors found reduced EAE

clinical score together with a reduction in the number of CD4+ T

cells that infiltrate CNS and decreased levels of IL-17 production by

these cells (209). This study suggests a direct role of basophils in

promoting autoimmune damage in EAE, although more research is

necessary to confirm and expand these findings. Moreover, elevated

number of basophils have been observed in the blood of pwMS

compared to healthy controls, although the significance of this

observation over the development or progression of MS remains

unknown (210). Thus, more studies are necessary to understand the

role of basophils during MS. A summary of innate immune

components involved in MS pathogenesis is shown in Figure 1.
TABLE 1 Pathogenic and protective roles of innate immune cells in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE).

Cell type MS EAE

Dendritic cells Accumulation of different DCs subsets in perivascular regions of
the CNS contributing to the increase of neuroinflammation by
actively presenting myelin antigens to T cells (60–64).

cDC2 are necessary for T cell activation to promote EAE pathogenesis (51).
Levels of MHCII on cDCs correlates with disease severity (52).

Macrophages In MS lesions exists an heterogenous populations of macrophages
with pro- and anti-inflammatory phenotypes (89).

MMP produced by macrophages promotes leukocyte transmigration into the
CNS (81). M1 infiltration is higher in disease onset, while M2 increases during
recovery phase of the disease (82).

Microglia Microglia nodules are present in areas with active axon
demyelination, promoting neuroinflammation in MS
patients (116).

By modulating the microenvironment, microglia participate in the propagation
of the neuroinflammatory damage in the CNS (103).

Neutrophils In MS patients present a more activated phenotype that
contributes to autoimmune damage (143, 145).

Involved in the BBB breakdown, activation of microglia and CNS-infiltrating
macrophages (135, 136) and the recruitment of Th1 and Th17 cells to
CNS (137).

Innate
Lymphoid Cells

NK cells have dual role, a disease-accelerating role in MS by
participating in the process of demyelination (173), and a
protective role by killing autoreactive glial cells (180).

Increased ILC2 function is associated with improved neurological outcomes in
EAE (167, 168). ILC1s and ILC3s promote autoimmune response by controlling
CNS parenchymal infiltration of Th1 and Th17 cells (172).

Mast cells Depending on the immune context, inflammatory environment
and magnitude of the response, MCs can act as detrimental or
protective agents in MS (203–205).

Mast cells promote EAE pathology by contributing to the infiltration of T cells
into the CNS in a TNF-dependent manner (197), enhancing myelin destruction
(199) and suppressing Treg function (190, 193, 201).

Basophils Elevated number of blood basophils in pwMS compared to
healthy controls, with unknown relevance for MS
progression (210).

Basophils contribute to the autoimmune damage by indirectly supporting Th17
cell polarization (209).
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Conclusions and perspectives

MS is a complex disease not only because there is no cure for it,

but also because its cause is unknown. MS is therefore a disease that

presents several challenges in its diagnosis, treatment and

management. Some of the key challenges and future directions lie

not only in effective and personalized treatment, but in early and

accurate diagnosis. While there are treatments to manage the

symptoms of MS, there is no known cure. Hence, it is necessary

to have a better understanding of the inflammatory processes that

contribute to the development of this disease, as well as the

modulation of these processes. In this sense, a complex interplay

between immune cells coordinates the cascade of inflammatory

events that contributes to development of the disease in MS.

Adaptive immunity has been studied extensively over the years,

but less emphasis has been placed on innate immune changes that

occur in MS. As a result of this, current approved MS therapies

primarily target peripheral lymphocytes and thus are mainly

effective in treating RRMS. In progressive MS, where the adaptive

immune response plays a less prominent role, microglia and CNS-

associated macrophages are activated in a pro-inflammatory

phenotype that promotes demyelination and neurodegeneration.

However, to date, there are no specific therapies targeting primarily

innate immune cells in MS. As the role of innate immune cells in

MS becomes better described (see Table 1), it will be possible to

design novel approaches to therapeutically target both central and

peripheral innate immunity to promote remyelination, reduce

neuroinflammation and increase CNS repair in pwMS.

Finally, a multidisciplinary approach incorporating

collaboration between neurologists, immunologists, geneticists

and other experts could certainly help advance the understanding

of MS and develop more effective treatments that involve not only

neuroinflammation but also neurodegeneration and repair.
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