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Background: Disulfidoptosis is increasingly linked to cancer progression, yet its

immunological impacts and prognostic value in lung adenocarcinoma (LUAD)

remain poorly understood. This study aims to delineate the predictive

significance of disulfidoptosis-related genes (DRGs) in LUAD, their potential as

therapeutic targets, and their interaction with the tumor microenvironment.

Methods: We analyzed the expression profiles of 23 DRGs and survival data,

performing consensus clustering to identify molecular subtypes. Survival analysis

and gene set variation analysis (GSVA) were used to explore cluster differences.

Key DRGs were selected for Cox and LASSO regression to develop a prognostic

model. Tensin4 (TNS4), a key gene in the model, was further evaluated through

immunohistochemistry (IHC) in LUAD and normal tissues and gene knockdown

experiments in vitro.

Results: Two clusters were identified, with 225 differentially expressed genes. A

six-gene signature was developed, which classified LUAD patients into high- and

low-risk groups, showing significant survival differences. The risk score

independently predicted LUAD prognosis and correlated with immunotherapy

responses. IHC showed elevated TNS4 levels in LUAD tissues, while in vitro TNS4

knockdown reduced both cell proliferation and migration.
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Conclusion: This study highlights the role of DRGs in LUAD, with a validated gene

signature offering new avenues for targeted therapies, potentially improving

LUAD treatment outcomes.
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1 Introduction

Lung cancer remains the primary cause of cancer-related

mortality worldwide, with an estimated 1.8 million deaths

annually (1, 2). In China, it tops the list of cancer incidences with

around 1,060,600 new cases reported in 2022, making up 22.0% of

the total cancer diagnoses (3). Lung adenocarcinoma (LUAD), the

most common form of non-small cell lung cancer (NSCLC),

represents about 40% of all lung cancer diagnoses (4). Despite

available treatments such as surgery, radiation, chemotherapy,

immunotherapy, and targeted therapy, the five-year survival rate

for lung cancer hovers around 19.7% (5, 6). Thus, improving

survival rates, enhancing quality of life, and precisely predicting

tumor prognosis are critical challenges in cancer treatment (7).

Disulfidoptosis represents a unique type of cellular demise that

deviates from conventional pathways of programmed cell death,

primarily due to a disruption in cysteine uptake and NADPH

availability. This deficiency in NADPH leads to the formation of

abnormal disulfide bonds in actin cytoskeletal proteins. Such

anomalies result in an accumulation of disulfide compounds,

inducing disulfide stress that adversely affects the actin

cytoskeleton. The resulting sequential disturbances dismantle the

actin structure, ultimately leading to cell death (8–10).

In this study, we have pinpointed genes regulated by

disulfidptosis that enable molecular subtyping of LUAD.

Furthermore, we established a risk score model utilizing

disulfidoptosis-related genes (DRGs) to forecast LUAD patient

outcomes. The model stratified patients into high-risk and low-

risk groups, examining their survival rates, tumor immune

environments, and responses to immunotherapy. These findings

emphasize the role of disulfidptosis as a strong prognostic indicator

and a potential therapeutic target in LUAD.
2 Materials and methods

2.1 Data collection

We obtained LUAD datasets from the Cancer Genome Atlas

(TCGA, https://www.cancer.gov). The selection criteria included

histological confirmation of malignant LUAD and the availability of

RNA expression profiles alongside overall survival (OS) statistics.

The cohort under study included 561 patients.
02
2.2 CNV analysis and DRG
cluster establishment

Gene expression differences between tumor and adjacent normal

tissues were examined using the “limma” R package (11). Mutations

in LUAD samples from TCGAwere characterized for frequency using

the “maftools” script (12, 13). We analyzed copy number variations

(CNVs), which involve changes in the number of copies of genomic

segments, using the “RCircos” package (14). The clustering of LUAD

patients was performed using “ConsensusCluster Plus,” based on an

optimal number of clusters identified at the inflection point of the

sum of squared errors (SSE) (15, 16).
2.3 Functional enrichment analysis

Functional enrichment analysis was performed on the identified

clusters using the “GSVA” and “GSEABase” packages to uncover

pathways (17). Differential gene expression was analyzed using the

“limma” package, with a significance cutoff of p < 0.05. The

exploration of gene functions and pathways involved in Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) was facilitated through “ggplot2,” which generated

histograms, bubble, and circle diagrams.
2.4 Construction and validation of the risk-
scoring model

Initial screening with a univariate Cox model linked 225 DRGs

with patient OS, identifying 114 significant genes (p < 0.05). The

LASSO technique was applied to prevent overfitting within the

TCGA cohort. A multivariate Cox model was used to formulate a

prognostic risk-scoring equation based on the expression of specific

genes (18, 19). Risk score=[(0.412× Expression value of ZMAT4)

+(0.667× Expression value of AL031258.1)+[(-1.198)× Expression

value of LINC01374]+[(-1.117)×Expression value of AP002358.1]

+(0.167× Expression value of TNS4)+(0.169× Expression value of

NAMPTP1)+(1.201× Expression value of SCN5A)+(0.321×

Expression value of KLK8)+(0.782× Expression value of NOL4)

+(1.919× Expression value of AC104794.5)+(0.542× Expression

value of LINC00941)]. Patients were categorized into high- or low-

risk categories according to the median risk score. Differences in
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survival were analyzed using log-rank tests and visualized through

Kaplan-Meier plots, along with graphs depicting survival status, OS,

and risk score distributions within the training set (p < 0.05) (20).
2.5 Independent prognostic evaluation

The “Survival” package in R was used to perform both

univariate and multivariate Cox regression analyses to assess the

impact of clinicopathological factors and risk scores on survival

outcomes. Prognostic accuracies were assessed using time-

dependent ROC curves via the “timeROC” package, with a

significance level set at p < 0.05 (21–23).
2.6 Subgroup analysis

Our model’s predictive value was further evaluated by dividing

patients into specific subgroups according to various factors. These

included age groups (≤65 and >65 years), tumor stages (I-II and III-

IV), T stages (T1-2 and T3-4), N stages (N0 and N1-3), M stages

(M0 and M1), and gender (male and female). Survival predictions

were performed for each category, achieving statistical significance

with p-values below 0.05.
2.7 Tumor microenvironment and immune
profiling in LUAD

We applied ESTIMATE and CIBERSORT algorithms to define

the tumor microenvironment score and delineate the composition

of 22 immune cell subsets (24–26). Additionally, we examined

variations in immune checkpoint expressions across risk groups,

noting significance at p < 0.05.
2.8 Tumor mutation burden assessment

TMB was calculated using somatic mutation data from the

TCGA LUAD dataset, analyzed with “maftools” (27). We visualized

TMB distribution via a waterfall chart and examined correlations

between TMB scores and risk scores with survival outcomes,

categorizing patients into high- and low- TMB groups for

Kaplan-Meier analysis with “Survival” and “survminer”

packages (28).
2.9 Bioinformatics insights into TNS4 as a
prognostic indicator

First, we evaluated the expression levels of Tensin4 (TNS4) in

LUAD compared to normal lung tissues, as depicted in box plots. The

Kruskal-Wallis Rank Sum Test was utilized to analyze the expression

levels of TNS4 across different stages in LUAD. Survival impacts of
Frontiers in Immunology 03
TNS4 expression were assessed using Kaplan-Meier survival curves.

Lollipop charts illustrated the infiltration of immune cells related to

TNS4, examining their associations through Spearman correlation

analysis Additionally, the “clusterProfiler” package facilitated GSEA

to elucidate the biological activities associated with TNS4 in the

prognosis of LUAD (29, 30).
2.10 Immunohistochemical analysis of
TNS4 in LUAD

Immunohistochemical testing was conducted on 3 µm sections

derived from formalin-fixed, paraffin-embedded samples to assess

TNS4 expression levels in LUAD relative to lung tissues. The study

included 90 LUAD cases and 11 controls. Sections were dried at 67°C

for three hours, dewaxed in xylene, rehydrated in graded alcohols,

and subjected to antigen retrieval using EDTA. Incubation with

TNS4 polyclonal antibodies (Proteintech, 1:150) occurred overnight

at 4°C. Detection involved biotin-conjugated secondary antibodies

and horseradish peroxidase complexes with diaminobenzidine.

Staining intensity was quantified by three independent pathologists

through integrated optical density across five fields. The study

received ethical approval from Jiangmen Central Hospital’s Clinical

Research Ethics Committee (Approval No. 2024–238A).
2.11 Cell culture

The LUAD cell lines A549 and H1299 were cultured in RPMI

1640 medium enriched with 10% fetal bovine serum, within a 5%

CO2 environment at 37°C. These cell lines were sourced from the

American Type Culture Collection (ATCC).
2.12 RNA interference and transfection

Specific siRNAs targeting TNS4 were procured from Shanghai

GenePharma Co. Ltd. A549 and H1299 cells underwent transfection

with 50 nmol/L siRNA using Lipofectamine 2000. Knockdown

efficiency was verified through RT-qPCR. SiRNA sequences

included: si-TNS4-1: 5’-GCAUCUCAAUCCCUUGCAUTT-3’, si-

TNS4-2: 5’-CCAAAGGAGUGCAUCUCAATT-3’.
2.13 RT-qPCR

Total RNA was extracted using Trizol reagent (Vazyme), and

converted to cDNA using HiScript III RT SuperMix (Vazyme). The

RT-qPCR analyses were carried out with Universal SYBR Green Fast

qPCR Mix, with expressions quantified via the 2(-DDCt) method

(31–33). GAPDH served as the reference gene. Primer sequences

were: GAPDH, F-5’-GGCTGTTGTCATACTTCTCATGG-3’, R-5’-

GGAGCGAGATCCCTCCAAAAT-3’. TNS4, F-5’- TGTTTGGAA

GCAATCAGTCCCT-3’, R-5’- TACTAGGAGCCTGGGCATCA -3’.
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2.14 Clone formation tests

Post-transfection, cells were plated in 6-well plates to evaluate

colony formation over a two-week period. Colonies were then fixed

with 4% paraformaldehyde, stained with 0.1% crystal violet, and

documented using high-definition photography (34). Analysis was

conducted using ImageJ software.
2.15 Edu assay

Transfected cells were plated in 24-well plates and incubated

with EdU for two hours before fixation with 4% paraformaldehyde.

Nuclei staining was conducted using DAPI. EdU incorporation was

visualized and quantified using a Nikon microscope and

ImageJ software.
2.16 Wound healing assay

A scratch was introduced to confluent cell monolayers in 6-well

plates using a sterile pipette tip. Post-scratch, the cells were cultured

in serum-free medium to inhibit cell proliferation, facilitating the
Frontiers in Immunology 04
observation of cell migration over 24 hours with an electron

microscope (35).
2.17 Cell migration assay

The assessment of cell migration was conducted using a

transwell setup (Corning, 8 µm pore size). LUAD cells were

placed in the upper chamber in serum-free medium, while the

lower chamber contained medium enriched with 10% FBS. After 24

hours, cells that migrated through the membrane were fixed, stained

with crystal violet, and imaged.
3 Result

3.1 Genetic variation and expression of
DRGs in LUAD

We evaluated genetic differences among 23 DRGs between

LUAD and normal lung tissues (Figure 1A). Significant

differences were noted in all but ACTB and CAPZB (p < 0.05).

Chromosomal locations and copy number variations (CNVs) of
FIGURE 1

Expression and genomic variations of Disulfidoptosis-Related Genes (DRGs) in lung adenocarcinoma (LUAD). (A) Comparative expression of 23 DRGs
between LUAD and normal lung tissues (*p<0.05; **p<0.01; ***p<0.001). (B) Locations of copy number variations (CNVs) in DRGs across 23
chromosomes. (C) Mutation frequencies of DRGs in 561 LUAD patients. (D) Prevalence of CNV gains among DRGs.
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these DRGs are depicted in Figure 1B. TCGA LUAD data revealed

mutations in DRGs across 117 of 561 samples, with FLNA and

MYH9 exhibiting the highest mutation frequencies. No mutations

were observed in NDUFA11 and CAPZB (Figure 1C). CNV analysis

showed a predominance of CNV gains (Figure 1D).
3.2 Clustering and functional analysis of
DRGs in LUAD

Consistent clustering of the 23 DRGs identified two main

clusters with distinct expression profiles. The optimal cluster

stability and internal consistency were achieved with k = 2, as

illustrated in Figures 2A–C. Expression differences between the
Frontiers in Immunology 05
clusters were particularly notable between the SLC7A11 and

SLC3A2 groups (Figure 2D). Volcano plots further delineated

these disparities, and we performed GO and KEGG enrichment

analyses on the differentially expressed genes (Figures 2E).

Biological process enrichment included metabolic pathways like

quinone, secondary metabolites, and hormone-related processes.

DRGs were predominantly associated with the Golgi lumen and

extracellular matrix in cellular components, and their molecular

functions included activities of receptor ligands and various

oxidoreductases (Figure 2F). The most enriched pathways

identified through KEGG analysis involved hormone metabolic

process, response to metal ion, and hormone transport

(Figure 2G). GSEA indicated significant pathway activations in

drug metabolism, glutathione metabolism, and glycolysis
FIGURE 2

Characterization of Disulfidoptosis-Related Gene (DRG) Subtypes. (A) Heatmap from the consensus clustering matrix for two clusters (k = 2).
(B) Tracking plot of cluster membership. (C) Changes in area under the cumulative distribution function (CDF) curve. (D) Heatmap visualizing
expression level differences between the two clusters. (E) Volcano plot displaying up-regulated and down-regulated genes between clusters (t-test,
p < 0.05). (F) Gene Ontology (GO) functional enrichment analysis for the clusters. (G) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis. (H) Gene Set Enrichment Analysis (GSEA) of the clusters.
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(Figure 2H). These findings collectively underscore the pivotal role

of DRGs in orchestrating diverse biological pathways and cellular

processes in LUAD, potentially influencing tumor metabolism and

the tumor microenvironment.
3.3 Development and validation of a DRG-
based risk signature for LUAD

We identified 967 genes displaying differential expression

between two clusters using stringent criteria (|log2FC| > 1 and

FDR < 0.05). From these, 159 genes linked to prognosis via
Frontiers in Immunology 06
univariate Cox regression (p < 0.05) were further refined to an

11-gene signature through Lasso-Cox analysis (Figure 3A). This

signature calculated risk scores for each patient, stratifying them

into high and low-risk categories based on median scores. Principal

Component Analysis (PCA) revealed distinct genetic profiles

between these risk groups, effectively categorizing LUAD patients

into separate cohorts (Figures 3C, D). Kaplan-Meier survival

analysis confirmed a significantly shorter OS for the high-risk

group across both training (p < 0.001, Figure 4A) and validation

cohorts (p < 0.05, Figures 4B). The risk curves and scatter plots

illustrated the direct correlation between increased risk scores and

mortality rates in these cohorts (Figures 3E−H). ROC curve analysis
FIGURE 3

Development of the Lung Adenocarcinoma (LUAD) risk score model. (A, B) LASSO coefficient profiles (A) and variable selection trajectories during
1,000-fold cross-validation (B). (C, D) Principal Component Analysis (PCA) plots showing separation of high- and low-risk groups based on 11 genes
within TCGA training and validation cohorts. (E, F) Risk score distributions in the training (E) and validation (F) cohorts. (G, H) Survival status and
overall survival in relation to risk scores for the training (G) and validation (H) cohorts.
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underscored the model’s accuracy with AUC values of 0.899, 0.804,

and 0.781 over 1, 3, and 5 years respectively in the training set, and

0.663, 0.655, and 0.630 in the validation set (Figures 4C, D). These

analyses substantiate the signature as a robust prognostic tool,

capable of distinguishing between risk levels and predicting

overall survival with high accuracy in patients with LUAD.
3.4 Independent prognostic significance of
the risk signature

The risk score was confirmed as an independent prognostic factor

through univariate and multivariate Cox regression analyses, with

hazard ratios (HR) of 1.069 (95% CI: 1.043–1.095, p < 0.001) and

1.064 (95% CI: 1.034–1.096, p < 0.001) respectively (Figures 4E, F).

These results affirm the risk score’s prognostic significance,
Frontiers in Immunology 07
independent of various clinicopathological parameters including M

stage, N stage, T stage, tumor stage, age, and gender.

To further corroborate the clinical independence of the risk

score, we conducted subgroup analysis. These analyses consistently

showed lower OS for the high-risk group compared to the low-risk

group across subgroups including age ≤ 65, age >65, male, female,

T1-2, N0, M0, stage I-II (Figure 5). This underscores the tight

correlation between the risk score and the clinical characteristics of

LUAD, showcasing its utility as an effective tool for prognostication.
3.5 Tumor microenvironment and
immune profiling

CIBERSORT analysis identified significant variations in six key

immune cells—resting NK cells, monocytes, M0 macrophages,
FIGURE 4

Prognostic validation of the risk score and clinical features. (A, B) Kaplan-Meier survival curves for high- and low-risk groups in the training (A) and
validation sets (B) (log-rank test, p < 0.05). (C, D) ROC curves for 1, 3, and 5-year overall survival based on risk scores in the TCGA training set (C)
and validation cohort (D). (E) Univariate Cox regression analysis of risk factors in lung adenocarcinoma (LUAD) patients. (F) Multivariate Cox
regression analysis of these factors in LUAD patients.
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resting dendritic cells, resting mast cells, and activated mast cells—

between high- and low-risk groups (Figure 7A), with all differences

being statistically significant (p < 0.05). Additionally, ssGSEA

revealed enhanced enrichment scores for immune functions such

as APC co-inhibition, APC co-stimulation, checkpoint regulation,

HLA activity, para-inflammation, and T cell responses in the low-risk

group, indicating stronger immune presence compared to the high-

risk group (p < 0.05, Figure 7B). A focused assessment of HLA related

genes revealed a higher expression of 20 HLA related genes in the

low-risk group, suggesting potential immune engagement differences

between the groups (Figure 7C). Discrepancies in immune

checkpoint-related molecule expression were also noted, pointing

to possible immunotherapeutic targets for LUAD patients

(Figure 7D) (27). The study further linked survival variations to

interactions between disulfidoptosis and the tumor immune

microenvironment, with higher immune and ESTIMATE scores

observed in the low-risk group (p < 0.001; Figure 7E). TIDE

analysis indicated lower potential for immune escape in the high-

risk group, suggesting a higher efficacy of immune checkpoint

inhibitors in these patients. Conversely, the low-risk group

displayed higher T-cell dysfunction scores (Figures 8A–C),

indicating different immune profiles and responses to therapy. This

comprehensive immune profiling elucidates how the immune

landscape in LUAD can influence patient prognosis and

therapeutic responsiveness, reinforcing the need for personalized

immunotherapy approaches based on risk stratification.
Frontiers in Immunology 08
3.6 Genomic mutation analysis

Somatic mutation data revealed differing mutation frequencies

between the high- and low-risk LUAD groups, displayed through

waterfall charts. In the high-risk group, 85.47% (100 out of 117) of

samples showed mutations, with missense mutations being the

most prevalent (Figures 8D). TP53 mutations were notably high

at 45%, following TTN at 43%. Conversely, the low-risk group had

an 80.00% (92 out of 115) mutation rate, with TP53 mutations most

frequent at 50% (Figures 8E). Survival analysis demonstrated that

low-risk patients with high TMB had significantly better outcomes

than those in the high-risk group with low TMB (p < 0.001,

Figure 8F). Additionally, our analysis showed a positive

correlation between risk score and DNA methylation-based

stemness score (DNAss) in LUAD (Figure 8G).
3.7 Prognostic significance of TNS4
in LUAD

TNS4 mRNA levels were significantly higher in LUAD tissues

compared to normal lung tissues (Figures 9A, B). This expression

correlated significantly with pathological stages of the disease

(Figures 9C–F). Immunohistochemical staining conducted at

Jiangmen Central Hospital confirmed higher TNS4 protein levels

in LUAD than in normal lung tissue (Figures 6A, F), though there
FIGURE 5

Subgroup analysis of survival outcomes. Kaplan-Meier survival curves comparing high- and low-risk patients across various subgroups, including age,
gender, TNM stage, and tumor stage. Significance in survival differences was assessed using log-rank tests.
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was no statistical difference in expression across different tumor

stages (Figures 6A–F). Kaplan-Meier survival curves indicated that

lower TNS4 expression was linked to improved prognosis

(Figure 9G). GSEA identified significant enrichment of graft-

versus-host disease and mTOR signaling pathways in the high

TNS4 expression group, while pathways like olfactory

transduction and retinol metabolism were prominent in the low

expression group (Figure 9H). Immune infiltration analysis

demonstrated positive correlations of TNS4 expression with M0

macrophages and activated dendritic cells, and negative correlations

with plasma cells, monocytes, and resting dendritic cells. These

findings collectively suggest that TNS4 not only serves as a marker

of tumor progression in LUAD but also influences the tumor

microenvironment, potentially impacting patient response to

immunotherapy and overall survival.
3.8 Functional implications of TNS4
knockdown in LUAD

To investigate TNS4’s role in LUAD, we knocked down its

expression using two specific siRNAs in A549 and H1299 cell lines.
Frontiers in Immunology 09
RT-qPCR verified the effective reduction of TNS4 levels

(Figure 10A). This knockdown resulted in decreased cell

proliferation and colony formation in A549 cells (Figure 10B).

EdU assays further validated the reduction in proliferation post-

TNS4 knockdown (Figure 10C). Moreover, transwell and wound-

healing assays showed that TNS4 silencing reduced migratory

capabilities in both A549 and H1299 cells (Figures 10D, E). These

results highlight TNS4’s vital role in promoting cell proliferation

and migration in LUAD, suggesting its potential as a therapeutic

target for treating the disease.
4 Discussion

LUAD is the predominant form of lung cancer, notorious for its

aggressive behavior and generally poor outcomes (36). Due to its

asymptomatic early stages, LUAD is frequently detected only in

more advanced phases, complicating early diagnosis and prognosis

(37). Disulfidptosis, a newly identified type of cell death, has been

recognized as a potential critical determinant in this area (38–40).

Our research explores disulfidptosis in LUAD, evaluating its

capability to forecast disease prognosis, patient survival, and the
FIGURE 6

TNS4 expression analysis via Immunohistochemistry. (A−E) Comparative expression of TNS4 in lung adenocarcinoma (LUAD) tissues versus normal
lung tissues. (F) Statistical analysis results showing differences in TNS4 expression between normal lung tissue and lung cancer across various
stages (***p<0.001).
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efficacy of immunotherapy treatments. Understanding

disulfidptosis may unlock new avenues for precise interventions,

offering valuable insights for the development of both diagnostic

tools and therapeutic approaches in treating LUAD.

In our study, the proposed prognostic model was validated

using Kaplan-Meier survival curves, showing significantly lower OS

rates in the high-risk group compared to the low-risk group (p <

0.001). Validation of the model’s robustness was further confirmed

using a validation set. Subgroup analysis revealed the model’s
Frontiers in Immunology 10
excellent predictive value across various categories, including age

groups (>65, ≤65), gender (male, female), and cancer stages (N0,

M0, I-II, T1-2) (p < 0.05). The analysis of immune infiltration

identified significant differences in immune cell profiles between the

high- and low-risk groups.

Additional studies focused on TNS4, the central gene in our

model, identified as a multifunctional cytokine involved in

enhancing tumor invasion and metastasis in several cancers,

including head and neck squamous cell carcinoma, gastric,
FIGURE 7

Relationship between risk score and tumor immune microenvironment. (A) Box plot displaying the estimated proportions of 22 immune cell types
within high- and low-risk groups. (B) Box plot showing differences in immune-related ssGSEA scores between groups. (C) Box plot illustrating
variations in HLA-related gene expression levels between groups. (D) Heatmap depicting disparities in immune checkpoint expression across the
groups. (E) Violin plot highlighting differences in ESTIMATE score, immune score, stromal score, and tumor purity between the high- and low-risk
groups (ns, no significant difference; *p<0.05; **p<0.01; ***p<0.001).
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pancreatic, and colorectal cancers, where it promotes tumor invasion

and metastasis (41–44). TNS4 functions through complex

mechanisms involving multiple pathways and cytokines that

regulate its expression. It plays a critical role in epithelial-

mesenchymal transition (EMT) in tumors, influencing pathways

such as FAK activation which, in turn, enhances PI3K/Akt and

TGFb signaling, promoting tumorigenesis (45). TNS4 also

upregulates Src expression to facilitate colorectal cancer metastasis

and depends on Ras/MAPK signaling for its activity (46). In gastric

cancer, TNS4 contributes to disease progression by upregulating p-

AKT, p-GSK-3b, and b-catenin (47). Additionally, in esophageal

cancer, it activates the EGFR-EFNA1/EPHA2-VEGFA signaling

pathway, enhancing tumor cell proliferation, migration, and

invasion (48). However, studies on TNS4’ relationship with LUAD
Frontiers in Immunology 11
are limited. Our results indicate that elevated TNS4 expression in

LUAD patients correlates with poorer prognosis and clinical

characteristics. Immunohistochemical analysis in our study

showed TNS4 levels are higher in LUAD tissues than in normal

lung tissues, consistent with other related studies (49). Importantly,

TNS4 expression in LUAD did not vary significantly across different

tumor stages, indicating that its high expression in tumor tissues is

not stage-dependent. Moreover, we conducted experiments on A549

and H1299 cell lines to assess cell proliferation and invasiveness.

Colony Formation and EdU assays revealed that TNS4 interference

significantly curtails the proliferative capabilities of both A549 cells.

Furthermore, wound healing and transwell assays showed that

suppression of TNS4 greatly diminishes the migratory and

invasive abilities of these cells. TNS4, a disulfidptosis-related gene,
FIGURE 8

Risk scores, tumor microenvironment, and genetic mutations. (A−C) Violin plots illustrating differences in dysfunction, exclusion, and TIDE metrics
between the high- and low-risk groups (Wilcoxon test, **p < 0.01, ***p < 0.001). (D, E) Waterfall charts depicting mutation frequencies in high- and
low-risk groups. (F) Kaplan-Meier survival curve assessing the combined effect of tumor mutation burden (TMB) and risk score on patient prognosis
(log-rank test, p < 0.05). (G) Scatter plot correlating risk score with DNA methylation-based stemness score (DNAss).
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is overexpressed in LUAD tissues and promotes LUAD cell

proliferation and invasiveness. However, the specific mechanisms

by which TNS4 induces disulfidptosis warrant further experimental

exploration. Additionally, while TNS4 shows promise, its

effectiveness as a standalone marker in clinical settings has yet to

be fully validated. To establish its predictive power and reliability,

comprehensive validation through larger, multicenter studies is

essential. Considering the complex mechanisms of tumor
Frontiers in Immunology 12
development and the multifaceted nature of malignancy, TNS4

emerges as a potential predictive marker for LUAD, though its

role in disease progression requires further comprehensive

assessments. The integration of disulfidoptosis-related biomarkers

like TNS4 into existing diagnostic and therapeutic protocols

represents a promising avenue to enhance the precision of lung

cancer management. This necessitates a systematic approach to

evaluate these biomarkers across various clinical scenarios to fully
FIGURE 9

TNS4 expression and clinical implications in Lung Adenocarcinoma (LUAD). (A, B) Box plots demonstrating significantly elevated TNS4 expression in
tumor tissues compared to normal tissues. (C−F) Association of higher TNS4 expression with advanced clinicopathological features in LUAD.
(G) Kaplan-Meier plots linking elevated TNS4 levels with poorer prognostic outcomes. (H) Gene set enrichment analysis. (I) Bar graph displaying
correlations between TNS4 expression levels and immune cell infiltration.
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understand their potential in predicting treatment responses and

patient outcomes.

5 Conclusion
This research delineates the classification of two molecular

subtypes based on genes regulated by disulfidptosis and conducts
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functional enrichment analysis. Additionally, a risk model was

developed to forecast the prognosis and therapeutic outcomes for

patients with LUAD, achieving high accuracy and robustness

upon validation. Immunohistochemistry and in vitro

experiments confirmed the central gene TNS4 as a potential

therapeutic target. These results indicate that genes regulated by

disulfidptosis could serve as promising biomarkers and

therapeutic targets for LUAD.
FIGURE 10

Impact of TNS4 knockdown on Lung Adenocarcinoma (LUAD) cell proliferation and migration. (A) RT-qPCR results confirming the efficiency of
TNS4 knockdown in A549 and H1299 cells using two siRNAs. (B) Colony formation assays in A549 and H1299 cells, analyzed with ImageJ. (C) EdU
assay measuring cell proliferation in control versus TNS4 knockdown cells. (D) Transwell assay comparing cell migration in control and TNS4
knockdown cells. (E) Wound healing assay illustrating migration differences between control and TNS4 knockdown cells (ns, no significant
difference; *p<0.05; **p<0.01; ***p<0.001).
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