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sepsis and insights into sepsis-
associated cancer progression
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Introduction: Burn-induced sepsis is a critical clinical challenge marked by

systemic inflammation, immune dysregulation, and high mortality. Macrophage-

driven inflammatory pathways are central to sepsis pathogenesis, while immune cell

metabolic reprogramming plays a key role in both sepsis and cancer progression.

Methods: Bioinformatics analyses using GEO, TCGA, and GTEx datasets

identified MLIP-modulated genes linked to immune responses and prognosis.

In vitro, LPS-stimulated HUVEC cells were used to study MLIP’s effects on

inflammation and macrophage function through cell viability, ROS levels,

cytokine expression, qRT-PCR, and immunofluorescence assays.

Results: MLIP-modulated genes were associated with immune-related

metabolic pathways in both sepsis and cancer. Epigenetic analysis showed

MLIP expression is regulated by promoter methylation and chromatin

accessibility. Prognostic analyses revealed MLIP’s impact on survival outcomes

across cancer types. In vitro, MLIP reduced inflammation, oxidative stress, and

macrophage hyperactivation.

Conclusions: MLIP regulates immune-metabolic dynamics in burn-induced

sepsis, influencing macrophage activity and oxidative stress. Its role in

metabolic reprogramming suggests MLIP as a potential therapeutic target

linking immune modulation and cancer progression. Further research on

MLIP’s role in immune evasion and tumor metabolism may inform novel

therapeutic strategies.
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Introduction

Currently, burns, sepsis, and cancer represent significant global

public health challenges, all of which involve complex immune

responses characterized by inflammation, cellular injury, and

subsequent repair mechanisms. A comprehensive understanding

of the unique pathophysiological processes underlying these

conditions is crucial for advancing therapeutic strategies.

Furthermore, identifying pathways that can alleviate disease

progression, rather than allowing it to worsen, holds substantial

therapeutic value. Elucidating the mechanisms behind these

interconnected yet distinct health issues, by synthesizing global

and regional data, enables a systematic analysis of key aspects such

as disease epidemiology, risk factors, and disease burden. This

knowledge provides critical evidence for the development of

effective control strategies and facilitates the formulation of

targeted and impactful interventions (1–3).

Sepsis is notably characterized by its rapid onset and high

mortality rate, primarily attributed to the excessive release of

cytokine that initiates a cascade of immune imbalances leading

to immunosuppression and, ultimately, multiorgan failure

(4, 5). A considerable body of research has focused on the

pathophysiological mechanisms through which sepsis induces

organ dysfunction. With the support of immunological

approaches, basic research has increasingly concentrated on the

role of macrophages in various organs during this process, while

also showing significant interest in the regulatory mechanisms of

macrophages in the context of infection. Although macrophages

play a central role, other immune cells, such as neutrophils and T

cells, are equally critical in the progression of both sepsis and

cancer. A thorough understanding of the immune responses of

various immune cell types is vital for developing comprehensive

therapeutic strategies. Understanding the role of cytokines in

immune responses provides valuable insights for the development

of effective treatment strategies for a range of diseases. Through

research into cytokine signaling and immune regulation

mechanisms, scientists have identified numerous potential

therapeutic targets (6). Burn injuries induce widespread

inflammatory responses and immune dysregulation, often

resulting in immunosuppression and increased susceptibility to

sepsis. Severe burns can lead to systemic inflammatory response

syndrome (SIRS), a pathway similar to sepsis, frequently

culminating in organ failure and high mortality rates (7).

Investigating the immune and inflammatory alterations triggered

by burns is critical for devising preventive strategies against burn-

induced sepsis (8, 9).In this context, a significant number of

macrophages may become hyperactivated, releasing immune

mediators in a rapid, burst-like manner. This amplified immune

response can shift the individual’s focus from managing the initial

inflammatory phase to addressing secondary infections, which are

frequently observed following severe burns and critically influence

the prognosis of burn-induced sepsis. When designing therapeutic

interventions, it is essential to consider the dynamic temporal

patterns of macrophage activation, particularly during the acute

and chronic phases of sepsis and burns, as well as their interplay

with metabolic shifts. These metabolic changes can further
Frontiers in Immunology 02
exacerbate immune dysfunction, influencing the effectiveness of

immune responses and the overall recovery process.

Additionally, the immunosuppressive state induced by burn

injuries can impair the body’s capacity to detect and combat

emerging cancers, potentially heightening the risk for certain

malignancies (10, 11). Cellular regeneration following burn

injuries may foster conditions conducive to abnormal cell growth

and cancerous lesions. Such an environment could contribute to

carcinogenesis (12, 13). In the pursuit of understanding the

underlying mechanisms, recent research advancements in the

field of molecular biology have provided valuable insights.

Transcriptomics has emerged as a crucial tool, as it plays a

significant role in revealing the immune microenvironment and

holds great importance for the diagnosis and prognosis of various

diseases (14, 15). Through transcriptome analysis and single - cell

techniques, researchers are now able to identify the functional

characteristics and molecular markers of different cancer -

associated fibroblast (CAF) sub - populations, thereby providing a

solid theoretical foundation for the development of precise

treatment strategies (16). Moreover, the immune escape

mechanisms prevalent in the tumor microenvironment and their

subsequent promotion of tumor progression have been identified as

potential therapeutic targets for novel targeted treatment approaches

(17). Single - cell transcriptomics analysis has demonstrated that

diverse signaling pathways and immune regulatory factors play

critical roles in antigen - specific cell functional exhaustion and

immune escape, offering essential guidance for optimizing treatment

regimens (18, 19). By leveraging single - cell RNA sequencing and

bioinformatics analysis, researchers have been successful in

identifying important molecules and pathways associated with the

tumor microenvironment, thus charting new directions for precision

medicine (20). Additionally, single - cell transcriptomics has been

applied to analyze the repair process, shedding light on the

underlying mechanisms (21). Concurrently, bioinformatics

analysis and experimental validation of potential biomarkers have

furnished crucial indicators for disease diagnosis and prognosis

assessment (22–24). The advent of novel technologies and

advanced molecular research methods has had a profound impact

on disease research and treatment (25). In the realm of cancer

treatment, for instance, antibody - drug conjugates and

photodynamic therapy have witnessed continuous development.

Through meticulous mechanism research, rigorous clinical

validation, and the integration of bioinformatics analysis of clinical

data, these advancements have propelled cancer treatment to new

heights (26). Modern bioinformatics and big data technologies are

increasingly indispensable in disease diagnosis, prognosis evaluation,

and treatment. The application of these cutting - edge technologies

and methodologies has not only spurred the growth of biomedical

research but has also laid a robust foundation for the realization of

precision medicine (27, 28). Gaining insight into how burns may

facilitate cancer formation could inform the development of

strategies to mitigate the risk of advanced-stage cancer (13, 29).

However, the specific mechanisms by which burn-induced immune-

metabolic changes impact cancer development across different

cancer types should be further elucidated, as this connection is not

yet fully understood.
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Sepsis, with its extensive infectious inflammation, similarly poses a

potential pathway for cancer development (30, 31). The prolonged

inflammatory state associated with sepsis may lead to genomic

instability and the accumulation of mutations, creating conditions

that disrupt local cellular environments and potentially transform cells

into malignant tumors (32, 33). Addressing chronic sepsis-related

inflammation and bolstering immune function could play a pivotal

role in modulating cancer risk and progression (31, 34). Furthermore,

various macrophage cell death pathways, such as pyroptosis,

autophagy, and ferroptosis, play a significant role in organ damage

during sepsis. These mechanisms add complexity to the immune

response in sepsis and may serve as potential therapeutic targets for

modulating immune responses and preventing multiorgan failure. The

heterogeneity of tumor microenvironments across different cancer

types may limit the generalizability of findings related to the impact of

sepsis-induced immune alterations on cancer development. Moderate

exercise has long been recognized for its positive effects on immune

function, strengthening the body’s defense mechanisms. Such exercise

may enhance management strategies for conditions like burns, sepsis,

and cancer (35, 36). Exercise supports recovery from burn injuries,

reduces the risk of sepsis, and mitigates some irreversible side effects of

cancer therapies, while also boosting the efficacy of treatments (37, 38).

Thus, this emerging perspective could foster a more integrated

approach to patient care, treating these conditions in concert rather

than in isolation (39, 40). Research has found that nicorandil can

relieve joint contracture and fibrosis by inhibiting the RhoA/ROCK

and TGF - b1/Smad signaling pathways, providing potential drug

targets for joint diseases (41).

The fields of cell therapy and biologic agent therapy are developing

rapidly. Studies on engineered extracellular vesicles and exosomes

derived from stem cells have delved deep into their mechanisms of

action and actual treatment effects in tissue repair and regeneration

(42). Moreover, exploring the relationship between exercise-induced

metabolites and macrophage activity offers a promising area for

research. Insights from this field could reveal novel methods for

immune regulation and open pathways for resolving sepsis-

associated inflammation. In summary, the combined effects of

conditions such as burns and sepsis may increase the risk of cancer,

a factor that warrants attention both medically and socially (31, 43).

Moreover, by investigating the role of macrophages and their immune

functions in sepsis, we aim to identify novel therapeutic targets to

reduce multiorgan dysfunction and improve patient survival rates.

Moving forward, it is essential to further explore the complex

interconnections between burns, sepsis, and cancer, with the goal of

optimizing treatment strategies based on these findings, ultimately

offering better therapeutic prospects for patients.
Materials and methods

Exercise-induced modulation of pan-
cancer gene expression in the context of
burns and sepsis

We applied the Wilcoxon rank sum test (also known as the

Mann-Whitney U test), a nonparametric method, to assess gene
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expression differences between cancerous and normal tissue across

multiple cancer types (44, 45). This test was chosen for its suitability

with non-normally distributed data, unlike parametric alternatives

that require normal distribution assumptions. Statistical

significance was established at a = 0.05, indicating meaningful

divergence between the median values of two independent sample

groups. We analyzed de-identified gene expression data,

represented as transcripts per million (TPM), from The Cancer

Genome Atlas (TCGA) for tumor samples and late-stage normal

tissue samples from the Genotype-Tissue Expression (GTEx)

project. These datasets were accessed via the UCSC Xena

database. To mitigate inter-dataset variability, the gene expression

values were normalized using Z-scores, allowing for consistent

dimensional comparisons. Our primary analysis centered on the

glioblastoma multiforme (GBM) dataset, through which we

investigated gene expression disparities between cancerous and

non-cancerous tissues. This detailed comparison allowed us to

observe exercise-induced changes in gene expression, providing

insights into potential therapeutic implications for managing burns

and sepsis within the cancer context.
Promoter methylation analysis of genes
linked to exercise impacts on burns
and sepsis

This study provides an overview of methylation levels across

diverse genomic regions, including the TSS1500 region (200–1500 bp

upstream of the transcription start site), the proximal promoter

region (the first 200 bp upstream from the TSS), the first exon, and

the 5’ untranslated region (UTR) (46, 47). For each sample, median

methylation values within these regions were determined to represent

the sample’s overall methylation status. To investigate the correlation

between methylation levels and gene expression, we applied

Spearman’s rank correlation, a non-parametric test ideal for

assessing relationships between variables that may not exhibit

linear patterns. In this analysis, methylation levels served as the

independent variables, while gene expression levels were treated as

dependent variables. The strength of these associations was quantified

using the Spearman rank correlation coefficient. Additionally, we

employed the Wilcoxon rank sum test to compare methylation levels

between tumor and normal tissue samples. This non-parametric test

is appropriate for comparing two independent sample groups

without assuming a specific data distribution, thereby enabling a

reliable distinction between tumor and normal tissue methylation

patterns across different sample sources. Through this approach, we

identified significant methylation differences, enhancing our

understanding of tumor biology and the potential role of exercise

in modulating responses to burns and sepsis.
ATAC-seq analysis of exercise-related gene
modulation in burns and sepsis

In this study, we employed ChIPseeker, an R package tailored for

analyzing and visualizing both ChIP-seq and ATAC-seq data (48, 49).
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Utilizing ChIPseeker’s annotatePeak function, we conducted an in-

depth analysis of transcription start sites (TSS) within promoter

regions of genes. We set the parameter tssRegion = c (-3000, 3000)

to cover the 3000 base pairs upstream and downstream of the TSS,

enabling a comprehensive examination of genomic elements,

including transcription factor binding sites and histone

modifications. To visualize coverage, we utilized ChIPseeker’s

covplot function, generating plots that illustrate the distribution of

peaks across the genome in human ATAC-seq data. These coverage

plots reveal not only the spatial distribution of peaks along

chromosomes but also offer detailed insights, including gene names,

tumor types, chromosomal positions, and genetic distances,

conveniently displayed on the left side of the graph. This visual

approach provides researchers with a holistic and precise

representation of the ATAC-seq data, enhancing our understanding

of exercise-induced gene regulation in the context of burns and sepsis.
Prognostic assessment of exercise-related
genes in burns and sepsis across
pan-cancer

To evaluate the prognostic significance of various genes, we

applied a univariate Cox regression model using the survival

package in R (50, 51). For each gene, we derived hazard ratios

along with their 95% confidence intervals by fitting the data into a

Cox proportional hazards model through the coxph() function. The

results were visualized in a heatmap to facilitate comparative

analysis and enhance interpretability.
Genomic profiling of exercise-related
genes in burns, sepsis, and pan-
cancer contexts

To investigate the impact of exercise on genes associated with

burns and sepsis across various cancer types, we analyzed copy

number alterations and DNA methylation data from The Cancer

Genome Atlas (TCGA) (52, 53). Patient samples were organized in

a structured matrix format, with rows representing samples and

columns representing genes or genomic regions. After quality

control steps to exclude low-quality samples and probes, data

were standardized to minimize technical variation. Using tools

like GISTIC and CNAnorm, we identified and categorized

genomic amplification and deletion events, quantifying their

frequencies across the genome. DNA methylation levels at gene

promoter regions were assessed on the UALCAN platform,

comparing differences between normal and cancerous tissues to

elucidate the influence of exercise on wound healing and infection

responses. For methylation pattern analysis in specific cancer-

associated genes, we utilized the ‘gene visualization’ module

available in MethSurv. To further understand genomic impacts,

Mutation Annotation Files (MAF) from TCGAbiolinks and tumor

mutation burden (TMB) calculations via maftools allowed us to

explore links between these genomic features and immunotherapy

responsiveness. Statistical analyses, including correlation and
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survival analyses, were conducted on copy number alteration,

DNA methylation, and TMB data to assess their associations with

exercise-modulated gene expression in wound healing and

infection. These analyses aimed to evaluate the potential impact

of these genomic variations on tumor progression and

patient outcomes.
Gene set enrichment analysis across pan-
cancer types

This study utilized data from The Cancer Genome Atlas

(TCGA) repository, incorporating tumor and normal tissue

samples from a specific cancer type (54, 55). The data underwent

stringent quality control processes, during which invalid samples

and probes were excluded to ensure robustness. Following quality

filtering, normalization was applied to mitigate technical variability

inherent in the dataset, including adjustments for background

noise, often present in raw files. We employed the “limma”

package within the R environment, which facilitates background

correction, normalization, and statistical analyses for identifying

genes with significant differential expression. The criteria for

selection involved both log2 fold change (log2FC) and p-values.

Log2FC quantified the relative changes in gene expression, while the

p-value assessed statistical significance. For gene set enrichment

analysis (GSEA), we used the “clusterProfiler” package in R to

annotate and visualize enriched pathways associated with

differentially expressed genes in public databases such as KEGG,

GO, and Reactome. We relied on the Enrichment Score (ES), which

ranges from 0 to 1, as a metric to determine the relevance of

pathway alterations in relation to gene expression changes. Finally,

to visualize the findings, we utilized R packages, including

“ggplot2,” to create various graphical representations. This

included simple bar charts, scatter plots, and heatmaps, allowing

a clear interpretation of the results. This methodological framework

provides a structured approach to interpreting the molecular

implications of gene expression variations in cancer.
Cell culture

Human umbilical vein endothelial cells (HUVECs) were seeded

in culture flasks and maintained in Dulbecco’s modified Eagle

medium (DMEM, low glucose), supplemented with 10% fetal

bovine serum (FBS), 1% endothelial cell growth supplement, and

1% penicillin-streptomycin solution. The cells were incubated at 37°C

in a humidified chamber with 5% CO₂ under normoxic conditions.

To establish an in vitro model, HUVECs were subsequently exposed

to 1 mg/mL of lipopolysaccharide (LPS). Eight hours before the

experiments, cells were cultured in serum-free DMEM. For

differentiation, THP-1 cells were treated with 100 ng/mL phorbol

12-myristate 13-acetate (PMA) for five days to induce macrophage-

like characteristics. RAW 264.7 mouse macrophages (ATCC,

Rockville, MD, USA) were cultured in DMEM containing 10%

heat-inactivated FBS, 100 U/mL penicillin, and 100 mg/mL

streptomycin, and incubated at 37°C in a 5% CO₂ atmosphere.
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Cell viability assay

HUVECs, seeded at a density of 5 × 10³ cells per well, were

transfected with MLIP knockdown, overexpression, or control

plasmids and plated in 96-well plates to assess proliferation. After

an initial 16-hour incubation, the cells were either stimulated with

LPS or left untreated for 0, 6, and 24-hour intervals. Cell

proliferation was measured using the Cell Counting Kit-8 (CCK-

8; Beyotime, Beijing, China, Cat#C0038), in accordance with the

manufacturer’s protocol. Absorbance was recorded at 450 nm using

a BioTek microplate reader (BioTek, U.S.A.).
Real-time reverse transcription polymerase
chain reaction

Total RNA was isolated from the three experimental groups

using Trizol reagent (Invitrogen, USA). The isolated RNA was

reverse-transcribed into complementary DNA (cDNA) using the

PrimeScript II 1st Strand cDNA Synthesis Kit (Takara, Shiga,

Japan). Real-time RT-PCR was performed with the SYBR Premix

Ex Taq II (Takara, Shiga, Japan) on a StepOnePlus Real-Time PCR

system (Applied Biosystems, CA, USA). The relative mRNA

expression levels were quantified using the 2^−DDCt method,

with GAPDH as the internal control.
Measurement of oxidative stress and LDH
release assay

Cytotoxicity was assessed by quantifying lactate dehydrogenase

(LDH) release using a commercial assay kit, following the

manufacturer’s instructions. Briefly, 50 mL of supernatant from each

well was collected and incubated with reduced nicotinamide adenine

dinucleotide (NADH) and pyruvate for 15 minutes at 37°C. The

reaction was terminated with the addition of 0.4 mol/L NaOH. LDH

activity was measured by recording the absorbance at 440 nm on a

SpectraMax M2 spectrophotometer (Molecular Devices, Sunnyvale,

CA, USA) and expressed as U/g protein. Additionally, oxidative stress

markers, including superoxide dismutase (SOD) and glutathione

peroxidase (GSH-Px) activities, along with reactive oxygen species

(ROS) and malondialdehyde (MDA) levels, were measured using

commercially available kits, following the manufacturer’s protocols.
Flow cytometry analysis

Apoptosis and cell polarization were evaluated in both treated and

untreated cells using flow cytometry. Following treatment, cells were

harvested and stained with FITC-Annexin V and propidium iodide

(PI) for 10 minutes at room temperature, following the protocol

provided by the Annexin V-EGFP Apoptosis Detection Kit (KeyGEN

BioTECH). For polarization assessment, cells were additionally

stained with antibodies targeting M1 polarization markers when

required. Data acquisition and analysis were conducted on a

Fluorescence-Activated Cell Sorting (FACS) Calibur flow cytometer
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(Becton-Dickinson, Sparks, MD, USA) with associated software. For

the colony formation assay, cells were plated in 6-well plates and

treated with designated drugs for 6 hours according to the

experimental groups for reactive oxygen species (ROS) detection. A

fluorescent probe, DCFH-DA (10 μM; Solarbio, China), was diluted in

a serum-free medium, and cells were incubated with it for 30 minutes

at 37°C. FITC signals were subsequently detected via flow cytometry.
Immunofluorescence analysis

Cells were plated in 6-well culture plates and incubated overnight

to ensure adherence. The cells were then fixed with 3.7%

paraformaldehyde at room temperature for 15 minutes and

subsequently permeabilized in cold methanol at -20°C for 15

minutes. Blocking was performed using a buffer containing 5%

normal goat serum and 0.5% Triton X-100 in PBS for 1 hour at

room temperature. Primary antibodies were added, and cells were

incubated overnight at 4°C. After washing three times with PBS for 10

minutes each, cells were incubated at room temperature with Alexa

Fluor 488-conjugated goat anti-rabbit secondary antibody (Cat# A-

11034) and Alexa Fluor 594-conjugated goat anti-mouse secondary

antibody (Cat# A-11004; Thermo Fisher), both diluted 1:500 in

blocking buffer. Prior to imaging, nuclei were stained with DAPI

(Cat# D9542; Sigma) for 30 minutes at room temperature. Images

were obtained using a Nikon Eclipse E800 fluorescence microscope.
Statistical analysis

Data are presented as mean ± standard deviation (SD).

Statistical analyses were conducted using GraphPad Prism 8

software. Group differences were assessed using either Student’s t-

test or analysis of variance (ANOVA), depending on the

experimental design. A p-value of less than 0.05 (P < 0.05) was

considered statistically significant.
Results

Gene expression and pathway
enrichment analysis

In our study, we investigated gene expression differences and

pathway enrichment between two sample groups using a variety of

analytical approaches. The UMAP plot (Figure 1A) revealed distinct

clustering between the groups, indicating significant differences in gene

expression profiles. This clustering suggests that the gene expression

profiles of the groups are sufficiently divergent to merit further

investigation into the underlying molecular mechanisms. The volcano

plot (Figure 1B) highlighted differentially expressed genes. This

visualization not only underscores the extent of differential expression

but also aids in the identification of key genes that may be crucial in the

context of burn-induced sepsis and its potential association with cancer.

GSEA identified significantly enriched pathways (Figure 1C), including

those related to immune response activation, metabolic pathways, and
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tumor suppressor inhibition. The top four enriched pathways

(Figure 1D) were further explored, with the enrichment scores and

the specific positions of genes within these pathways clearly displayed. A

heatmap (Figure 1E) illustrates the Z-scores of gene expression for genes

within these pathways, providing a clear visualization of expression

patterns across all samples. This comprehensive analysis highlights

significant differences in gene expression and pathway enrichment

between the two groups, emphasizing key pathways involved in

disease mechanisms and pinpointing potential therapeutic targets.

These findings lay the groundwork for identifying therapeutic targets

and biomarker candidates, which could play a crucial role in the

development of more effective treatment strategies for burn-induced

sepsis and its potential link to cancer.
Differential gene expression and pathway
enrichment analysis

Our study aimed to identify differentially expressed genes (DEGs)

and significantly enriched pathways between tumor and normal

tissue samples. To achieve this, we utilized a combination of

statistical and computational tools, with the results presented

in various figures to provide clarity and a comprehensive
Frontiers in Immunology 06
understanding of the findings. Figure 2A presents a volcano plot

that illustrates the distribution of DEGs between tumor and normal

groups. The dashed lines represent thresholds for statistical

significance, enabling the clear identification of the most relevant

genes affected by the conditions under investigation. GSEA was

conducted to identify significantly enriched pathways, with

Figure 2B depicting the statistical significance of these pathways.

This figure reveals the biological processes most influenced by the

differential gene expression patterns observed between tumor and

normal tissues. The pathways selected based on their statistical

significance offer valuable insights into the biological processes that

are most affected by the differentially expressed genes. Further GSEA

results highlighted the top four enriched pathways, as shown in

Figure 2C. Additionally, the gene distribution within these pathways

is shown, offering a clearer understanding of how specific genes

contribute to pathway enrichment and their potential role in tumor

development. Figure 2D displays a heatmap that visualizes gene

expression levels across all samples, specifically focusing on genes

related to the identified pathways. Each row in the heatmap

corresponds to a unique gene, while each column represents an

individual sample. Collectively, these analyses provide a detailed view

of the molecular alterations occurring in tumor and normal tissues.

The identification of significantly enriched pathways and
FIGURE 1

Analysis of gene expression and pathway enrichment between two sample groups. (A) The UMAP plot shows the two-dimensional distribution of the
two sample groups visualized using Uniform Manifold Approximation and Projection (UMAP). Each point represents an individual sample, color-
coded by group, and illustrates clustering patterns based on gene expression profiles. (B) The volcano plot presents differential gene expression
analysis between the two groups. The x-axis displays the log2 fold change in gene expression between groups, and the y-axis shows the -log10
adjusted p-value to indicate statistical significance. Red points highlight significantly upregulated genes, blue points represent significantly
downregulated genes, and grey points indicate genes without significant changes. (C) The GSEA plot illustrates gene set enrichment analysis,
highlighting pathways with significant enrichment. The enrichment score is plotted across the rank-ordered gene list for three specific pathways:
Immune Response in Activation, Metabolic Pathways, and Tumor Suppressor Inhibition, each represented by different colors and line types. (D) The
GSEA top pathways display the four most significantly enriched pathways individually through GSEA. Each panel includes an enrichment score curve,
indicating the positions of genes within the pathway on the ranked gene list, revealing the distribution and relevance of genes contributing to
pathway enrichment. (E) The heatmap visualizes the expression levels of genes identified in the enriched pathways. Each row represents a specific
gene, and each column corresponds to a sample. Gene expression levels are normalized to z-scores, with red indicating high expression and blue
indicating low expression, allowing a visual comparison of expression patterns across samples in each group.
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differentially expressed genes contributes to a deeper understanding

of the biological functions and pathways involved in tumorigenesis.
Expression landscape of exercise-
influenced genes in pan-cancer analysis

In this study, we analyzed the expression landscape of exercise-

influenced genes associated with burns and sepsis. The datasets

used included GSE193428, GSE61477, and a dataset of exercise-

related genes, collectively providing a comprehensive profile of gene

expression. By integrating data from these diverse sources, we

aimed to investigate the shared and unique gene expression

patterns influenced by exercise in the context of burns, sepsis,

and cancer. As shown in Figure 3A, a Venn diagram illustrates the

overlap and unique characteristics of DEGs across the datasets.

Specifically, 626 genes were unique to GSE193428, 911 were specific

to GSE61477, and 194 were exclusive to the exercise-related genes.
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Additionally, 53 genes overlapped between GSE193428 and

GSE61477, while 10 genes were common between GSE61477 and

the exercise-related gene dataset. Key genes identified among these,

such as FARSA, SVIL, LAMP2, and COL12A1, were found to be

influenced by exercise in both burns and sepsis, suggesting their

potential roles in exercise-mediated recovery processes. These genes

are involved in critical biological functions such as protein

synthesis, cell signaling, and tissue repair, all of which are vital

for enhancing the body’s response to burns, sepsis, and potentially

cancer development. Figures 3B, C present the differential

expression analysis of these genes across various cancer types.

Figure 3B illustrates the expression levels using non-paired

samples, capturing the variability in gene expression due to

exercise, burns, and sepsis. In contrast, Figure 3C employs paired

samples to compare tumor and adjacent normal tissues, providing a

more refined analysis that controls for individual variability and

highlights consistent exercise-influenced expression patterns.

Expanding on these analyses, Figure 3D integrates data from both
FIGURE 2

Analysis of differential gene expression and pathway enrichment. (A) The volcano plot illustrates the differential expression of genes between two
groups. The x-axis represents log2 fold change, while the y-axis shows -log10(p-value). Red highlights genes with significant upregulation, blue
indicates downregulated genes, and dashed lines mark the thresholds for statistical significance. (B) Gene Set Enrichment Analysis (GSEA) plots
illustrate the enrichment of three pathways with significant results. The y-axis displays the enrichment score (ES), and the x-axis shows the rank of
genes within the ordered dataset. Key pathways enriched in this analysis are emphasized based on their statistical significance. (C) Additional GSEA
plots present the top four pathways with notable enrichment scores, further emphasizing the relevance of pathways that show substantial statistical
enrichment. (D) A heatmap shows the expression levels of genes across significant pathways, normalized by Z-score across all samples. Each row
represents a gene, and each column represents a sample, with color gradation indicating expression levels—red for high expression and blue for
low. This comparison includes gene expression data from both tumor and normal tissue samples, allowing a comparative analysis of gene
expression under different conditions.
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the TCGA and GTEx projects, enabling a comprehensive

comparison of gene expression profiles in malignant and healthy

tissues. This figure offers further insights into how physical activity

may modulate expression changes associated with burns and sepsis.

At the top of Figure 3D, the sample sizes for each cancer type are

displayed. Below, a heatmap uses color coding to represent

upregulated and downregulated genes, highlighting the expression

patterns across cancer types. These findings underscore the

significant influence of exercise on transcriptional patterns

associated with burns and sepsis in the context of cancer. The

consistent expression changes observed in exercise-influenced genes

across various datasets suggest that exercise may be a critical

modulator of recovery from both sepsis and burns, with potential

implications for cancer prevention and survival.
Analysis of promoter methylation of burn
and sepsis-related genes influenced
by exercise

Figure 4 provides an in-depth analysis of promoter methylation

levels and their impact onmRNA expression in burn- and sepsis-related

genes affected by physical activity. Figure 4A presents a heatmap that
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displays variations in promoter methylation levels for genes such as

ACADM, ALDH4A1, COL12A1, FARS2, G6PC, HSP90A, KCNJ2,

KCNQ1, PER1, PHKB, PUS1, RYR1, SVIL, TK2, and VAPA. In this

heatmap, red represents hypermethylation, blue indicates

hypomethylation, and white denotes no significant change. The

analysis compares methylation patterns across patient samples,

distinguishing those who underwent exercise intervention from those

who did not, revealing notable differences that suggest the influence of

exercise on the epigenetic regulation of these genes. Figure 4B illustrates

the relationship between promoter methylation levels and

corresponding mRNA expression levels, employing the same color

scheme: red for a negative correlation, blue for a positive correlation,

and white for no significant correlation. This heatmap demonstrates

how changes in promoter methylation can impact gene expression, with

hypermethylation generally associated with reduced mRNA expression

and hypomethylation linked to increased expression levels. The analysis

was conducted with rigorous statistical evaluations, examining

parameters such as distribution, mean, median, standard deviation,

and variance to ensure objectivity and precision in data interpretation.

These findings highlight the potential regulatory role of exercise in gene

expression related to burn and sepsis recovery, emphasizing the

significance of considering epigenetic modifications in therapeutic

strategies and suggesting the potential benefits of exercise
FIGURE 3

Expression profiles of exercise-modulated genes related to burns and sepsis in pan-cancer analysis. (A) The Venn diagram illustrates the overlap of
differentially expressed genes (DEGs) identified from two datasets, GSE193428 and GSE61477, including a subset of genes associated with exercise.
This visualization distinguishes DEGs unique to each dataset from those shared between them, underscoring genes commonly modulated by
exercise, burns, and sepsis. Specific genes unique to each condition are labeled outside the Venn circles. (B) Differential expression analysis was
conducted on exercise-modulated genes linked to burns and sepsis using non-paired samples across multiple cancer types. The resulting heatmap
depicts the expression levels of these genes, with color intensity reflecting the extent of expression change. The data, drawn from various cancer
types, showcases gene expression variations influenced by exercise, burns, and sepsis. (C) A subsequent differential expression analysis was
performed on the same gene set, using paired samples from individual patients. This heatmap presents refined insights into gene expression changes
by comparing tumor tissue directly with adjacent normal tissue from the same patient. Analyzing paired samples helps control for individual
variability, revealing more consistent gene expression patterns related to exercise influences. (D) Additional differential expression analysis
incorporates data from the TCGA-GTEx projects, providing a comprehensive comparison of gene expression across cancerous and normal tissues.
This analysis examines exercise’s influence on genes associated with burns and sepsis. At the top, a bar chart details the number of samples
analyzed, while the heatmap below indicates shifts in gene expression, with color coding denoting increased or decreased levels.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1540998
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1540998
interventions in clinical settings. Future research should aim to further

elucidate the mechanisms behind these epigenetic modifications and

their implications for recovery in burn and sepsis. Investigating how

specific exercise interventions might influence gene methylation

pathways and understanding their functional consequences on gene

expression will provide deeper insights into the potential therapeutic

benefits of exercise. This analysis provides valuable insights into the

influence of exercise on promoter methylation and gene expression,

making a substantial contribution to the growing field of exercise

genomics and its role in medical treatments.
Promoter methylation analysis of burn and
sepsis-related genes affected by exercise

Promoter methylation analysis revealed varying methylation

patterns across burn and sepsis-related genes influenced by

exercise. ACADM showed mainly unmethylated or low

methylation, with variable CpG site methylation (Supplementary

Figure 1A). ALDH4A1 had predominantly unmethylated sites

(Supplementary Figure 1B), while COL12A1 exhibited low to

medium methylation hotspots (Supplementary Figure 1C). FARSA

had a balanced methylation pattern with some sites highly

methylated (Supplementary Figure 1D). G0S2 showed low

methylation levels with specific CpG site variation (Supplementary

Figure 1E). HSPA8 and LAMP2 were primarily lowly methylated

(Supplementary Figures 1F, I). KCNJ2 and KCNQ1 exhibited

medium to high methylation (Supplementary Figures 1G, H).

MGME1 and SVIL had balanced methylation with significant site-

specific methylation (Supplementary Figures 1J, P). MLIP showed

varied methylation, notably high levels (Supplementary Figure 1K),

while PER1 and PHKB had low to medium methylation

(Supplementary Figures 1L, M). PUS1 had medium to high

methylation (Supplementary Figure 1N), and RYR1 was largely

unmethylated (Supplementary Figure 1O). TK2 mainly exhibited

low methylation (Supplementary Figure 1Q), and VAPA was mostly
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unmethylated or lowly methylated (Supplementary Figure 1R). These

results highlight exercise’s potential role in regulating the epigenetic

modification of these genes, providing insight into the underlying

molecular mechanisms and potential therapeutic applications.
Correlation of burn and sepsis-related
gene expression with tumor prognosis

Our study examined the correlation between the expression of

burn- and sepsis-related genes and tumor prognosis, specifically

focusing on Disease-Free Interval (DFI), Disease-Specific Survival

(DSS), Overall Survival (OS), and Progression-Free Interval (PFI)

(Figure 5). In the Disease-Free Interval (DFI) panel (Figure 5A), a

heatmap displays the relationship between gene expression and DFI

in tumor patients. Here, red squares denote genes associated with

increased risk, while blue squares indicate protective genes, with

significant correlations marked (p < 0.05). Similarly, the Disease-

Specific Survival (DSS) panel (Figure 5B) presents a heatmap that

illustrates the correlation between gene expression and DSS,

maintaining the same color scheme and significance threshold.

The Overall Survival (OS) panel (Figure 5C) shows correlations

between gene expression and OS, with red indicating risky genes

and blue representing protective genes. Only statistically significant

correlations (p < 0.05) are displayed to emphasize meaningful

relationships. Lastly, the Progression-Free Interval (PFI) panel

(Figure 5D) provides a heatmap showing the correlation between

gene expression and PFI, using consistent color coding and

significance criteria. These findings highlight the significant

influence of specific gene expressions on various tumor prognosis

metrics, offering valuable insights that could guide the development

of potential therapeutic targets. The study emphasizes the

importance of considering the molecular landscape shaped by

burn and sepsis-related genes, which may provide novel

opportunities for personalized treatments in cancer patients,

particularly those recovering from burns or sepsis.
FIGURE 4

Analysis of promoter methylation in exercise-modulated genes related to nurns and sepsis. (A) The heatmap visualizes differences in promoter
methylation for specific genes associated with burns and sepsis, including ACADM, ALDH4A1, COL12A1, FARS2, G6PC, HSP90A, KCNJ2, KCNQ1,
PER1, PHKB, PUS1, RYR1, SVIL, TK2, and VAPA. The colors in the heatmap represent methylation levels, with red indicating hypermethylation, blue
indicating hypomethylation, and white showing no significant change. This analysis compares samples from patients receiving exercise treatment
with those who did not. (B) The heatmap examines the correlation between promoter methylation and mRNA expression levels for the same set of
genes. It visually represents the relationship between changes in methylation and mRNA expression, using the same color scheme as in panel (A).
Red indicates a negative correlation, blue indicates a positive correlation, and white shows no significant correlation. This analysis seeks to
understand how variations in promoter methylation impact gene expression.
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Comprehensive analysis of exercise-
influenced burn and sepsis-related genes
across pan-cancer

This study explores the impact of exercise on genes associated with

burns and sepsis across various cancer types, revealing several key

findings. Supplementary Figure 2A shows mutation frequencies of

these genes in 20 cancer types, with color intensity representing

mutation rates. A waterfall plot (Supplementary Figure 2B) highlights

mutation variability across categories. Figures 2C, D illustrate the

correlation between gene expression and Tumor Mutation Burden

(TMB), with bubble sizes indicating correlation significance and colors

reflecting the strength and direction. Figures 2E, F categorize samples by

copy number amplifications, identifying themost common cancer types.

Figure 2G presents cumulative copy number alterations, while Figure 2H

compares amplifications and deletions across cancer types. Finally,

Figure 2I displays a correlation matrix of gene expression in different

cancers, with bubble sizes representing p-values. These findings highlight

the heterogeneous genomic effects of exercise on burn- and sepsis-related

genes in cancers, offering insights into potential therapeutic targets and

informing personalized cancer treatment strategies.
Exercise-influenced gene expression in
cancer and microbiomes

Our analysis of gene expression following exercise across multiple

cancer types revealed notable enrichments in genomic features and
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microbiome signatures. In Figure 6A, we observed distinctive gene

expression patterns associated with burns and sepsis that correlate

with CNVs. In this figure, circle sizes denote significance levels, while

color gradients indicate delta values, highlighting differential

expression. Similarly, Figure 6B shows the relationship between

gene expression and promoter methylation, with blue representing

negative correlations and red indicating positive correlations.

Figures 6C, D explore the expression of these genes within different

microbiomes. A heatmap in Figure 6C presents normalized

expression levels, while hierarchical clustering in Figure 6D reveals

co-regulated gene clusters influenced by microbial presence.

Figure 6E provides a GSEA across various cancers, identifying

enriched pathways. Bubble sizes correspond to the number of

genes involved, and colors reflect enrichment scores, with red

indicating higher scores. These findings suggest that exercise

modulates gene expression in ways that affect cancer biology and

microbial interactions, offering potential insights for therapeutic

development. The interaction between exercise, gene expression,

and microbiome modulation highlights new avenues for improving

cancer treatment strategies through holistic approaches that consider

genetic, epigenetic, and microbial factors.
Pan-cancer GSVA enrichment analysis

This study performed an extensive pan-cancer analysis of burn-

and sepsis-related gene sets influenced by exercise across various
FIGURE 5

Association of burn and sepsis-related gene expression with tumor prognosis indicators (DFI, DSS, OS, PFI). (A) The heatmap shows the correlation
between the expression of burn and sepsis-associated genes and the disease-free interval in cancer patients. Red squares represent genes
correlated with an increased risk (risky), while blue squares indicate genes with a protective effect. Only significant correlations (p<0.05) are shown.
(B) The heatmap illustrates the relationship between gene expression and disease-specific survival in cancer patients, following the same color
coding as in panel (A). Red squares denote risky genes, and blue squares indicate protective genes, with only significant associations (p<0.05)
included. (C) This panel provides a heatmap that demonstrates the correlation between gene expression and overall survival in cancer patients.
Genes associated with a higher risk are shown in red, while those with protective associations are in blue. Only significant correlations (p<0.05) are
highlighted. (D) The heatmap examines the correlation between gene expression and progression-free interval in cancer patients. As in the previous
panels, red indicates risky genes, and blue represents protective genes. Only statistically significant correlations (p<0.05) are displayed.
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cancer types using four scoring methods: combined z-scores, GSVA

z-scores, PLAGE z-scores, and ssGSEA z-scores. Results in

Supplementary Figure 3 reveal significant differences in gene set

enrichment between normal and tumor tissues. Supplementary

Figure 3A presents the combined z-scores, showing notable
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statistical significance in cancers such as KIRC and BLCA, which

suggests differential gene expression. Supplementary Figure 3B

displays the GSVA z-scores, with marked variations in THCA

and KICH, pointing to potential implications for tumor biology.

In Supplementary Figure 3C, the PLAGE z-scores highlight
FIGURE 6

Pan-cancer enrichment analysis and gene expression in microbiomes. (A) Association of exercise-influenced burn and sepsis gene expression with
CNV in multiple cancer types: This panel presents the correlation between the expression of exercise-modulated genes associated with burns and
sepsis and copy number variations (CNV) across various cancer types. Circle size corresponds to the significance level (-log10 p-value), while the
color gradient indicates delta values, with red representing upregulation and blue indicating downregulation. (B) Association of gene expression with
promoter methylation across cancer types: This panel displays the correlation between gene expression and promoter methylation levels for
exercise-influenced genes related to burns and sepsis across multiple cancers. Circle size reflects the significance level (-log10 p-value), while the
color gradient denotes correlation values, with blue indicating negative correlation and red showing positive correlation. (C, D) Expression of
exercise-influenced genes in microbiomes: The heatmap in panel (C) illustrates expression levels of these genes across various microbiomes, with
color intensity representing normalized expression levels. Panel (D) depicts hierarchical clustering of gene expression data, with a color scale from
blue (low expression) to red (high expression), showing distinct clustering patterns. (E) GSEA pathway enrichment analysis in different cancers: This
bubble plot illustrates the pathways enriched in different cancers, with bubble size representing the number of genes involved and color indicating
the enrichment score—red for a higher enrichment score and blue for a lower score. The symbols *, **, and *** represent statistical significance
levels corresponding to p<0.05, p<0.01, and p<0.001, respectively.
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significant differences in KIRP and BLCA, underscoring the

influence of exercise on gene set activity. Finally, Supplementary

Figure 3D shows the ssGSEA z-scores, revealing substantial changes

across multiple cancers, suggesting therapeutic potential for

exercise-modulated genes in cancer treatment. This analysis

provides key insights into the role of exercise-related genes in

cancer biology, emphasizing their potential therapeutic

applications. It opens avenues for future research, particularly in

identifying cancer types that could benefit from exercise-based

interventions and exploring the molecular mechanisms

underlying exercise-induced gene expression changes in cancer.
MLIP modulates inflammation, oxidative
stress, and macrophage polarization in
LPS-induced RAW264.7 cells

This study investigated the role of MLIP in regulating

inflammation, oxidative stress, and macrophage polarization in

LPS-induced RAW264.7 cells. Figure 7A shows that MLIP

overexpression (MLIP-OE) significantly enhanced the expression

of target genes, while MLIP knockdown (sh-MLIP) notably reduced

expression, highlighting MLIP’s regulatory function. Figure 7B

reveals that LPS treatment upregulated TNF-a, IL-6, and IL-1b
mRNA levels, indicating an intensified inflammatory response.

MLIP-OE attenuated these cytokine levels, suggesting its potential

to suppress inflammation, while LPS + sh-MLIP further elevated

inflammatory markers, indicating that MLIP inhibition exacerbates

inflammation. Figure 7C demonstrates increased ROS production

in the LPS group, reflecting heightened oxidative stress. MLIP-OE

reduced ROS levels compared to LPS treatment alone, indicating

that MLIP mitigates oxidative stress, while sh-MLIP further

increased ROS levels. Figure 7D illustrates that superoxide

dismutase (SOD) activity, a key antioxidant enzyme, was reduced

by LPS but partially restored with MLIP-OE, underscoring the

antioxidative role of MLIP. Figures 7E, F explore MLIP’s effects on

macrophage polarization. MLIP-OE reduced the expression of the

M1 marker CD86 and IL-1b, while increasing the expression of the

M2 marker CD206, suggesting MLIP’s role in promoting a balanced

macrophage polarization. IL-10 levels remained highest in the LPS

group, reflecting the influence of LPS on anti-inflammatory

responses. Figure 7G, through immunofluorescence staining,

shows reduced IL-6 and IL-1b expression in the MLIP-OE group

compared to the LPS and sh-MLIP groups, further supporting

MLIP’s anti-inflammatory effects. Finally, Figure 7H presents flow

cytometry data showing shifts in macrophage polarization profiles:

MLIP-OE promoted a less inflammatory state, while sh-MLIP

favored pro-inflammatory polarization. Overall, these results

highlight the significant role of MLIP in modulating

inflammation, oxidative stress, and macrophage polarization in

LPS-induced RAW264.7 cells. These findings suggest that MLIP

could serve as a potential therapeutic target for inflammatory

diseases, particularly those involving macrophage polarization,

such as autoimmune disorders, infections, and chronic

inflammatory conditions.
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The role of MLIP in regulating
inflammation, oxidative stress, and cell
proliferation in HUVECs, with implications
for burn-induced sepsis and
cancer progression

This study explores MLIP’s role in modulating gene expression,

inflammation, oxidative stress, and cell proliferation in human

umbilical vein endothelial cells (HUVECs). Additionally, it

investigates MLIP’s potential involvement in burn-induced sepsis

and subsequent cancer progression. As illustrated in Figure 8A,

MLIP overexpression markedly increased the relative mRNA levels

of target genes, whereas MLIP knockdown reduced these levels,

underscoring its significant function in gene regulation. Figure 8B

demonstrates that MLIP overexpression enhances cell viability, as

indicated by the CCK-8 assay, while knockdown decreases

proliferation, suggesting MLIP’s supportive role in cell growth.

Further, Figure 8C compares the expression levels of pro-

inflammatory cytokines TNFa, IL-6, and IL-1b across different

treatments. The LPS + MLIP-OE group displayed lower cytokine

levels than the LPS-only group, underscoring MLIP’s potential anti-

inflammatory effect. Conversely, increased cytokine levels in the

LPS + sh-MLIP group suggest that MLIP inhibition may amplify

inflammatory responses. Immunofluorescence analysis of IL-6 and

IL-1b (Figures 8D, E) corroborates these findings, showing reduced

inflammatory marker expression with MLIP overexpression and

elevated levels with knockdown. Moreover, flow cytometry analysis

of ROS production (Figure 8F) reveals that MLIP overexpression

alleviates LPS-induced oxidative stress, while knockdown elevates

ROS levels, highlighting MLIP’s regulatory influence on oxidative

stress. Apoptosis analysis (Figure 8G) indicates that MLIP

overexpression mitigates LPS-induced apoptosis, whereas its

inhibition increases apoptosis rates, suggesting a protective role

against cell death. Figure 9 provides a comprehensive view of

MLIP’s involvement in burn-induced sepsis and its implications

for cancer progression related to sepsis. The left panel traces the

progression from burns to systemic inflammation and sepsis,

showing MLIP ’s role in immune modulation. Central

bioinformatics analysis demonstrates differential gene expression,

pathway enrichment, and pan-cancer analysis, elucidating MLIP’s

influence on specific pathways and epigenetic regulation during

sepsis. Prognostic analysis suggests MLIP’s potential relevance

across various cancer types, while microbiome interactions hint at

its immunomodulatory properties. The right panel integrates

findings from in vitro studies on an LPS-induced endothelial

model of sepsis, linking MLIP’s effects on cell proliferation, ROS

levels, and inflammatory cytokine expression. Collectively, these

findings highlight MLIP as a pivotal modulator of cellular responses

under inflammatory conditions, offering a foundation for its

therapeutic potential in managing sepsis and reducing cancer risk

associated with inflammation. These results support the notion that

MLIP may act as a central mediator of cellular responses in

inflammation, oxidative stress, and immune modulation, with

important implications for inflammatory diseases and

cancer treatment.
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Discussion

Burn-induced sepsis presents not only a clinical emergency but

also a significant public health concern, as supported by

epidemiological data. This alarming statistic highlights the critical

nature of burn-induced sepsis and underscores the urgent need for

enhanced preventive strategies, diagnostic methods, and

therapeutic interventions (56, 57). Given macrophages’ pivotal

role in immune response, their involvement is central to sepsis

pathology. Understanding macrophage-mediated inflammatory

responses offers a promising avenue for identifying potential

therapeutic targets in treating burn-induced sepsis.

Recent advancements in the medical research field have

provided great hope in addressing the complexities of burn-

induced sepsis. This study establishes a solid theoretical

foundation for improving intervention strategies and discovering

new therapeutic targets (58). Given these findings, an appropriate

exercise regimen for burn patients could potentially enhance

immune function and recovery, thereby reducing susceptibility to

sepsis. Significant progress has also been made in nanotechnology.

Through bioinformatics, scientists have gained a deeper
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understanding of the relationship between the microstructure and

properties of nanomaterials. This has enabled precise control over

pore size, porosity, and composition, leading to broad applications

in catalysis, adsorption, and biomedicine (59, 60). For instance, the

development of near-infrared light-activated upconversion

nanoparticles/curcumin mixed nanomedicines has shown

promising potential in inducing glioma stem cell differentiation

and effective eradication (61). While this research primarily focuses

on gliomas, the concept of using nanomaterials for targeted therapy

can be applied to burn-induced sepsis. Researchers have

successfully identified potential biomarkers and developed risk

prediction models, offering new perspectives for personalized

treatment strategies (62–64). Large datasets have also been

utilized for bioinformatics analysis, facilitating the precise

identification of biomarkers, the exploration of signaling

pathways, and the systematic study of immune characteristics

(65–67). In the context of burn-induced sepsis, this could lead to

early detection through the identification of sepsis-specific

biomarkers. Moreover, assessing patients’ immune profiles allows

for more accurate prognosis, enabling timely adjustments to

treatment strategies.
FIGURE 7

MLIP’s role in modulating inflammation, oxidative stress, and polarization in LPS-induced RAW264.7 cells. (A) Quantitative RT-PCR analysis of target
gene expression in RAW264.7 cells across various treatment groups, including Control, MLIP overexpression (MLIP-OE), MLIP knockdown (sh-MLIP),
and LPS-stimulated cells. Expression levels are normalized to the Control group and reported as mean ± SD, with p < 0.05 indicating statistical
significance. (B) Quantitative RT-PCR analysis showing relative mRNA levels of TNF-a, IL-6, and IL-1b in Control, LPS, LPS + MLIP-OE, and LPS + sh-
MLIP groups, demonstrating MLIP’s role in modulating inflammation in the context of LPS treatment. (C) DCFH-DA assay results illustrate the effects
of different treatments on intracellular reactive oxygen species (ROS) levels. The Control group serves as the baseline, while LPS treatment induces
ROS production, and LPS + MLIP-OE treatment reduces ROS, suggesting an antioxidative role for MLIP. (D) Measurement of SOD activity across
Control, LPS, and LPS + MLIP-OE groups. LPS significantly reduces SOD activity, while MLIP overexpression restores SOD function in treated cells.
Data are expressed as mean ± SD, with p < 0.05 indicating statistical significance. (E) qRT-PCR analysis of M1 macrophage markers IL-1b and CD86
in Control, LPS, and LPS + MLIP-OE groups, highlighting MLIP’s influence on macrophage polarization. (F) Comparison of IL-10 and CD206
expression levels in Control, LPS, and LPS + MLIP-OE groups using qRT-PCR. Data are shown as mean ± SD, with p < 0.05 denoting statistical
significance. (G) Immunofluorescence staining of inflammatory cytokines: Representative immunofluorescence images illustrating IL-6 and IL-1b
expression in RAW264.7 cells across Control, LPS, LPS + MLIP-OE, and LPS + sh-MLIP groups. Cells are stained with DAPI (blue) to label nuclei, with
IL-6 or IL-1b (red) indicating cytokine localization and expression. (H) Flow cytometry analysis of macrophage polarization: Flow cytometric plots
showing the impact of LPS, LPS + MLIP-OE, and LPS + sh-MLIP treatments on macrophage polarization, measured by surface marker expression.
Data illustrate shifts in polarization states influenced by MLIP modulation. The results represent three independent experiments. ns, not significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1540998
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1540998
Our research focuses on gene expression profiles and

epigenetic modifications in the context of burn - induced sepsis

and cancer. These processes are essential for understanding how

sepsis and tumorigenesis are interlinked, as they may facilitate

tumor cell proliferation and survival while also potentially

enhancing immune evasion (31, 68). For instance, cytokines

such as TNF-a and IL-6, produced during sepsis, play a key role

in organizing inflammatory responses and may indirectly support

tumor formation (31, 69). Additionally, oxidative stress associated

with sepsis can result in DNA double-strand breaks and genomic

instability, creating a genetic foundation conducive to tumor

initiation and progression (70). These findings highlight the

need for further exploration into the impact of sepsis on tumor

microenvironments, particularly in terms of immune suppression

and the initiation of genomic instability, both of which could

present novel therapeutic opportunities. Examining how

macrophage dysfunction during sepsis contributes to site-

specific organ damage may provide novel insights into

controlling inflammation and preventing cancer progression,
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depending on the affected sites. We are investigating how

exercise influences gene expression profiles and epigenetic

modifications across medical conditions such as burns, sepsis,

and cancer (71, 72). The Wilcoxon rank - sum test was applied to

analyze gene expression differences between tumor and normal

tissues. Sourcing data from relevant databases and performing

necessary normalizations, we also analyzed methylation levels in

specific genomic regions.

These findings underscore the particular significance and

timeliness of our study. By investigating the mechanisms of burn-

induced sepsis, we aim to provide deeper insights into this clinical

issue from both molecular and biological perspectives (73). Our

research contributes not only to the development of new

preventative and therapeutic strategies to reduce sepsis risk and

improve outcomes for burn patients but also to the understanding

of the intricate link between inflammation and tumor development.

By expanding scientific knowledge on the connections between

burn-induced sepsis and tumorigenesis, we can provide valuable

data to support informed policy development, potentially leading to
FIGURE 8

Effects of MLIP on gene expression, cell viability, inflammation, ROS levels, and apoptosis in HUVECs across treatment conditions. (A) The relative
mRNA expression levels of target genes were analyzed via qRT-PCR across treatment groups, with the Control group as a baseline. The EV (empty
vector) group serves as a negative control, MLIP-OE represents MLIP overexpression, and sh-MLIP indicates MLIP knockdown. Data represent mean
± SD from three independent experiments, with *p < 0.05 denoting statistical significance. (B) HUVEC proliferation was measured under various
conditions. Control represents untreated cells, EV serves as the empty vector control, MLIP-OE represents MLIP overexpression, and sh-MLIP
indicates MLIP silencing. Results are expressed as mean ± SD, with *p < 0.05 indicating significant differences. (C) mRNA levels of inflammatory
cytokines were measured by qRT-PCR in Control, LPS-stimulated, LPS + MLIP-OE, and LPS + sh-MLIP groups. LPS stimulation models inflammation,
and subsequent treatments assess MLIP’s role in modulating cytokine expression. Data are presented as mean ± SD, with *p < 0.05 indicating
significance. (D) Immunofluorescence staining of IL-6 (red) with DAPI (blue) was performed on HUVECs to assess IL-6 expression under different
treatment conditions, including LPS stimulation and MLIP modulation. (E) Cells were stained for IL-1b (red) and DAPI (blue), revealing IL-1b
expression changes due to LPS treatment, MLIP overexpression, and MLIP knockdown. (F) Flow cytometry quantified ROS levels in HUVECs under
Control, LPS, LPS + MLIP-OE, and LPS + sh-MLIP conditions, highlighting MLIP’s role in regulating oxidative stress during inflammation. (G) The
percentage of apoptotic cells was measured across treatment groups: Control, LPS-stimulated, LPS + MLIP-OE, and LPS + sh-MLIP. Data
underscore MLIP’s influence on LPS-induced apoptosis, illustrating differences in apoptosis rates between groups. ns, not significant.
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measurable reductions in the incidence and healthcare costs of these

diseases on a broader scale (13, 31).

This study employed a multitude of approaches to explore the

therapeutic potential of molecular targets, with bioinformatics

playing a pivotal role in data interpretation. From a microscopic

perspective of molecules and cells, the combination of

transcriptomics and proteomics has delved deep into disease

mechanisms, revealing the crucial regulatory mechanisms of

transcription factor networks and protein modifications in diseases.

This has laid a theoretical foundation for developing novel treatment

strategies (74). Through the combined analysis of metabolomics and

proteomics, the metabolic pathways and their significant roles in cell

functions have been explored multiple times (75). In cell - level

research, an in - depth exploration of cell polarization and its role in

immune regulation and treatment strategies has provided important

evidence for understanding cell functions and immune regulation

mechanisms (76). The advancements in proteomics technology have

enabled a more thorough study of protein - protein interaction

networks, their modifications, and regulatory mechanisms. This

helps uncover the complex signal transduction processes within

cells, laying the groundwork for understanding the essence of life

activities and developing new targeted treatment strategies (77, 78).

Through bioinformatics analysis, key genes associated with specific

diseases were identified, and their roles in immune infiltration were
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explored, indicating the direction for disease diagnosis and the search

for treatment targets (79, 80). Notably, the inclusion of bioinformatics

tools in the analysis has provided insights into the molecular

underpinnings of burn-induced sepsis and their connections to

cancer-related pathways. Bioinformatics tools were applied to

annotate gene functions and conduct pathway enrichment analyses,

revealing potential signaling pathways and regulatory networks

involved in burn - induced sepsis and its connection to cancer -

related pathways. In vivo studies using animal models further

substantiated these findings. For instance, RNA-seq allows

researchers to quantify gene expression across various tumor types

in comparison to normal tissues, identifying gene expression profiles

associated with cancer development (81, 82). High - throughput

sequencing technologies, like RNA - seq, combined with

bioinformatics analysis, were used to investigate gene expression

profiles in tumor and normal tissues, identifying profiles associated

with cancer development.

Bisulfite sequencing (BS-seq) and chromatin accessibility assays

offer insights into epigenetic regulatory mechanisms by inferring

the DNA methylation status of gene promoters. This is crucial for

understanding epigenetic modifications that lead to the activation

or silencing of transcription start sites (TSS) (83, 84). Additionally,

ATAC-seq technology identifies open chromatin regions that may

interact with transcription factors and other regulatory proteins,
FIGURE 9

Comprehensive analysis of MLIP’s role in burns-induced sepsis and cancer progression through bioinformatics and in vitro studies. In vivo findings
highlight MLIP’s role in modulating immune responses, suggesting its potential in preventing the transition from sepsis to cancer. The middle section
focuses on bioinformatics, analyzing differential gene expression, pathway enrichment, and Gene Set Enrichment Analysis (GSEA) using RNA-seq
data. The right section describes in vitro experiments using an endothelial cell model of sepsis, where cells are treated with lipopolysaccharide (LPS).
These experiments assess cell proliferation, inflammatory markers, ROS, and cytokine levels, shedding light on immune responses during septic
conditions. This comprehensive figure explores MLIP’s involvement in burns-induced sepsis and cancer progression, presenting potential
therapeutic targets.
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playing a vital role in controlling gene expression (85, 86). We

anticipate that future work will further explore how these epigenetic

modifications could potentially serve as therapeutic targets in burn-

induced sepsis and cancer. This approach may ultimately assist in

identifying novel biomarkers for early cancer detection, particularly

in individuals who have experienced burn-induced sepsis. GSEA

can be applied to immune-related gene sets, providing an integrated

perspective on immune regulatory mechanisms within the tumor

microenvironment (87). Additionally, microbial differential

expression studies enable the examination of gene expression

profiles within microbial communities in tumor contexts,

shedding light on the relationships between microbes, tumor

development, and treatment responses (88).

This study systematically investigated the role of MLIP in

RAW264.7 cells and HUVECs through in vitro experiments, with a

particular focus on MLIP’s regulation of inflammation. Initially, PCR

was first utilized to assess MLIP’s effects on gene expression in

RAW264.7 cells and HUVECs, while the CCK - 8 assay evaluated

cell proliferation (89, 90). Subsequently, an inflammatory response

model was established by treating cells with LPS, allowing us to observe

the regulatory effects of MLIP on inflammatory markers, including

TNFa (tumor necrosis factor-alpha) and IL-6 (interleukin-6), as well

as its impact on cellular processes like hydration and electrical

conductivity during inflammation (91, 92). Our experiments

highlighted MLIP’s potential in regulating immune responses,

offering a promising strategy for modulating inflammation in burn-

induced sepsis. Additionally, flow cytometry was used to examine

MLIP’s regulatory influence on M1 and M2 macrophage polarization

(93). This comprehensive experimental approach aims to elucidate the

underlying mechanisms by which MLIP may influence inflammatory

diseases, offering theoretical support for its potential therapeutic target

(94). The insights gained into macrophage polarization and ROS

modulation suggest possible pathways for targeted interventions in

the management of sepsis-related organ damage.

Through a comprehensive analysis of data from the GEO database,

we identified a cohort of genes associated with burn and sepsis that are

influenced by exercise and exhibit distinct expression patterns in

various tumor samples compared to normal tissues (95, 96).

Returning to the macroscopic perspective of clinical applications and

disease research, when evaluating treatment efficacy and prognostic

indicators, multiple factors such as metabolic tumor burden and

immune cell characteristics were comprehensively considered,

providing a multi - dimensional perspective for judging disease

progression and treatment responses (97, 98). In studying the

associations between diseases and other factors, methods such as

Mendelian randomization studies and case - control studies play

important roles. For example, exploring the association between

cholecystectomy and the risk of a certain disease, as well as

comparing the molecular characteristic differences of different

disease onset types (99). Animal models were used to verify in-vivo

effects, and histological and immunohistochemical analyses were

carried out to observe tissue pathological changes, providing

important evidence for subsequent research (80). Mendelian

randomization analysis was applied to explore the causal relationship

between metabolites and diseases. This method effectively eliminates

the influence of confounding factors and improves the accuracy of
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causal inference (100). While focusing on disease treatment, the

humanistic care for patients should not be overlooked. Peer support

and patient participation have a significant effect on improving the

treatment experience and quality of life of cancer patients (101).

Spiritual beliefs play an important psychological support role in

patients at the end - stage of diseases (102). Further investigation

focused on the methylation status of the promoter regions of these

genes. We observed substantial changes in methylation levels in tumor

cells compared to normal cells. Notably, increased methylation of

specific genes was associated with their silencing, potentially serving as

a mechanism for tumor cells to evade immune surveillance and

facilitate tumor progression (103, 104). Using ATAC-seq technology,

we assessed the chromatin accessibility of these genes. The results

indicated that chromatin regions associated with tumor progression

were more accessible in tumor cells, allowing transcription factors and

other regulatory proteins to bind more easily, thereby modulating gene

expression (105, 106). These findings underscore the potential of

macrophage-targeted therapies to alter the tumor microenvironment

and improve patient outcomes in sepsis-associated cancers. In the

broader context of medical research, significant advancements have

beenmade in various related fields. In materials science, breakthroughs

in nanomaterial preparation have opened up broad prospects in fields

such as catalysis, adsorption, and biomedicine (107, 108). In analyzing

core genes across various cancers, we examined copy number

variations, methylation status, and tumor mutation burden,

uncovering complex genetic and epigenetic alterations (109, 110).

Specifically, mutations in key genes associated with tumor

aggressiveness and resistance to chemotherapy were identified,

suggesting new strategies for developing targeted therapies against

these genes (111, 112). GSEA further indicated an enrichment of these

core genes in immune-related pathways, highlighting their possible

roles in modulating the tumor immune microenvironment.

Additionally, differential expression analysis of these genes across

various microbiomes suggested their involvement in host-microbe

interactions within the tumor microenvironment (113).

This study highlights the significant biological functions of MLIP

in RAW264.7 cells and HUVECs. In RAW264.7 cells, MLIP

overexpression markedly increased gene expression as assessed by

PCR, underscoring its crucial role in gene regulation. Following LPS

treatment, the expression of inflammatory markers TNFa, IL-6, and
IL-1b was significantly elevated; however, these levels were relatively

lower in the MLIP overexpression group, suggesting that MLIP may

play a role in suppressing inflammatory responses. Conversely, the

elevated inflammatory factors observed in the MLIP knockdown

group imply that MLIP deficiency may exacerbate inflammation.

Simultaneously, changes in ROS levels indicated that LPS enhances

oxidative stress, while MLIP overexpression appears to moderate

ROS levels, highlighting its potential antioxidant function. In terms

of M1 macrophage polarization, MLIP expression was closely

associated with variations in CD86 and IL-1b levels, further

supporting its regulatory role in macrophage polarization. In

HUVECs, MLIP overexpression also promoted gene expression

and cell proliferation, as demonstrated by CCK-8 assay results.

Following LPS treatment, inflammatory factor expression increased

significantly, but this rise was tempered in the MLIP overexpression

group, suggesting that MLIP helps maintain cell function by
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modulating inflammatory responses under prolonged stress

conditions. Additionally, MLIP was shown to increase cell

proliferation rates, as indicated by flow cytometry analysis. Its role

in regulating cell polarization and proliferation provides a theoretical

foundation for potential therapeutic applications in various

inflammatory diseases. MLIP’s regulatory influence extends to the

polarization and proliferation of multiple cell types, including

RAW264.7 cells and HUVECs. Using the Chickseeker package, we

evaluated the spatial proximity of transcription factor binding sites

and histone modifications relative to transcription start sites.

MLIP expression was elevated in the MLIP-OE group using an

overexpression vector, whereas, in the sh-MLIP group, MLIP

expression was suppressed through shRNA targeting (114, 115).

Preliminary findings suggest that MLIP may play a critical role in

macrophage polarization and metabolic reprogramming, though

further studies are needed to elucidate the complex intracellular

pathways influenced by MLIP and their impact on macrophage

function in both normal and pathological states. A significant

amount of data on RNA levels and cellular responses in various

conditions was gathered using standardized quantification methods,

providing insights into the dual role of MLIP in regulating cell

proliferation. Flow cytometry was used to analyze the rate of cell

apoptosis, ROS levels, and differences in cell surface markers between

the groups. We paid special attention to apoptosis induced by LPS to

evaluate whether MLIP confers a protective effect in this pathway.

These methodologies clarify MLIP’s role in modulating macrophage

activity and its implications in inflammatory responses (116, 117).

This study, through bioinformatics analysis and in vitro cell

experiments, has demonstrated the pivotal role of MLIP in burn -

induced sepsis. Our findings highlight MLIP’s potential as a

therapeutic target, as alterations in its expression are closely

associated with inflammatory responses and cellular damage. Future

research will focus on delineating the specific mechanisms by which

MLIP influences sepsis progression, including its roles in

inflammatory pathways and effects on cell survival and function.

Additionally, we plan to assess the feasibility of therapeutically

targeting MLIP, offering new insights and directions for clinical

intervention (118, 119). The application of network pharmacology

and experimental verificationmethods in traditional Chinese medicine

research has opened up new avenues and strategies for drug

development (120). The development of bioinformation technology

has promoted breakthroughs in natural product research. The use of

molecular network technology for rapid screening and target molecule

discovery has effectively accelerated the drug development process

(121). Molecular dynamics simulation and structural biology methods

are used to analyze the binding characteristics and functions of target

proteins, providing important evidence for new drug design (122).

Further studies will also explore the collective roles of these genes in

tumorigenesis, particularly focusing on their interactions with immune

cells within the tumor microenvironment (123, 124). Investigating

how these genes respond to exercise and other lifestyle factors may

contribute to advancements in personalized medicine (125, 126). We

also plan to assess the feasibility of therapeutically targeting MLIP.

However, it should be noted that this study has limitations, such as the

lack of large - scale clinical trials.
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Conclusion

This study highlights MLIP’s role in burn-induced sepsis as a

potential therapeutic target. Using bioinformatics and in vitro

analyses, we showed its regulatory effects on inflammation/

cellular damage. Findings improve sepsis-cancer interplay

insights, especially immune response’s role in tumor progression.

Practically, they could guide targeted therapies for sepsis patients to

improve outcomes. But larger-scale trials are needed for validation.

Future research should clarify MLIP’s mechanistic pathways in

sepsis and its oncology implications.
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SUPPLEMENTARY FIGURE 1

Analysis of promoter methylation in genes related to burns and sepsis,

modulated by exercise. (A) ACADM Promoter Methylation: The pie chart
displays methylation levels (unmethylated, low, medium, high) across

samples. A bar graph shows the percentage of methylated cytosines at

specific CpG sites in the ACADM promoter, and a line graph illustrates
methylation patterns across various promoter regions. (B) ALDH4A1

promoter methylation: Similar to panel (A), the pie chart, bar graph, and
line graph illustrate the distribution of methylation levels, percentage of

methylated cytosines, and regional methylation across the ALDH4A1
promoter. (C) COL12A1 Promoter Methylation: The pie chart shows

methylation levels across samples, the bar graph indicates the percentage

of methylated cytosines at selected CpG sites, and the line graph depicts
methylation across the COL12A1 promoter. (D) FARSA Promoter Methylation:

The pie chart illustrates overall methylation levels at the FARSA promoter,
while the bar graph shows the percentage of methylated cytosines and

potential methylatable sites. The line graph provides a view of regional
methylation, facilitating comparison across different promoter sections. (E)
G0S2 promoter methylation: The pie chart summarizes the methylation

distribution across samples, the bar graph shows methylation percentages
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at various promoter locations, and the line graph details patterns across the
G0S2 promoter sequence. (F) HSPA8 promoter methylation: Similar to prior

analyses, the pie chart, bar graph, and line graph collectively display

methylation levels, the percentage of methylated cytosines, and regional
patterns across the HSPA8 promoter. (G) KCNJ2 promoter methylation: This

analysis presents the distribution of methylation levels in the KCNJ2
promoter, using a pie chart for overall levels, a bar graph for CpG site

methylation, and a line graph for regional analysis. (H) KCNQ1 promoter
methylation: The pie chart, bar graph, and line diagram illustrate methylation

levels, percentage of methylated cytosines, and regional methylation status

across the KCNQ1 promoter segments. (I) LAMP2 promoter methylation: The
pie chart shows methylation levels across samples, the bar graph indicates

methylation at specific CpG sites, and the line chart details methylation
patterns across the LAMP2 promoter. (J) MGME1 promoter methylation:

The pie, bar, and line charts depict methylation levels, the percentage of
methylated cytosines, and regional methylation across the MGME1 promoter.

(K) MLIP promoter methylation: This section includes the distribution of

methylation levels (pie chart), the percentage of methylated cytosines (bar
graph), and the methylation status across promoter regions (line graph) for

MLIP. (L) PER1 promoter methylation: A pie chart shows methylation levels, a
bar graph displays methylated cytosine percentages, and a line graph

illustrates regional methylation patterns for the PER1 promoter. (M) PHKB
promoter methylation: The pie chart summarizes methylation levels across

samples, while the bar graph and line graph provide details on methylated

cytosine percentages and regional methylation patterns in the PHKB
promoter. (N) PUS1 promoter methylation: A set of three charts—pie chart,

bar graph, and line graph—demonstrates the methylation levels, percentage
of methylated cytosines, and regional methylation across the PUS1 promoter.

(O) RYR1 promoter methylation: This panel uses pie and bar charts to display
methylation levels and proportions of methylated cytosines within the RYR1

promoter, with a line graph showing regional methylation variations. (P) SVIL
promoter methylation: The pie chart, bar graph, and line graph visualize
methylation levels, the percentage of methylated cytosines, and regional

methylation status in the SVIL promoter. (Q) TK2 promoter methylation: The
pie chart illustrates methylation levels, the bar graph shows methylated

cytosine percentages, and the line graph details regional patterns within the
TK2 promoter. (R) VAPA promoter methylation: The pie chart represents

methylation levels in the VAPA promoter, with a bar graph showing

methylated cytosine percentages and a line graph displaying methylation
variations across different promoter regions.

SUPPLEMENTARY FIGURE 2

Analysis of exercise-influenced genes related to burns and sepsis across pan-
cancer. (A)Mutation frequency across 20 cancer types: This panel displays the

mutation frequency of genes influenced by exercise, burns, and sepsis across

20 cancer types. Each cell in the grid corresponds to themutation frequency of
a specific gene within a given cancer type. Color gradations indicate mutation

percentages, allowing for a visual comparison of mutation rates for each gene
across different cancer types. (B)Waterfall plot of mutations: This waterfall plot

illustrates the mutation burden for each exercise-influenced burn and sepsis-
related gene across multiple cancer types. Each bar represents the mutation

load for a specific gene, with color distinctions indicating different mutation

types. (C, D) Correlation of gene expression with Tumor Mutation Burden
(TMB): These panels show a correlation analysis between gene expression and

TMB across various cancers. Bubble size represents the significance of each
correlation, while color denotes the direction and strength of the correlation.

(E) Copy number amplification ratios across pan-cancer: Bars represent the
proportion of samples with copy number amplifications for each gene across

different cancer types, showing the prevalence of gene amplification. (F) Copy
number deletion ratios across pan-cancer: This bar graph shows the
percentage of samples with copy number deletions for each gene across

cancer types, comparing deletion frequencies. (G) Total copy number variation
(Amplification and Deletion): Each cell represents the sum of copy number

changes (amplifications and deletions) for each gene across various cancers,
giving a comprehensive view of overall copy number deviations. (H) Ratios of
copy number amplifications to deletions: This panel compares amplification
(positive values) and deletion (negative values) ratios for each gene across

different cancer types, with cells indicating the relative prevalence of each type

of copy number change. (I) Correlation matrix of gene expression and
statistical significance (-log10 p-value) across cancer types: The correlation

matrix illustrates the relationship between gene expression and p-value
significance across cancer types. Bubble size indicates the p-value
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significance level, and color represents the direction and strength of
each correlation.

SUPPLEMENTARY FIGURE 3

Pan-cancer GSVA enrichment analysis of exercise-influenced genes related

to burns and sepsis. (A) Combined z-scores: This panel shows the combined
z-scores for both normal (blue) and tumor (red) tissues acrossmultiple cancer

types. Each box plot represents the distribution of z-scores, highlighting gene
set enrichment levels. P-values indicate the statistical significance of

differences between normal and tumor tissues. (B) GSVA z-scores: This
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panel displays the GSVA z-scores for normal and tumor tissues across
different cancer types. The GSVA method calculates enrichment scores,

and box plots represent score distributions, with p-values indicating

statistical significance. (C) PLAGE z-scores: This panel illustrates the PLAGE
z-scores, which assess gene set activity levels. Box plots show the distribution

of scores for normal and tumor tissues, with associated p-values to indicate
significant differences. (D) ssGSEA z-scores: This panel presents ssGSEA z-

scores, providing an additional metric for evaluating gene set enrichment.
The box plots display score distributions for normal and tumor tissues, with p-

values indicating the statistical significance of observed differences.
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