
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Qiong Zhang,
Albert Einstein College of Medicine,
United States

REVIEWED BY

Jinpao Hou,
The Chinese University of Hong Kong, China
Yao Yu,
Memorial Sloan Kettering Cancer Center,
United States
Chen Li,
St Jude Children Hospital, United States

*CORRESPONDENCE

Yi-Fu Hou

houyifu0726@foxmail.com

Hao Zhang

hawerchina@gmail.com

†These authors have contributed
equally to this work and share
first authorship

‡These authors have contributed
equally to this work and share
last authorship

RECEIVED 07 December 2024

ACCEPTED 03 March 2025
PUBLISHED 04 April 2025

CITATION

Deng H, Wang X, Jiang Z-A, Xu J, Zhang Y,
Zhou Y, Gong J, Lu X-Y, Hou Y-F and
Zhang H (2025) Clinical potential and
experimental validation of prognostic
genes in hepatocellular carcinoma
revealed by risk modeling utilizing
single cell and transcriptome constructs.
Front. Immunol. 16:1541252.
doi: 10.3389/fimmu.2025.1541252

COPYRIGHT

© 2025 Deng, Wang, Jiang, Xu, Zhang, Zhou,
Gong, Lu, Hou and Zhang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 04 April 2025

DOI 10.3389/fimmu.2025.1541252
Clinical potential and
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utilizing single cell and
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1Medical College, University of Electronic Science and Technology of China, Chengdu, China,
2Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic
Science and Technology of China, Chengdu, China, 3Medical College, North Sichuan Medical
College, Nanchong, China, 4Department of Organ Translation Center, Sichuan Provincial People’s
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Background: Hepatocellular carcinoma (HCC) is the leading cause of tumor-

related mortality worldwide. There is an urgent need for predictive biomarkers to

guide treatment decisions. This study aimed to identify robust prognostic genes

for HCC and to establish a theoretical foundation for clinical interventions.

Methods: The HCC datasets were obtained from public databases and then

differential expression analysis were used to obtain significant gene expression

profiles. Subsequently, univariate Cox regression analysis and PH assumption test

were performed, and a risk model was developed using an optimal algorithm

from 101 combinations on the TCGA-LIHC dataset to pinpoint prognostic genes.

Immune infiltration and drug sensitivity analyses were conducted to assess the

impact of these genes and to explore potential chemotherapeutic agents for

HCC. Additionally, single-cell analysis was employed to identify key cellular

players and their interactions within the tumor microenvironment. Finally,

reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was

utilized to validate the roles of these prognostic genes in HCC.

Results: A total of eight prognostic genes were identified (MCM10, CEP55,

KIF18A, ORC6, KIF23, CDC45, CDT1, and PLK4). The risk model, constructed

based on these genes, was effective in predicting survival outcomes for HCC

patients. CEP55 exhibited the strongest positive correlation with activated CD4 T

cells. The top 10 drugs showed increased sensitivity in the low-risk group. B cells

were identified as key cellular components with the highest interaction numbers

and strengths with macrophages in both HCC and control groups. Prognostic

genes were more highly expressed in the initial state of B cell differentiation. RT-

qPCR confirmed significant upregulation of MCM10, KIF18A, CDC45, and PLK4 in

HCC tissues (p< 0.05).
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Conclusion: This study successfully identified eight prognostic genes (MCM10,

CEP55, KIF18A, ORC6, KIF23, CDC45, CDT1, and PLK4), which provided new

directions for exploring the potential pathogenesis and clinical treatment

research of HCC.
KEYWORDS
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1 Introduction

Hepatocellular carcinoma (HCC) is the sixth most common

malignant tumor globally and the third leading cause of cancer-

related deaths (1). Hepatitis B, hepatitis C, and alcoholic and

nonalcoholic fatty liver diseases are the most common etiologies

of HCC (2). In China, the prevalence of HCC is particularly

concerning, with a majority of patients presenting with advanced

disease stages, often precluding surgical intervention, which is the

preferred treatment modality for long-term survival and potential

cure (3). Given the complexity of the etiologies and the insidious

onset of HCC, a multidisciplinary approach is essential in

treatment. Despite the availability of surgical options for

resectable HCC, it is crucial to integrate the expertise of surgeons,

medical oncologists, radiation oncologists, and interventional

radiologists to optimize patient care. This collaborative strategy

tailors individual treatment plans based on tumor staging, liver

function, and performance status, considering both tumor and

patient related factors, such as genetic mutations driving

incidence and mortality rates (4). Despite the approval of new

drugs and the application of immunotherapies, which have led to

improved prognoses for advanced HCC patients (5), there is still a

significant variation in overall survival rates among HCC patients

(6). In addition to curative surgery, there are numerous local and

systemic treatment options available and the therapeutic strategies

require further optimization. The identification of novel prognostic

biomarkers could offer valuable insights for tailoring treatment

approaches and refining treatment protocols, which may

subsequently improve the prognosis of HCC patients.

The rapid advancement of single-cell technologies has

positioned single-cell transcriptomics as a key tool for uncovering

cellular heterogeneity and complexity. Single-cell RNA sequencing

(scRNA-seq) has provided valuable insights into cellular

differentiation, tumor heterogeneity, and growth, establishing

itself as a cutting-edge technology in biological research (7). By

integrating single-cell transcriptomics with other omics data,

including proteomics, metabolomics, and epigenetics, researchers

can obtain a more comprehensive view of cellular functions. This

multi-omics integration not only deepens our understanding of

cellular states and dynamics but also provides new perspectives for

exploring disease mechanisms, facilitating the discovery of
02
biomarkers and identification of therapeutic targets (8). Zhang

et al. (9) harnessed the power of public databases to amalgamate

scRNA-seq data with bulk RNA sequencing data. By deploying an

array of sophisticated bioinformatics methodologies, they

successfully developed prognostic signatures, exemplified by the

8-gene macrophage-related risk signature, which demonstrated

robust predictive power across several external validation cohorts.

This work highlights the pivotal role of scRNA-seq in unveiling

cellular heterogeneity, observing the dynamic changes in cellular

states during disease progression, and exploring the individual

differences in treatment response, which plays a significant role in

the field.

With the advancement of bioinformatics technology, numerous

prognostic signatures for HCC have been developed to assess

patient prognosis risk, such as ferroptosis (10) and N6-

methyladenosine (m6A) (11). However, improper use of machine

learning methods and limitations of machine learning algorithms

have significantly hindered the clinical application of these

prognostic genes (12, 13). Current machine learning-based

bioinformatic approaches for prognostic gene analysis exhibit

certain limitations that may hinder their clinical translation. Yang

et al. (14) developed a HCC prognostic model using the least

absolute shrinkage and selection operator (LASSO) method

combined with univariate Cox regression analysis. However,

emerging evidence suggests that the predictive performance of

LASSO-derived models may substantially deteriorate in external

validation cohorts (15). These findings highlight the critical need to

employ more robust machine learning algorithms to establish stable

and clinically applicable prognostic models for HCC.

In this study, transcriptomics data from public databases were

used to identify genes associated with the prognosis of HCC using

multiple analysis algorithms. Subsequently, a prognostic model was

constructed based on these prognostic genes and validated its

reliability. Furthermore, the role of these prognostic genes in

HCC was also deeply explored through analyses of the tumor

immune microenvironment, the construction of regulatory

networks, and predictions of drug sensitivity. Finally, the

expression and distribution patterns of these genes in key cellular

populations were analyzed in detail using single-cell analysis. These

findings provide a solid foundation for a deeper understanding of

the molecular mechanisms of HCC and the development of novel
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therapeutic strategies, potentially revolutionizing HCC treatment

approaches and facilitating the realization of personalized medicine.
2 Materials and methods

2.1 Acquisition of data

The GSE149614 (platform: GPL24676) data for HCC were

acquired from Gene Expression Omnibus (GEO) (https://

www.ncbi.nlm.nih.gov/geo/), containing 10 HCC tumor samples

and 8 adjacent tumor samples. The gene expression profiles, clinical

information, and survival information of the TCGA-LIHC cohort

were acquired from the University of California Santa Cruz (UCSC)

Xena database (https://xena.ucsc.edu/) (accessed June 26, 2024).

TCGA-LIHC dataset included 369 HCC samples (HCC group)

along with 50 control samples (control group). After excluding

patients without complete survival information, 363 HCC samples

with survival information were retained for risk model

construction. Furthermore, the ICGC-LIRI-JP cohort was

acquired from the International Cancer Genome Consortium

(ICGC) database (https://dcc.icgc.org/) (accessed June 26, 2024).

The ICGC-LIRI-JP contained 231 HCC tumor samples with

survival information were utilized for risk model validation.

Lastly, the GSE76427 and GSE54236 datasets were downloaded

from the GEO database for the expression validation of prognostic

genes (accessed January 22, 2025). The GSE76427 dataset contained

115 HCC tumor tissue samples and 52 normal control tissue

samples (platform: GPL10558), while the GSE54236 dataset

included 81 HCC tumor tissue samples and 80 normal control

tissue samples (platform: GPL6480).
2.2 Analyzing differential expression

As a further step to obtain genes associated with differences

between HCC and control groups, the differentially expressed

mRNAs (DE-mRNAs) in the TCGA-LIHC dataset were identified

by the DESeq2 (v 1.34.0) package (16) (p< 0.05 and |log2 fold

change (FC)| >10.10.1 2). Similarly, the DE-miRNAs and DE-

lncRNAs were identified also by DESeq2 (v 1.34.0) package (p<

0.05 and |log2 FC| > 0.5). Lastly, ggplot2 (v 3.3.5) (17)was utilized

for volcano plots, while the pheatmap package (v 1.0.12) (https://

CRAN.R-project.org/package=pheatmap) was employed to create a

heatmap, visualizing the top 20 upregulated and downregulated

genes based on log2 FC values in HCC samples.
2.3 Enrichment analysis and identification
of candidate genes

In the study, the biological functions for DE-mRNAs were

analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment (p adj< 0.05) by

clusterProfiler (v 4.6.0) package (18), then the top 2 ranked data
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according to p adj values from smallest to largest in GO enrichment

were visualized in this study. A protein-protein interaction (PPI)

network for DE-mRNAs was constructed utilizing a search tool for

the retrieval of interaction gene/proteins (STRING, https://string-

db.org) (confidence level ≥ 0.9). Finally, Cytoscape (v 3.9.1) (19)

software was utilized to visualize the network. Finally, the molecular

complex detection (MCODE) plugin in Cytoscape (v 3.9.1) software

was then utilized to select the highest scoring sub-network (K-core

= 2, degree cutoff = 2, node score cutoff = 0.2, max depth = 100),

afterwards candidate genes were obtained.
2.4 Construction of a risk model

In TCGA-LIHC, the univariate Cox regression analysis of

candidate genes was performed utilizing the survival (v 3.5.3)

package (20) (hazard ratio (HR)≠1 and p value< 0.05), and the

genes which passed the proportional hazard (PH) assumption test (p

> 0.05) were defined as candidate prognostic genes. Subsequently, a

consensus prediction model based on candidate prognostic genes

was constructed by means of 10 machine learning algorithms,

including LASSO, random survival forests (RSF), elastic networks

(Enet), stepwise Cox, Ridge, Cox boost, partial least squares Cox

regression (plsRcox), supervised principal components (SuperPC),

generalized augmented regression models (GBM), and support

vector machine-recursive feature elimination (SVM-RFE). The 101

different combinations of all algorithms were fitted in TCGA-LIHC

and ICGC-LIRI-JP and the concordance index (C-index) of each

combination was calculated. The higher the C-index, the stronger the

predictive ability of the model. The model with the highest C-index

was selected as the best model for obtaining prognostic genes.

Then prognostic genes were utilized for constructing the risk

model, the formulaic representation was as follows:

Riskscore =o
n

i=1
coef (genei) ∗ expr(genei)

Where “risk score” represents the risk score, “coef” signifies the

risk coefficients attributed to each specific gene, and “expr”

represents the expression of the respective genes. Then, the risk

model was evaluated by plotting the receiver operating

characteristic (ROC) curves with the use of survivalROC (v 1.0.3)

package (21) for the reliability of model. According to risk scores of

prognostic genes in TCGA-LIHC, 363 HCC samples with survival

information were divided into high- and low-risk groups (median

score). Then, between two risk groups, the survminer (v 0.4.9)

package (22) was utilized to generate Kaplan-Meier (KM) survival

curves, and the log-rank test was utilized to analyze differences in

survival between both groups (p< 0.05). In addition, after

calculating the risk scores of the 231 HCC samples in ICGC-

LIRI-JP, they were also divided into high- and low-risk groups

based on the median risk score. After that, the generalizability of the

risk model was confirmed by ROC curves, KM curves, risk curves,

and prognostic gene expression heat maps. Furthermore, the model

we constructed in this study was compared with previous models in

the published literature (23–25), and the accuracy of the model
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constructed in the study was further compared by ROC analysis,

KM survival curves, and C-index (p< 0.05).
2.5 Correlation of risk score with
clinical characteristics

Firstly, aWilcoxon test was utilized to compare difference between

clinical characteristics with risk scores in TCGA-LIHC and visualized

the results in a violin plot (p< 0.05). Secondly, the percentage of

different clinical characteristics among HCC patients in two risk

groups were showed in bar graphs. Finally, the chi-square tests were

utilized to explore the distribution of different clinical characteristics

between two risk groups and visualized the results in a heat map.
2.6 Gene set enrichment analysis and gene
set variation analysis

In TCGA-LIHC, firstly, the HCC samples were analyzed the

differences by DESeq2 (v 1.34.0) package and ranked the results

based on the log2FC value of DE-mRNAs from largest to smallest.

Additionally, the clusterProfiler (v 4.6.0) was used to perform the GSEA

based on the “c2.cp.kegg.v2024.1.Hs.symbols” from the molecular

signature database (MSigDB) (p adj< 0.05) (https://www.gsea-

msigdb.org/gsea/msigdb). Following this, the GSEA results

according to the p adj from smallest to largest were ranked. Then

in the TCGA-LIHC, based on the “c5.go.v2023.1.Hs.symbols.gmt”

from the MSigDB, the GSVA (v 1.42.0) package (26) and limma (v

3.50.1) package (27) were utilized to calculate GSVA scores for each

pathway and to compare pathways that differ between two risk

groups (|log2FC| > 0.5, p< 0.05), respectively. Finally, the top 10

regulated pathways were ranked according to the |log2FC| from

smallest to largest and visualized in the end.
2.7 Immune microenvironment analysis

Then single-sample GSEA (ssGSEA) algorithm of GSVA (v

1.42.0) package was utilized to estimate the scores of 28 immune

cells (28) in two risk groups and visualized in a heat map by pheatmap

(v 1.0.12) package (29). Furthermore, an analysis of the difference in

immune cell infiltration between two risk groups was conducted

utilizing the Wilcoxon test (p< 0.05), with the results visualized in a

box plot. After that, the correlations among differential immune cells

were analyzed by psych (v 2.3.9) package (30) (|correlation coefficient

(cor)| > 0.3, p< 0.05). So as to further gain insight into the potential

relationships between differential immune cells and prognostic genes,

the Spearman correlation analysis was conducted utilizing the ggcor (v

0.9.8.1) package (31) (|cor| > 0.3, p< 0.05).

Besides, a set of 24 immune checkpoints was compiled from

previously published literature (32), and the expression of these

checkpoints between two risk groups were analyzed (p< 0.05).

Meanwhile, so as to explore the correlation between differential

immune checkpoints and risk score, Spearman correlation analysis

was performed in TCGA-LIHC (|cor| > 0.3, p< 0.05).
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2.8 Analysis of mutated landscapes
and ESTIMATE

To investigate the genetic differences between two risk groups in

TCGA-LIHC, the maftools (v 2.10.5) package (33) of the R (v 4.2)

language (34) was employed to analyze two cohorts of patients with

mutation data. Additionally, the top 20 frequency mutated genes

were visualized in a waterfall plot. Furthermore, in the TCGA-

LIHC, the estimate (v 1.0.13) package (35) was utilized to calculate

the StromalScore, ImmuneScore, and EstimateScore of the samples

and the differences in these scores were compared (p< 0.001).
2.9 Regulatory networks construction

So as to search for miRNAs that potentially regulate prognostic

genes, the starbase database (http://starbase.sysu.edu.cn/) was

utilized as a predictor of miRNAs for prognostic genes. After that,

the predicted miRNAs (Pre-miRNAs) and DE-miRNAs were taken

to intersection, then the intersecting miRNAs in the opposite

expression direction of prognostic genes regulation were selected

and regarded as key miRNAs. Similarly, the mirnet database

(https://www.mirnet.ca/) was utilized as a predictor of lncRNAs

for key miRNAs. Following that, the predicted lncRNAs (Pre-

lncRNAs) and DE-lncRNAs were taken to the intersection, then

the intersecting lncRNAs in the opposite expression direction of key

miRNAs regulation were selected and regarded as key lncRNAs. At

last, the key lncRNAs-key miRNAs-prognostic genes regulatory

network was visualized by Cytoscape (v 3.9.1) software.

Meanwhile, the upstream transcription factors (TFs) for

prognostic genes were predicted via the JASPAR database

(https://jaspar.elixir.no/) of the NetworkAnalyst platform (https://

www.networkanalyst.ca/). At last, the TFs-prognostic genes

regulatory network was mapped in the study.
2.10 Chemotherapeutic drug
sensitivity analysis

The oncoPredict (v 0.1) (36) was utilized to obtain half maximal

inhibitory concentration (IC50) values for HCC samples in TCGA-

LIHC based on 198 chemotherapeutic drugs from genomics of drug

sensitivity in cancer (GDSC) dataset (https://www.cancerrxgene.org/)

and the IC50 between two risk groups for each drug was compared

by Wilcoxon test (p< 0.05). Lastly, the results of top 10 drugs

between two groups were ranged from smallest to largest based on p

value and shown in the box plots.
2.11 Processing of the scRNA-seq data

In the GSE149614 dataset, the Seurat (v 5.0.1) package (37) was

utilized for quality control and unsupervised cluster analysis.

Firstly, cells with less than 200 genes and less than 3 cells covered

with genes, the number of genes in each cell ≥ 8000, count in each
frontiersin.org
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cell ≥ 50000, and cells with greater than 10% of mitochondrial genes

were filtered out. Furthermore, the vst method was utilized to obtain

genes with relatively high coefficients of variation between cells,

namely highly variable genes. Similarly, the JackStrawPlot function

was employed to plot the scree plot to show the contribution of the

top-ranked principal components (PCs) to cellular variation. After

completing the principal components analysis (PCA)

dimensionality reduction, the FindNeighbors and FindClusters

functions (resolution = 0.1) were utilized to cluster the cells

utilizing the uniform manifold approximation and projection

(UMAP) method. After that, cell types were annotated utilizing

the CellMarker dataset (http://117.50.127.228/CellMarker/) and

previous literature (38), and visualized the expression of the

marker genes in each cell type by means of violin plots. In

addition, the ReactomeGSA (v 1.12.0) package (39) was utilized

to analyze the pathways function of annotated cells, and the

relationship between signaling and metabolic molecules was

documented by Reactome database (https://reactome.org/), then

the top 15 pathways with the greatest differences between different

cell types were illustrated in a heat map.
2.12 Identification of key cells

In order to investigate the differential expression of prognostic

genes among annotated cells between two groups in TCGA-LIHC,

the Wilcoxon test was employed (p< 0.05). These cells were then

defined as key cells for further analysis as they showed differential

expression of prognostic genes in the HCC and control groups.
2.13 Analysis of intercellular interactions
and cell trajectory

Intercellular communication was determined by the CellChat (v

1.6.1) package (40). The thicker the connection line between ligand

and receptor reflected stronger potential interactions between cells.

And the results of intercellular ligand-receptor interaction between

key cells and other annotated cells were also shown in this study.

For studying the mechanism of key cells within other annotated

cells, the differentiation of key cells was simulated utilizing the

monocle (v 2.26.0) package (41) based on highly variable genes. In

addition, the expression results of prognostic genes in different

differentiation states of key cells were also shown in the end.
2.14 Dataset expression validation and
reverse transcription-quantitative
polymerase chain reaction

Finally, the Wilcoxon function from the “rstatix” package (v

0.7.2)(https://CRAN.R-project.org/package=rstatix) was used to

analyze the expression differences of prognostic genes between

HCC and control samples in the TCGA-LIHC, GSE76427, and

GSE54236 datasets, and the results were displayed in boxplots. RNA
Frontiers in Immunology 05
was extracted from 10 samples using the TRizol kit, with 1-5 being

adjacent tumor samples and 6-10 being HCC tumor samples, which

were collected from the Sichuan Provincial People’s Hospital,

University of Electronic Science and Technology of China. The

study had been approved via the Ethics Committee of the Sichuan

Provincial People’s Hospital, University of Electronic Science and

Technology of China (Ethics Review [Res.] No. 192, 2023). All

experimental steps for total RNA extraction were performed

according to the instructions. 1 mL of extracted RNA was tested

for concentration using a NanoPhotometer N50 and the purity/

concentration was recorded to calculate the amount of RNA for

subsequent reverse transcription steps. Subsequently, RNA was

reverse transcribed into cDNA by SureScript-First-strand-cDNA-

synthesis-kit (G3333-50, Servicebio) according to the instructions.

cDNA was then diluted 5-20 times with ddH2O (without RNase/

ARase), and 3 mL of cDNA, 5 mL of SweScript RT I Enzyme Mix

(NO. 11904018, ThermoFisher), 1 mL forward primer (10 µM) and

1 mL reverse primer (10 µM). In addition, 40 cycles of reaction were

performed using the CFX96 real-time quantitative PCR instrument

(BIO-RAD), and the procedure information was shown in

Supplementary Table S1. The primer sequences were shown in

Supplementary Table S2, and GAPDH was used as a reference gene

to determine the relative gene expression level by the 2-

DDCT method.
2.15 Statistical analysis

R (v 4.2) language was utilized for all statistical analyses.

Wilcoxon test was used to compare the differences between two

groups. The value of p< 0.05 was considered statistically significant.
3 Results

3.1 Enrichment and PPI network analysis in
890 DE-mRNAs

A total of 890 DE-mRNAs were obtained in TCGA-LIHC

(|log2FC| > 2, p< 0.05) (nup = 720, ndown = 170 in HCC group)

(Figures 1A, B). According to the result of GO analysis, a sum of

298 biological processes (BPs), 34 cellular components (CCs), and 32

molecular functions (MFs) were enriched by DE-mRNAs. And the top

2 results of GO enrichment were visualized in circle diagram, including

nuclear chromosome segregation and chromosome segregation

(Figure 1C). In the BP assessment, they were mostly engaged in

nuclear chromosome segregation. And mainly enriched in CC of

chromosome, centromeric region. In addition, they were most

enriched in MF of microtubule binding (Supplementary Table S3).

Besides, a sum of 7 KEGG pathways were enriched and mainly

enriched in cell cycle and neuroactive ligand-receptor interaction

(p adj< 0.05) (Figure 1D; Supplementary Table S4). After that, a sum

of 888 PPI networks of DEGs were obtained in the database (2 genes

were not found to have corresponding proteins). And after removing

the isolated nodes, a sum of 290 nodes and 1,263 sides were shown in a
frontiersin.org
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PPI network diagram (Figure 1E). Afterwards, a sum of 64 candidate

genes were obtained in the end (Figure 1F; Supplementary Table S5).

The results indicated that the 64 candidate genes had a strong

association with HCC and were the basis for subsequent screening of

prognostic genes.
3.2 Prognostic risk model was construct in
TCGA-LIHC

In the TCGA-LIHC dataset, 64 genes associated with survival were

identified, and 8 of these genes were selected as candidate prognostic

genes through the PH assumption test (Figure 2A; Table 1. Further
Frontiers in Immunology 06
screening was conducted to identify prognostic genes with prognostic

value, and a risk model was constructed. In the TCGA-LIHC and

ICGC-LIRI-JP, a sum of 101 combination models were constructed

and the C-index for each model was calculated (Figure 2B). After that,

the plsRcox algorithm was chosen to build risk model with C-index of

0.727, identifying MCM10, CEP55, KIF18A, ORC6, KIF23, CDC45,

CDT1, and PLK4 as prognostic genes.

The specific formula for the risk model was: RiskScore =

(164.34375) × MCM10 + (117.71791) × CEP55 + (172.70708) ×

KIF18AC + (133.02881) × ORC6 + (113.06957) × KIF23 +

(95.40480) × CDC45 + (69.54252) × CDT1 + (-520.29050) ×

PLK4. Subsequent ROC analysis demonstrated the high

diagnostic value of these prognostic genes (AUC values > 0.6)
FIGURE 1

DE-mRNA identification, enrichment and PPI network analysis. (A) Heatmap of the top 20 upregulated and downregulated genes expression. The
uppermost plot represented the differential mRNA expression density distribution, showing lines for the five percentiles and the average value; the
lower plot, each square represented a sample, with orange indicating high expression and green indicating low expression. (B) Volcano map of 890
DE-mRNAs from TCGA-LIHC. (C) Gene Ontology (GO) enrichment analysis. (D) KEGG enrichment analysis. (E) PPI Network Diagram of Differentially
Expressed Genes (DEGs). (F) Core candidate gene relationship network.
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(Figure 2C). Then, the HCC samples in TCGA-LIHC were

categorized into high- (n = 182) and low-risk (n = 181) groups

(median risk score = -0.78), where the high-risk group was

significantly less likely to survive (p< 0.001) (Figure 2D). The risk

model evaluation results obtained from two risk groups by the

median risk score (median risk score = -0.74) were consistent in

ICGC-LIRI- JP wi th those obta ined in TCGA-LIHC
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(Supplementary Figure S1). Furthermore, the ROC curves and C-

index results showed that the model constructed in this study

performed better, and K-M survival curves showed that the risk

models of Sun et al. and Zheng et al. obtained consistent and

significant results with our study (p< 0.05) (Supplementary Figure

S2). These results underscored the model’s reliability and its

potential utility in prognostic assessment for HCC patients.
FIGURE 2

Prognostic risk model was construct in TCGA-LIHC. (A) Univariate Cox Forest plot of 64 genes associated with hepatocellular carcinoma.
(B) Combined results of 101 combination algorithms. (C) ROC analysis illustrating the high diagnostic value of prognostic genes. (D) The left plot
showed the heatmap of gene expression in the high- and low-risk groups based on the model (training set). The middle plot displayed the risk
curve, with the x-axis representing the patient samples ordered from low to high risk based on their risk scores, with increasing risk scores from left
to right. The upper part of the plot had the y-axis representing the risk scores, with red indicating high-risk group samples and blue indicating low-
risk group samples. The lower part of the plot had the y-axis representing survival status, with blue indicating surviving samples and red indicating
deceased samples. The dashed line represented the median risk score. The right plot displayed the Kaplan-Meier curve for the high-risk and low-risk
groups based on the risk model (with the median risk score of -0.78). The x-axis represented time, the upper part of the y-axis represented survival
rate, and the lower part of the y-axis represented different groups, with numbers indicating the number of surviving samples.
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TABLE 1 Results of the Proportional Hazards (PH) Assumption Test.

gene p

MCM10 0.1096

CEP55 0.3048

KIF18A 0.0772

ORC6 0.0715

KIF23 0.0616

CDC45 0.0682

CDT1 0.0981

PLK4 0.1843
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3.3 Relationship of risk model with
clinical characteristics

Additionally, detailed comparisons of clinical characteristics

were conducted between two risk groups, including age, gender,

T, stage, and grade. The violin plots showed significant differences

in risk scores among T, stage, and grade subgroups Figure 3A).

Afterwards, the percentage of males in the high-risk group was

lower than that in the low-risk group, while the proportion of males

was higher than that of females in both the high- and low-risk

groups (Figure 3B; Supplementary Table S6), highlighting the

importance of these clinical characteristics in the progression

of HCC.
3.4 Signaling pathways analysis

To explore the signaling pathways for high- and low-risk

groups, GSEA showed that a sum of 46 KEGG pathways was

enriched and mainly enriched in complement and coagulation

cascades (Figure 4A; Supplementary Table S7).

To further understand the differential activation pathways in

two risk groups, GSVA enrichment analysis demonstrated that a

total of 39 GO pathways were enriched (Figure 4B; Supplementary

Table S8). Notably, the two risk groups related up-regulated GO

pathways were mainly enriched in G2 MI transition of meiotic cell

cycle, and the related down-regulated GO pathways were mainly

enriched in fatty acid omega oxidation (p< 0.001).
3.5 Analysis of prognostic genes with
differential immunity cells

The objectives of this study were as follow to gain insight into

the potential changes in the immune microenvironment in

individuals with HCC (Figure 5A). Based on the results of

Wilcoxon test, a sum of 10 differential immunity cells were

obtained (p< 0.05), such as activated CD4 T cell (Figure 5B). In

addition, the correlation analysis showed that type 1 T helper cell

had the highest positive correlation with effector memory CD8 T
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cell (cor = 0.81, p< 0.001) (Figure 5C; Supplementary Table S9).

Similarly, the CEP55 had the highest positive correlation with

activated CD4 T cell (cor = 0.71) (p< 0.001) (Figure 5D and

Supplementary Table S10). After that, a sum of 14 immune

checkpoints had differences expression between two risk groups

(p< 0.05) (Figure 5E). Following this, Spearman correlation analysis

showed that risk score had the highest positive correlation with

CD276 (cor = 0.46, p< 0.001) (Figure 5F; Supplementary Table S11).
3.6 Mutated landscapes, ESTIMATE, and
drug sensitivity analysis

The mutated landscapes were utilized to explore the function of

somatic cell mutations on tumors. The waterfall plot showed that

the frequency of CTNNB1 gene mutations (31%) was highest in the

low-risk group, while TP53 gene mutation (42%) was highest in

high-risk group and the mutation type of CTNNB1 and TP53 were

both missense mutation (Figure 6A). Notably, only StromalScore

showed significant difference between two risk groups (p< 0.001)

and highly in the low-risk group (Figure 6B). Additionally, the drug

sensitivity results indicated significant differences in IC50 values for

62 drugs between two risk groups in TCGA-LIHC (p< 0.05).

Notably, the top 10 drugs in box plots showed that they were all

highly in low- risk group (p< 0.001) (Figure 6C).
3.7 Building regulatory networks based on
prognostic genes

A total of 353 DE-miRNAs were obtained in TCGA-LIHC (nup
= 288, ndown = 65 in HCC group) (Figure 7A), so as a sum of 480

DE-lncRNAs were obtained (nup = 339, ndown = 141 in HCC group)

(Figure 7B) (Supplementary Table S12). Subsequently, the starbase

database identified 298 miRNAs based on MCM10, CEP55,

KIF18A, ORC6, KIF23, CDT1, and PLK4. After intersecting with

DE-miRNAs, a sum of 18 miRNAs were obtained in Venn diagram

(Figure 7C), among them, the hsa-mir-326 and hsa-mir-665 were

down regulated miRNAs in HCC group (MCM10, CEP55, KIF18A,

ORC6, KIF23, CDT1, and PLK4 were up regulated mRNAs in HCC

group) (Supplementary Table S13), thus hsa-mir-326 and hsa-mir-

665 were regarded as key miRNAs. Similarly, a total of 150 lncRNAs

were predicted by 2 key miRNAs, then 49 lncRNAs were obtained

in Venn diagram (Figure 7D), and 40 up regulated lncRNAs in

HCC group were finally obtained called key lncRNAs

(Supplementary Table S14). Lastly, in the key lncRNAs-key

miRNAs-prognostic genes regulatory network, the CDT1 and

MCM10 both predicted 2 key miRNAs, furthermore, hsa-mir-326

and hsa-mir-665 both predicted 5 key lncRNAs, which were MEG3,

HAGLR, MIR600HG, MZF1-AS1, and KCNQ1OT1 (Figure 7E).

Furthermore, the JASPAR prediction results from the

Networkanalyst platform indicated that a grand total of 35 TFs

were predicted by 8 prognostic genes, the CDC45, ORC6, and

MCM10 all predicted CREB1 (Figure 7F).
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3.8 A comprehensive single-cell
sequencing analysis in HCC

Following the initial screening, a sum of 57,741 cells and 24,863

genes were obtained on the basis of the GSE149614. After

normalizing and downscaling the data, 2,000 highly variable genes,

30 PCs and 13 cell clusters were obtained (Figure 8A). A whole of 13

types of cell populations were annotated to 6 cell types, including T

cells, hepatocytes, macrophages, endothelial cells, B cells, and

fibroblasts (Figure 8B). In addition, the levels of expression of the

marker genes in the corresponding cell types had also been

demonstrated in this study (Supplementary Figure S3).

Afterwards, the 8 prognostic genes all had significant differences

between HCC and control groups in B cells, thus the B cells were

regarded as key cells (p< 0.05) (Figure 8C). Afterwards, according to

the heat map, the pathways of B cells were mainly enriched in

intracellular oxygen transport, TWIK-related alkaline pH activation,

adenosine triphosphate (ATP) sensitive potassium channels, and

hydroxycarboxylic acid−binding receptors (Figure 8D).
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3.9 Cell communication and cell trajectory
analysis of B cells

Additionally, cell communication analysis revealed interactions

between B cells and other cell types. The analysis of cell

communication revealed that the B cells had highest interaction

number and interaction strength with macrophages (Figure 9A).

Among them, in HCC group, fibroblasts and T cells had highest

interaction weight, while in control group, endothelial cells and T

cells had highest interaction weight (Supplementary Table S15).

Furthermore, this study also showed the results of ligand-receptor

pairing among 6 cell types. The results demonstrated that there

were a greater number of receptor-ligand interactions between cells

in the HCC group (Supplementary Figure S4). In particular, both in

HCC and control groups, the most pronounced effect was observed

in the APP-CD74 interaction between endothelial-B cell (p< 0.01)

(Supplementary Table S16). This study demonstrated that the B cell

differentiation in 5 States, the State 1 was the beginning of

differentiation, and the State 4 and 5 were the two states of the
FIGURE 3

Relationship of risk model with clinical characteristics. (A) Violin plots of clinical feature distributions. (B) Heatmap of different subtypes of clinical
features between high and low risk groups and distribution of risk scores in subgroups defined by clinical characteristics.
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ending differentiation (Figure 9B). The intensity of the color in the

graph was indicative of the timing of cell differentiation, with darker

shades representing earlier periods. Notably, according to the

results of the distribution in 8 prognostic genes, it was known

that prognostic genes were more highly expressed in State 1, the

beginning of B cell differentiation (Figure 9C).
3.10 Expression validation analysis

Notably, in the HCC group, the box plots showed that the

expression of 8 prognostic genes was significantly upregulated (p<

0.001) (Figure 10A). Meanwhile, in the GSE76427 and GSE54236

datasets, except for ORC6, the expression levels of the other seven

genes were significantly higher in the disease group compared to the

control group (Figures 10B, C). Expression validation analysis

revealed differences in prognostic genes (MCM10, KIF18A,

ORC6, CDC45, and PLK4) in control and HCC groups. The
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results showed that the expression of MCM10, KIF18A, ORC6,

CDC45, and PLK4 in HCC group notably elevated compared to the

control group (Figure 10D). It was worth noting that, MCM10,

KIF18A, CDC45, and PLK4 showed significant differences between

two groups (p< 0.05). Based on the results of expression, it was

found that the expression trends of MCM10, KIF18A, ORC6,

CDC45, and PLK4 were consistent with the results of the

Wilcoxon test, which provided a reference for subsequent studies.
4 Discussion

HCC frequently presents with nonspecific symptoms, resulting

in limited opportunities for curative surgery and a five-year survival

rate of approximately 20% (42). Given this context, there is an

urgent need for research aimed at improving HCC prognosis. A

total of eight prognostic genes for HCC (MCM10, CEP55, KIF18A,

ORC6, KIF23, CDC45, CDT1, and PLK4) were identified by
FIGURE 4

Signaling pathways analysis. (A) Top 10 KEGG pathway enrichment analysis results. (B) GSVA enrichment analysis outcomes between high- and
low-risk groups (pink: represents upregulated pathways; blue: represents downregulated pathways).
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analyzing data from the UCSC Xena, ICGC, and GEO databases.

Based on these genes, a reliable prognostic model for HCC was

constructed, offering significant clinical implications for patient

prognosis and treatment strategies. Furthermore, at the single-cell

level, our study elucidated the molecular characteristics of distinct

cell populations within HCC and identified key cell types, providing

a theoretical foundation for further exploration of their potential

immune mechanisms.

In this study, the eight prognostic genes were intricately linked

to the prognosis of HCC, which were selected through a rigorous

process involving univariate Cox regression analysis, the PH

assumption test, and 101 machine learning algorithms. The

model was constructed utilizing these genes exhibits superior

predictive accuracy compared to contemporaneous predictive

models, thereby offering a reliable tool for clinical practice.
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MCM10 has been highlighted for its significant overexpression

in various cancer tissues and its association with tumor

aggressiveness, immune cell infiltration, immune checkpoints,

tumor mutational burden (TMB), and microsatellite instability

(MSI) (43). Its potential as a therapeutic target and prognostic

biomarker has been substantiated in endometrial carcinoma (44),

with similar trends observed in HCC patients (45). CEP55, a

centrosomal protein, influences cell mitosis and has been

implicated in the progression of multiple malignancies. Its

elevated expression in tumors compared to normal tissues

correlates with patient pathological grading and age, making it a

promising target for therapeutic intervention in HCC (46, 47).

CDT1 is a key regulator in the cell cycle and DNA replication, and

has been shown to promote the occurrence and development of

liver cancer (48, 49). KIF18A and KIF23 are members of the
FIGURE 5

Analysis of immune cells in high and low risk groups for HCC. (A) Heatmap of the immune cell scores of the high-risk and low-risk groups for
hepatocellular carcinoma, visualizing the difference in immune cell status between the two groups. (B) Box line plot of immune cell score between high
risk group and low risk group. (C) Heat map of prognostic genes and differential immune cell correlation. (D) Heatmap of prognostic genes correlating
with differential immune cells. (E) Immune checkpoint gene expression in high-risk and low-risk groups. ns: Not significant, *p< 0.05, **p< 0.01,
***p< 0.001.****p< 0.0001. (F) Risk score and immune checkpoint molecular correlation analysis. ns, p > 0.05; *p< 0.05; **p< 0.01; ***p< 0.001.
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kinesin family and were overexpressed in many malignant tumors.

Ren et al (50) had proved KIF18A could mediate proliferation and

metastasis in HCC cells. Also, KIF23 had been reported to

correlate with the cell proliferation, invasion, and migration of

the HCC cells (51), and as a potential biomarker to predict the

poor prognosis of HCC (52). ORC6 is the smallest ORC subunit,

which is essential in DNA replication initiation (53). Similarly,

ORC6 could promote the proliferation, migration, invasion of
Frontiers in Immunology 12
HCC cells (54). CDC45 encodes the protein to regulate the

initiation and elongation stages of eukaryotic chromosomal

DNA replication (55), which was overexpressed in HCC and

correlated with worse prognosis (56). The last identified gene

PLK4 is a serine/threonine kinase and it causes centrosome

amplification, aneuploidy, and genomic instability. Yeung et al.

(57) discovered that PLK4 plays an important role in HCC

metastasis. RT-qPCR validation confirmed significant differences
FIGURE 6

Mutated landscapes, ESTIMATE, and drug sensitivity analysis. (A) Shows the top 20 most frequently mutated genes in the low-risk group (below) and
the high-risk group (above). (B) Comparison of immune score, stromal score, and composite score between high-risk and low-risk groups by
ESTIMATE analysis. (C) Drug sensitivity analysis between high-risk and low-risk groups, with the inhibitory effect of the drug expressed as the IC50
value (50% inhibitory concentration).
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in MCM10, KIF18A, CDC45, and PLK4 expression between HCC

and control groups. These genes are closely associated with HCC

prognosis, thereby corroborating the results of our previous

bioinformatics analysis. Additionally, some predicted genes

showed opposite or non-significant trends in PCR validation,

which may be due to small sample size or inconsistent sample

sources. The role of these genes in disease progression will

continue to be monitored.

The predictive model based on these prognostic genes,

demonstrates a higher predictive effect compared to other models,

suggesting its potential for broad clinical application (23–25). This

model not only aids in the prognostication of HCC patients but also

informs treatment strategies, emphasizing the importance of these

genes in the prognosis and management of HCC.
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In this study, gender-based risk stratification of HCC patients

revealed a higher proportion of males in the low-risk subgroup

compared to females, a phenomenon potentially attributable to

estrogen-mediated protective effects in females. Mechanistically,

estrogen has been demonstrated to maintain cholesterol homeostasis

through LCAT induction and suppress hepatocarcinogenesis (58).

Notably, the survival advantage conferred by estrogen in females

appears particularly pronounced during the perimenopausal period

(45-59 years), likely associated with dynamic fluctuations in estrogen

levels (59). Our findings showing a higher male proportion in the low-

risk group (71% vs. 65.9% in high-risk group) may reflect increased

representation of perimenopausal females in the low-risk cohort.

Pathophysiological evidence further indicates altered sex hormone

receptor profiles in HCC tissues, characterized by upregulated
FIGURE 7

Analysis of differentially expressed miRNAs and lncRNAs in HCC and associated networks. (A) Heat map (left) and volcano map (right) of differentially
expressed miRNAs. (B) Heat map (left) and volcano plot (right) of differentially expressed lncRNAs. (C) Venn diagram of miRNAs. (D) Venn diagram of
lncRNAs. (E) Prognostic gene-miRNA-incRNA interaction network (yellow indicates prognostic genes, orange indicates miRNAs, and green indicates
lncRNAs). (F) Prognostic gene-transcription factor (TF) regulatory network JASPAR prediction results (orange indicates prognostic genes, and blue
indicates transcription factors).
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androgen receptor (AR) expression and diminished estrogen receptor

(ER) levels (60) potentially compromising estrogen’s protective

capacity. This attenuation appears exacerbated in advanced-stage

patients or those with severe cirrhosis, where hepatic estrogen

metabolism may be substantially impaired (61). Intriguingly, the

overrepresentation of advanced-stage cases in our high-risk cohort

might partially obscure estrogen-mediated protection, resulting in a

relatively lower male proportion compared to the low-risk group.

Although the proportion of males in the high-risk group is lower

than that in the low-risk group, the overall risk remains higher for

males in the high-risk group. This suggests that males, even when

categorized in the low-risk group, should still be vigilant regarding the

potential risk of liver cancer. Therefore, gender differences, the
Frontiers in Immunology 14
protective effects of estrogen, and the unique physiological state of

perimenopausal women may all influence gender distribution and

disease progression across different risk groups.

Through GSEA analysis, the study identified 46 KEGG

pathways, with these pathways providing significant insights into

HCC. Notably, the complement and coagulation cascades pathway

underscores the liver’s integral role in synthesizing over 80% of

complement components and expressing various complement

receptors, forming an innate defense system known as the

complement cascade (CC). This system tightly regulates humoral

and cellular responses to harmful stimuli, with the complement

cascade activating immune cells critical to HCC pathogenesis (62).

Additionally, fatty acid metabolism and retinol metabolism were
FIGURE 8

A comprehensive single-cell sequencing analysis in HCC. (A) PCA displacement test and inflection plot; cell UMAP clustering plot. (B) The left panel
showed the cell clustering subpopulation annotation results, and the right panel showed the gene bubble map for each cluster annotation marker.
(C) Differential expression of prognostic genes in subpopulations. The left column is the control group and the right column is the HCC group.
(D) Enrichment pathway of key cells. The Color Key represented the scores of the gene set in the cells, indicating the overall expression level of the
gene set in the cells. Red indicated that the gene set was overall lowly expressed in the cells, while blue indicated that the gene set was overall
highly expressed in the cells.
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identified as key pathways in HCC, necessitating further

exploration for the development of novel therapeutic strategies

(63). The valine, leucine, and isoleucine degradation pathway,

confirmed as highly enriched in 2018, not only elucidates the

pathogenesis of HCC but also provides prognostic markers and

therapeutic targets (64). Bile acid metabolism plays a pivotal role in

modulating the tumor immune microenvironment, with the

primary bile acid biosynthesis pathway correlating with HCC

prognosis (65, 66). Human cytochrome P450 (CYP), a

bidirectional membrane protein, encompasses 18 families with a

total of 57 functional genes, participating in drug metabolism and

the homeostasis of fatty acids, vitamin D, steroids, and bile acids, as

well as pathological physiological processes in certain cancers or

cardiovascular diseases, presenting substantial therapeutic potential

(67). The drug metabolism cytochrome P450 pathway was found

enriched in the SMYD5 high expression phenotype, suggesting it as

a potential biomarker for HCC prognosis and treatment (68). CYPs

have a dynamic role in HCC pathogenesis, and down-regulated

CYPs could increase susceptibility to drug toxicity (69, 70). These

pathways, through various mechanisms, influence HCC tumor cell

differentiation and proliferation, promoting HCC progression and

emerging as potential therapeutic targets.

This study also reveals significant correlations between the

immune microenvironment in HCC and prognostic genes.

Particularly, 10 differentially expressed immune cells, such as
Frontiers in Immunology 15
activated CD4 T cells, natural killer T cells, and Type 1/2 T helper

cells, show notable associations with prognostic genes. Notably, Type 1

T helper cells exhibit the highest positive correlation with effector

memory CD8 T cells, while CEP55 demonstrates the strongest positive

correlation with activated CD4 T cells. Elevated expression of Type 1 T

helper cells is known to increase tumor cells’ sensitivity to various

treatments, and when combined with clinical parameters like TNM

staging and AFP levels, it presents excellent predictability of early HCC

recurrence (71). Activated CD4 T cells can regulate immune

surveillance in HCC, thereby inhibiting the development of liver

cancer (72) . In the tumor-promot ing NAFLD l iver

microenvironment, NKT cell dysfunction occurs, hence, invigorating

NKT cells could control HCC in the obesity epidemic (73). Previous

studies have shown that lower peripheral blood eosinophil counts are

associated with poorer prognosis (74), and elevated neutrophil

extracellular traps facilitate the growth and metastasis of HCC (75).

Furthermore, a high neutrophil to eosinophil ratio may be correlated

with a higher recurrence of HCC (76). In this study, the

aforementioned immune cells were found to infiltrate less in both

high- and low-risk HCC groups, suggesting that immune suppression

in HCC may be quite prevalent, and there might be a deficiency in the

normal immune surveillance within the tumor microenvironment.

Furthermore, Spearman correlation analysis indicates that the

risk score has the highest positive correlation with CD276, also

known as B7-H3, a type I transmembrane protein belonging to the
FIGURE 9

Cellular Communication and Proposed Timing Analysis. (A) Cellular communication network of key cells in HCC group (left two figures) and control
group (right two figures). ‘Number of Interactions’ represents the frequency of cell-to-cell interactions; ‘Interaction Strength’ indicates the strength
of cell-to-cell interactions. (B) Proposed time trajectory analysis of key B cells. The left panel shows the proposed time trajectory, with the transition
from blue to red indicating the order of cell differentiation. The right panel shows the various states of the cell throughout the differentiation
process. (C) Differential expression of 8 prognostic genes over time in the control and HCC groups.
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B7 family of immune regulatory molecules. Acting as an immune

checkpoint molecule, CD276 plays a crucial role in immune evasion

and the tumor immune microenvironment (77). Overexpression of

CD276 promotes an inhibitory tumor microenvironment in HCC

and is associated with poor prognosis (78). This suggests that the

risk score is implicated in tumor progression and the prediction of

patient outcomes. TMB reflects the degree of genomic variation in

tumor cells. In HCC, a high TMB is associated with reduced

survival rates and predicts a better response to immunotherapy

(79). ESTIMATE is a method that utilizes cancer transcriptome

expression data to estimate the content of stromal cells and immune

cells in malignant tumor tissues. Studies have shown that in patients

with liver cancer, the expression of miR-148a-3p is significantly

negatively correlated with the stromal score, immune score, and

ESTIMATE score, and low expression of miR-148a-3p can serve as

a prognostic and diagnostic marker for HCC (80). These findings

underscore the importance of the immune microenvironment in

the prognosis of HCC and highlight the potential of immune-

related genes as predictive biomarkers and therapeutic targets.

This study explores the therapeutic potential of the top 10 ranked

drugs for HCC, highlighting significant advancements in drug

research. Pharmacological screening has identified Sepantronium
Frontiers in Immunology 16
Bromide as a promising antitumor agent, particularly effective in

lenvatinib-resistant HCC patients (81). Additionally, ML-323 has

been demonstrated to inhibit HCC cell growth and induce G1 phase

cell cycle arrest by regulating cyclin expression (82). In combination

with BPD-00008900, Doramapimod, and AZD2014, these chemical

compounds have shown enhanced chemotherapy outcomes for high-

risk patients within specific subgroups (83). Furthermore,

Bortezomib, acting through the Hippo-YAP signaling pathway,

emerges as an effective anti-HCC drug (84). The drugs discussed in

this study have all been shown to play a significant role in the

development and progression of tumors, including HCC. Therefore,

this research provides substantial reference value for the future

investigation of these drugs in the treatment of HCC.

This study revealed that B cells are considered key cells for the 8

prognostic genes. B cells have the highest number and strength of

interactions with macrophages and are differentiated into 5 states.

State 1 marks the beginning of B cell differentiation, while States 4

and 5 represent the end stages of differentiation. Notably, the

prognostic genes are more highly expressed in State 1, the initial

stage of B cell differentiation. B cells are recognized as the primary

effector cells of humoral immunity, capable of inhibiting tumor

progression, and their role in the TME is of great interest. The
FIGURE 10

Expression Validation Analysis of Prognostic Gene in Control and HCC Groups. (A-C) Box plots of the expression profiles of 8 prognostic genes.
(A) TCGA-LIHC dateset. (B) GSE76427 dataset. (C) GSE54236 dataset. ns represented no significance, **** represented p< 0.0001. (D) Reverse
transcription quantitative polymerase chain reaction expression validation. From left to right are MCM10, KIF18, ORC6, CDC45, PLK4. ns represented
not significant, ** represented p< 0.01, **** represented p< 0.0001.
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presence of B cells has been associated with improved outcomes in

cancer patients (85, 86). In HCC, IgG+ plasma cells can be recruited

by tumor-associated macrophages (TAMs) via the CXCR3-

CXCL10 axis, promoting the formation of protumor macrophages

and thereby enhancing immune suppression (87). Meanwhile, B

cells can capture tumor-associated antigens via the B cell receptor

(BCR), and after internalization and processing, present them to

CD4+ and CD8+ T cells to exert antitumor immune effects (87).

Therefore, the pivotal role of B cells in HCC prognosis requires

further research, providing a scientific basis for therapeutic

strategies targeting these cells.

In summary, this study identified eight prognostic genes relevant

to HCC—MCM10, CEP55, KIF18A, ORC6, KIF23, CDC45, CDT1,

and PLK4—and constructed a validated HCC prognostic risk

prediction model. Furthermore, B cells were identified as key

cellular components associated with these prognostic genes. The

overexpression of MCM10, KIF18A, CDC45, and PLK4 in the

HCC group was confirmed through bioinformatics analysis and

RT-qPCR, which could be particularly significant for identifying

new therapeutic targets for HCC. However, our study has several

limitations. First, the PCR results were not entirely consistent with the

dataset, which may be attributed to the small sample size, sample

heterogeneity, and differences in the algorithm parameters of

bioinformatics analysis as well as the reaction conditions of the

RT-qPCR experiments. Second, the lack of P-value correction

during the selection of differentially expressed genes may have led

to false-positive results. Additionally, the absence of in-depth

functional experiments and multivariate analysis of confounding

factors limits the comprehensive understanding of the true

relationship between the risk score and clinical features. To address

these limitations, we plan to expand the sample size and collect

diverse sample types in future studies. We will also employ

appropriate correction methods to minimize false positives.

Furthermore, we aim to establish mouse or cell models to conduct

in vivo and in vitro functional experiments. These experiments will

utilize techniques such as immunohistochemistry, ELISA, flow

cytometry, Western blotting, and gene editing to validate the

impact of prognostic genes and key cells on HCC. Specifically, we

will use CRISPR/Cas9 gene-editing technology to knock out or

overexpress prognostic genes with significant expression differences

in B cells, thereby observing their effects on B cell function. Future

research will also incorporate more confounding factors into a

comprehensive analysis to more fully assess the relationship

between the risk score and clinical features.
5 In conclusion

This study identified eight prognostic genes—MCM10, CEP55,

KIF18A, ORC6, KIF23, CDC45, CDT1, and PLK4—and developed

a robust predictive model for HCC. This model offers a new

direction for research and could significantly assist in the clinical

management of the disease.
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