
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Massimiliano Petrini,
Scientific Institute of Romagna for the Study
and Treatment of Tumors (IRCCS), Italy

REVIEWED BY

Biswarup Basu,
Chittaranjan National Cancer Institute (CNCI),
India
Le Zhang,
Cedars Sinai Medical Center, United States
Munna Lal Yadav,
Indian Council of Medical Research (ICMR),
India

*CORRESPONDENCE

Xiaoling Gao

gaoxl008@hotmail.com

†These authors have contributed equally to
this work

RECEIVED 07 December 2024

ACCEPTED 07 April 2025
PUBLISHED 28 April 2025

CORRECTED 13 June 2025

CITATION

Zhang J, Li J, Yang S, Tang X, Wang C, Lin J,
Chen Q, Xu H, Ma Y and Gao X (2025)
Development and validation of an ARID1A-
related immune genes risk model in
evaluating prognosis and immune
therapeutic efficacy for gastric cancer
patients: a translational study.
Front. Immunol. 16:1541491.
doi: 10.3389/fimmu.2025.1541491

COPYRIGHT

© 2025 Zhang, Li, Yang, Tang, Wang, Lin,
Chen, Xu, Ma and Gao. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 28 April 2025

DOI 10.3389/fimmu.2025.1541491
Development and validation
of an ARID1A-related
immune genes risk model
in evaluating prognosis and
immune therapeutic efficacy
for gastric cancer patients: a
translational study
Jiangtao Zhang1,2†, Jingting Li1,2†, Shangfeng Yang2†,
Xiaoyan Tang1,2, Chunze Wang1,2, Jiaxing Lin1,2,
Qiancheng Chen2, Hui Xu1, Yuanyuan Ma3 and Xiaoling Gao1,2*

1The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical
University, Haikou, Hainan, China, 2Hainan Medical University, Haikou, Hainan, China, 3Second
Department of Critical Care Medicine, Xi’an Daxing Hospital, Shanxi, China
Background: Mutations in the ARID1A gene, an integral component of the SWI/

SNF complex, are prevalent, affecting prognosis and immune response in several

malignancies, including gastric cancer (GC). The aim of this study was to identify

ARID1A mutation-associated immune genes to construct an ARID1A-related

immune gene risk model (ARM).

Methods: GSEA and ssGSEA were used to explore the involved biological

pathways and the degree of immune cell infiltration, respectively. The

prognosis model was constructed by lasso-COX. Protein expression level in

tissue was verified by immunohistochemistry. Small molecule compounds were

screened using molecular docking techniques and their anticancer value was

validated in vitro and in vivo experiment.

Results: This study revealed immune-related pathways and infiltration level of

multiple immune cell types were enriched in the ARID1AMUT group compared to

the ARID1AWT group. ARID1A mutations were correlated with an improved

prognosis in individuals treated with immune checkpoint inhibitor (ICI)

analyzed via Cbioportal website. TCGA-STAD cohort was randomly divided

into a training-group and a testing-group. Additionally, ARM was developed in

the training group, which identified APOD and PROC from ARID1A mutation-

associated differential immunity genes. A significantly poorer prognosis in the

high-risk group compared to the low-risk group, which was consistent across

TCGA-training/testing/all cohorts, five GEO cohorts and 55 GC patients from

Hainan General Hospital. Furthermore, the immune microenvironment

components and ICI therapeutic efficacy markers were different between the

two groups. Meanwhile, APOD and PROC expression was higher in GC tissues

compared to para-cancerous tissues. Baicalin and capsaicin inhibited the

proliferation and metastatic ability of GC cells.
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Conclusion: ARM provides valuable insights into the prognosis and the

effectiveness of ICI, thereby offering a novel strategy for clinical decision.

Baicalin and capsaicin are promising potential drugs for GC treatment.
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1 Introduction

As extensively documented, epigenetic landscape alteration is

among the hallmarks of human malignancies (1). As key players in

epigenetics, chromatin remodeling factors, such as those in the

mammalian SWI/SNF (mSWI/SNF) chromatin remodeling

complex, modulate the expression of oncogenes and tumor

suppressor genes, thereby playing pivotal roles in tumorigenesis.

The SWI/SNF chromatin remodeling complex, driven by ATP

hydrolysis, regulates nucleosome positioning and composition,

thus maintaining cellular homeostasis and physiological

functions. Exome sequencing studies have indicated that

mutations in the SWI/SNF family occur in 19% of all cancer

types, with a mutation rate of 36% in gastric cancer (GC),

equivalent to that of TP53 (2). SWI/SNF family genes affect

cancer progression by altering tumor cell behavior, modulating

the expression of immune escape genes, and influencing

components of the tumor microenvironment (TME) (3–5).

ARID1A (AT-rich interactive domain 1A, also referred to as

BAF250) is the largest and most frequently mutated SWI/SNF

subunit (2). Some drugs, such as ATM inhibitors, simvastatin and

aspirin, act synergistically with PD-L1 inhibitors to inhibit tumor

growth in ARID1A-deficient mice (6–8). ARID1A deletion results in

the recruitment of T cells for anti-tumor immune responses through

activation of the cGAS/STING pathway (9, 10). Studies have

demonstrated that ARID1A mutations play a crucial role in the

early onset, proliferation, metastasis, and prognosis of GC (11–13).

Notably, in the context of tumor immunology, GC patients harboring

ARID1Amutations exhibit higher levels of CD8+ T cell infiltration and

derive greater benefit from immunotherapy. Mechanistically, ARID1A

cooperates with STAT5 to promote the transcription of

immunosuppressive factors such as TGF-b1 and NOX4, thereby

influencing TME (14). Furthermore, ARID1A mutations are more

frequently observed in molecular subtypes of GC that respond

favorably to immune checkpoint inhibitors, such as microsatellite

instability-high (15). ARID1A exerts dual functions in tumorigenesis.

At the cancer cell-intrinsic level, ARID1A acts as a tumor suppressor

by regulating the cell cycle, signaling pathways, and epithelial-

mesenchymal transition (EMT). Conversely, from the tumor

microenvironment perspective, ARID1A mutations shape an

inflamed (hot) tumor phenotype, thereby enhancing sensitivity to

immunotherapy. Given these findings, further investigation into

ARID1A-associated immune-related genes is warranted to elucidate
02
their role in shaping the immune landscape of GC aimed at optimizing

clinical prognostic tools and enhancing immunotherapy efficacy.

The current study aimed to investigate the association between

ARID1Amutations and the TME of GC and their prognostic value in

an ICI-treated population using publicly available datasets. In the

Cancer GenomeAtlas-Stomach Adenocarcinoma (TCGA-STAD), an

immune-related risk model (ARM) was constructed based on

differentially expressed immune genes associated with ARID1A

mutations. Next, five Gene Expression Omnibus (GEO) GC

cohorts were used for external validation, and a retrospective study

of 55 GC samples from our hospital further validated the prognostic

value of ARM. Additionally, the potential of ARM as a biomarker for

ICI treatment and the immune infiltration landscape linked to ARM

was explored. Overall, ARM provides a novel strategy for assessing

GC prognosis and optimizing ICI treatment selection. Furthermore,

this study explores the potential of baicalein (Ba) and capsaicin (Ca)

as therapeutic agents for GC through in vitro and in vivo experiments.
2 Materials and methods

2.1 Data source

RNA-seq data and clinical information for 375 GC cases were

acquired from TCGA, along with supplementary data on 443 somatic

mutations. TCGA-STAD transcriptome data were converted from

fragments per kilobase million (FPKM) to transcripts per million

(TPM). A subset comprising 366 STAD samples, with available

mRNA expression data and somatic mutation information, was

selected for further in-depth analysis. In addition, five microarray

cohort studies of GC with available prognostic clinical data, namely

GSE62254 (n = 297), GSE84437 (n = 431), GSE26942 (n = 202),

GSE15459 (n = 182), and GSE26253 (n = 432), were retrieved from

NCBI’s GEO database and integrated into the study. For duplicate

gene names, average expression values were calculated.

RNA-seq data for the PD-L1 treatment cohort (IMvigor210) was

sourced from [http://research-pub.gene.com/IMvigor210CoreBiologies].

The cBioPortal database [http://www.cbioportal.org/] was accessed

to download mutation and prognosis data for 2,041 cancer patients

who underwent immunotherapy (16, 17). Download data on 1,793

immune-related genes listed in the immunology database and

analysis portal (IMMPORT) (18), accessible at [https://

www.immport.org/home].
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2.2 Enrichment and differential analysis

Relevant biological pathways were explored by conducting Gene

Set Enrichment Analysis (GSEA) (19) using gene sets from the Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) databases. Differential expression analysis was performed

using the “Limma” package on the 84 ARID1A mutation (MUT) and

282 wild-type (WT) cohorts. The criteria for identifying differentially

expressed genes were set at an false discovery rate (FDR) below 0.05

and a minimum absolute log fold change (logFC) of 1.
2.3 Construction and validation of the
immune gene-related risk (ARM) model

TCGA-STAD samples with less than 30 days of survival time were

excluded, resulting in a differential immune gene expression matrix

containing 337 samples. A 3:1 ratio was used to divide the TCGA-

STAD dataset into the TCGA-train and test groups. In the TCGA-

train group, immune genes with a univariate Cox P-value < 0.05 and |

HR| > 1 were identified as prognostically significant. Following this,

the least absolute shrinkage and selection operator (Lasso) COX

regression analysis was subsequently carried out to further narrow

down the shortlisted genes. Next, the “glmnet” R package was used to

construct a multivariable Cox model. For each STAD sample, the

following formula was applied to calculate the risk score:

Risk score =o
n

i=1
(Coefficienti � Expressioni)

Here, “n” represents the number of genes in the ARM,

“expressioni” denotes gene expression level, and “coefficienti”

stands for the regression coefficient of each gene. The risk score

formula was applied for both internal validation within the TCGA

dataset and external validation using GEO cohorts. Based on the

median risk score, survival curves were plotted using the Kaplan-

Meier (KM) method. The time-dependent ROC analysis was

performed to assess the sensitivity and specificity of ARM. The

“tSNE” and “PCA” R packages were used to visualize the

distribution of high-risk and low-risk populations. To evaluate

the independent prognostic value of ARM risk scores, both

univariate and multivariate Cox regression analyses were conducted.
2.4 Quantitative real-time polymerase
chain reaction assay

Total RNA was extracted from cells using the Total RNAMini Kit

(Axygen, Shanghai, China) according to the manufacturer’s

instructions. Complementary DNA (cDNA) was synthesized from

the extracted RNA using the RevertAid First Strand cDNA Synthesis

Kit (Thermo Fisher Scientific, Shanghai, China). The qPCR reaction

mixture consisted of SYBR™ Green Master Mix (Thermo Fisher

Scientific, Lithuania) cDNA template, nuclease-free water, and gene-

specific primers. The mixture was aliquoted into eight-strip PCR tubes

and subjected to amplification using a QuantStudio 5 PCR instrument
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(Applied Biosystems). The Ct values were recorded for each sample,

and relative gene expression levels were calculated using the 2^-DDCt

method. Primer sequences for the internal control (GAPDH) and

target genes were shown in Supplementary Table 1.
2.5 Analysis of immune cell infiltration and
immune response

The “GSVA” package (20) within the R programming environment

was used to conduct ssGSEA, which facilitated the assessment of

infiltration levels of multiple distinct immune cell types across each

GC specimen. Additionally, the tumor immune dysfunction and

exclusion (TIDE) server (http://tide.dfci.harvard.edu) was used to

obtain information on the responsiveness of each TCGA-STAD

sample to ICI therapy.
2.6 Immunohistochemistry staining

GC and matched paracancerous tissue samples were randomly

selected from Hainan General Hospital. This study was approved by

the Ethics Committee of our hospital and performed in accordance with

ethical guidelines. Specific antibodies for IHC were purchased from

Proteintech (APOD, 10520-1-AP, 1:100; PROC, 25382-1-AP, 1:50).

After dewaxing, the tissue sections were baked at 60°C for 1h in a

constant-temperature oven. Subsequently, the samples were sequentially

immersed in xylene I-III for 10 minutes each, followed by immersion in

anhydrous ethanol I–III for 10 minutes each. Then, the tissue sections

were rinsed with running water for 12 minutes. Protein activity was

inactivated using 3% H2O2 and a 1 mL NaN3 solution by soaking for 10

minutes, followed by washing with tap water for approximately 10

minutes. Antigen retrieval was performed using a pressure cooker. A 5%

bovine serum albumin (BSA) blocking solution was applied and

incubated for 35 minutes before incubation with the primary antibody

overnight at 4°C. Subsequently, the sections were stained, dehydrated,

and sealed. Finally, a semi-quantitative analysis was performed using

Visiopharm software to determine the H-score for each specimen, which

was calculated based on the number of positive signals and their

intensities using the following formula: H-Score = ∑(pi×i), where “pi”

represents the proportion of the positive signal pixel area/cell number,

and “i” represents staining intensity. The H-Score ranges from 0 to 300,

with higher values indicating a more robust overall positive intensity.
2.7 Protein docking with small-molecule
drugs

The HERB database (http://herb.ac.cn/) was used to identify

potential small-molecule drugs targeting APOD and PROC (21).

The 3D protein structures of APOD and PROC were obtained from

the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) in SDF

format and converted to PDB format using the Open Babel GUI

(22). Thereafter, possible binding sites were predicted, and the

software AutoDock Vina (23) and PyMOL (24) were used to
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identify molecules and proteins with the lowest binding free energy

for further investigation.
2.8 Cell culture

The GC cell lines HGC-27 and SNU-216 were sourced from

NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal

Tumor, Gansu Provincial Hospital and maintained in a complete

medium containing 10% fetal bovine serum (VivaCell, Shanghai,

China), 1640 basal medium (Gibco, Shanghai, China), and 0.1%

penicillin-streptomycin solution (Gibco, Shanghai, China) and

cultured at 37°C with 5% CO2 in a constant-temperature incubator.
2.9 Cell Counting Kit-8 Assay

GC cells were seeded into 96-well plates and incubated

overnight. Different drug concentrations were added sequentially,

and the cells were incubated for an additional 48h. Next, 10 mL
CCK-8 reagent (MA0218, Meilunbio, China) was added to each

well, which was incubated for 2 hours. Optical density (OD) was

determined at 450 nm using a microplate reader (Thermo Fisher

Scientific, Massachusetts, USA). The concentration exhibiting the

lowest cytotoxicity was selected for the ensuing experiments.
2.10 Colony formation assay

GC cells were seeded into six-well plates. The next day, the cells

were incubated for approximately 10 days at 37°C in a 5% CO2

atmosphere after drug intervention. They were then washed with

phosphate-buffered saline (PBS), fixed with 4% paraformaldehyde

for 20 minutes, and stained with 1% crystal violet for 10 minutes.

After rinsing with tap water, the number of cell clones was counted.
2.11 EdU assay

GC cells were plated in confocal petri dishes. Once the cells adhered

to the dish, a complete medium containing the drug was added and

incubated for 48h. Subsequently, the EdU working solution (C0075S,

Beyotime, Shanghai, China) was added to the petri dishes and incubated

for 2h. Afterward, the cells were fixed using 4% paraformaldehyde for 20

minutes, followed by incubation with the click reaction solution in the

dark. Cells were then treated with a DAPI-containing antifade

mounting medium (P0131-5ml, Beyotime, Shanghai, China), and

images were captured under a fluorescence microscope.
2.12 Subcutaneous xenograft model

Twenty-four male nude mice (3–5 weeks old, SPF grade) were

purchased from Huachuang Sino Medical Technology Co. LTD
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(Jiangsu, China). After a 3-day acclimatization period in an SPF-

grade animal facility, a subcutaneous injection of 200 mL PBS

containing 5×106 HGC-27 GC cells was administered into the right

axilla of each mouse using a syringe. For the Ba-treated group,

intraperitoneal injections of Ba (100 mg/kg) were administered daily

starting from the day of tumor cell inoculation. For the Ca-treated

group, subcutaneous injections of Ca (10 mg/kg) were given every 3

days beginning on the day of tumor cell inoculation. During the

experimental period, the longest and shortest diameters of the tumors

were measured, and the tumor volumes were calculated using the

formula: (length×width²)/2. The mice were euthanized three weeks

after tumor cell inoculation, and the tumors were excised, weighed,

and photographed for further analysis.
2.13 Wound-healing assay

The cells were seeded into six-well plates and cultured until they

reached 100% confluence overnight, after which a vertical scratch

was made using a pipette tip. The cells were washed three times with

PBS before incubation in serum-free medium containing either the

control or the drug. Cell migration was observed and photographed

under an inverted microscope at 24h. The relative scratch healing

rate was calculated using the following formula: (initial scratch

width – scratch width at 24h)/initial scratch width.
2.14 Transwell assay

In the Transwell assay, 1×105 GC cells were introduced into the

upper chamber, which was subsequently placed in a well containing

complete medium. After 24h of incubation, the chambers were

removed, and the cells on the lower surface of the membrane were

fixed in 4% paraformaldehyde for 20 minutes. The fixed cells

were then stained with 1% crystal violet for 10 minutes. After

washing with PBS, the cells on the lower surface of the membrane

were photographed and counted under a microscope.
2.15 Statistical analysis

R (version 4.1.3) and GraphPad Prism (version 9.5) were used

for statistical analysis. Student’s t-test was used for comparisons

between two groups, while one-way analysis of variance (ANOVA)

was used for comparisons between more than two groups. The Chi-

square test was used to analyze categorical variables. Spearman’s

rank correlation coefficient was used to assess correlations between

variables. For survival analysis, samples were stratified into high and

low expression groups based on median expression level, and

statistical significance was assessed using the log-rank test.

Statistical significance defined as a two-tailed p-value < 0.05. In

vitro experiments: At least three biological and technical replicates.

In vivo experiments: Six biological replicates and one technical

replicate.
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3 Results

3.1 ARID1A mutations affect TME and
prognosis

The SWI/SNF complex is a central component of the chromatin

remodeling machinery that plays a decisive role in tumorigenesis and

tumor progression. Given that mutations in 23 genes associated with

the SWI/SNF complex are common genetic abnormalities in several

solid tumors, including GC, we analyzed their exonic sequences in 443

cases from TCGA-STAD. Consistent with expectations, ARID1A

exhibited the highest mutation frequency (25%), followed by ARID2

and ARID1B, both at 7% (Figure 1A). Moreover, survival analysis
Frontiers in Immunology 05
based on different types of ARID1A mutations revealed that patients

harboring the ARID1A Frame Shift Del mutation had a better

prognosis than those with Frame Shift Ins, Missense Mutation,

Nonsense Mutation and Splice Site mutations (Figure 1B). This

finding suggests the functional heterogeneity of ARID1A mutations.

To elucidate the functional implications of ARID1A mutations, we

performed GSEA using gene sets from the GO and KEGG databases,

stratified by ARID1A mutation status (MUT/WT). The findings

indicated that the ARID1AMUT group was enriched in several

immune-related pathways, such as antigen processing and

presentation, immunoglobulin production, and the intestinal

immune network for IgA production (Figure 1C). Similar to GSEA

result analysis, the ssGSEA algorithm revealed that ARID1AMut GC
FIGURE 1

Potential significance of ARID1A mutations. (A) Mutation information of 23 SWI/SNF-related genes in TCGA-STAD. (B) Survival analysis based on
ARID1A mutation types. (C) GSEA enrichment analysis comparing ARID1A mutant and wild-type groups. (D) Single-sample GSEA (ssGSEA) quantifying
differences in immune cell infiltration levels between ARID1A mutant and wild-type cases. (E) Kaplan-Meier (KM) method illustrating the impact of
ARID1A mutation status on outcomes following immune checkpoint inhibitor (ICI) therapy. *p< 0.05, **p < 0.01 and ***p< 0.001.
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harbored a greater abundance of immune cells, including CD4+ and

CD8+ T lymphocytes (Figure 1D).

Furthermore, survival outcomes associated with ARID1AMut

were examined by reviewing immunotherapy cohorts in the

cBioPortal database. The findings implied that patients

harboring ARID1AMut exhibited longer survival rates following

ICI therapy (Figure 1E), providing further evidence of the central

role of ARID1A in shaping the TME and the prognosis of

cancer patients.
Frontiers in Immunology 06
3.2 Construction of a risk model based on
ARID1A mutated differential prognostic
immune genes

A total of 766 DEGs were identified between the ARID1AMUT/WT

groups using the ‘limma’ R package. These differentially expressed genes

(DEGs) were cross-referenced with the IMMPORT database, known to

catalog 1,793 immune-related genes. This approach yielded 66

immune-related genes associated with ARID1A mutations (Figure 2A).
FIGURE 2

ARID1A-associated immune gene risk (ARM) model construction. (A) Venn diagram displaying the overlap between IMMPORT-associated immune
genes and ARID1A mutation-associated differentially expressed genes. (B) Forest plot of eight prognostically significant immune-related genes. (C)
LASSO coefficient profiles of the eight immune-related genes. (D) Selection of the optimal model parameters: The regularization path is depicted,
with the dashed line indicating the minimum lambda value (lambda. min). (E) Heatmap of differential expression of APOD and PROC in ARID1A
mutant and wild group. (F) APOD and PROC mRNA levels of HGC-27 and SNU-216 cell lines were analyzed via qRT-PCR. **p < 0.01.
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To construct a model for assessing prognosis, the TCGA-STAD

cohort was initially partitioned into the train- (n = 253) and test

groups (n = 84) at a 3:1 allocation ratio. Clinical characteristics were

comparable between the two groups (Supplementary Table 2). In

the training group, univariate Cox regression analysis identified

eight genes, namely VTN, SFTPD, RBP4, PROC, NRG2, LBP,

APOD, and AGT, that were significantly associated with a poor

prognosis (p < 0.05) (Figure 2B). Following this, the number of

genes was reduced using the Lasso method. Initially, the regression

coefficient trends for eight independent variables were analyzed as

log lambda (log l) values increased (Figure 2C). Afterward, the five

genes with the minimum partial likelihood of deviance were

selected for subsequent risk modeling (Figure 2D). Finally, a

prognostic model was developed using APOD and PROC, two of

the five immune-related genes, to construct the ARID1A mutation-

associated risk model (ARM). The ARM risk score was calculated as

follows: ARM risk score = (0.104558626103791 × APOD) +

(0.150191346083483 × PROC). Figure 2E showed that both

APOD and PROC were expressed at lower levels in GC patients

harboring ARID1AMut (n = 84) compared to those with wild-type

ARID1A (n = 282). The qRT-PCR data further confirmed that the

expression levels of APOD and PROC were significantly lower in

the ARID1AMut GC cell line SNU-216 compared to the ARID1AWT

GC cell line HGC-27 (p < 0.01) (Figure 2F).
Frontiers in Immunology 07
3.3 ARM effectively predicts the prognosis
of GC patients

To determine the predictive value of ARM, a median ARM risk

score was calculated to stratify the cohorts into high-risk and low-risk

groups. In contrast to low-risk patients, high-risk patients had poorer

overall survival (OS) across the TCGA-train, TCGA-test, and all groups,

as determined by KM analysis (TCGA-train: p < 0.001; TCGA-test: p =

0.014; TCGA-all: p < 0.001). Then, the ARM risk score formula was

employed to categorize five independent GEO GC cohorts (GSE62254,

GSE84437, GSE26942, GSE15459, and GSE26253) into high- and low-

risk categories. This consistently revealed that the high-risk group

exhibited an unfavorable prognosis (Figure 3A). Further evaluation of

ARM reliability was conducted through time-dependent receiver

operating characteristic (ROC) curve analysis, with area under the

curve (AUC) values computed at 2/3/5-year intervals for both the

TCGA-STAD and GEO cohorts. In the TCGA-train group, the AUC

values were 0.645, 0.654, and 0.700, respectively. In contrast, the AUC

values were 0.649, 0.606, and 0.603 in the TCGA-test group and 0.641,

0.639, and 0.672 in the TCGA-all group, respectively. AUC values for

the GEO datasets were as follows: GSE62254: 0.659, 0.647 and 0.661;

GSE84437: 0.571, 0.573 and 0.605; GSE26942: 0.607, 0.606 and 0.612;

GSE15459: 0.565, 0.596 and 0.635; GSE26253: 0.598, 0.600 and 0.601

(Figure 3B). Additionally, using t-distributed stochastic neighbor
FIGURE 3

Prognostic potential of ARM. (A) KM survival curves delineating overall survival (OS) across multiple cohorts, including TCGA-train, TCGA-test, TCGA-
all, GSE62254, GSE84437, GSE26942, and GSE15459, as well as recurrence-free survival (RFS) in GSE26253. (B) 2,3,5 years AUC values of ARM in
different cohorts. (C) Univariate and multivariate regression analyses of ARM risk scores. (D) Distribution of ARM risk scores across TNM stages (top
panel) and T stages (bottom panel). * for p < 0.05, ** for p < 0.01, and *** for p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1541491
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1541491
embedding (t-SNE) and principal component analysis (PCA), distinct

clustering and differentiation between the low/high-risk populations

were observed (Supplementary Figure 1).

Ultimately, conventional clinical characteristics, such as gender,

age, tumor grading, and staging, were incorporated for univariate

and multivariate Cox regression analyses, and the ARM risk score

exhibited independent prognostic characteristics in TCGA-STAD

(Figure 3C). Furthermore, the risk scores for stages II-IV were

higher than those in stage I. Likewise, risk scores for stages T2–4

were higher than those in stage T1 (Figure 3D).
3.4 ARM alters the TME in GC

To examine the possible causes of the prognostic differences

between the high- and low-risk groups, the ssGSEA algorithm was

applied to analyze TME characteristics in TCGA-STAD and five GEO

cohorts. Importantly, significant differences were observed in TME

components among groups with varying risk levels. Specifically, across

all cohorts, the low-risk group was associated with a consistent

increase in the abundance of activated CD4+ T cells. In contrast, the

abundance of plasma dendritic cells was lower. Moreover, a marked

increase was noted in the abundance of macrophages and mast cells in

the high-risk group, except in the GSE62254 cohort. Furthermore,

variations in the infiltration levels of other types of immune cells, such
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as T helper type 1 and 2 (Th1/2), activated CD8+ T cells, natural killer

T cells (NKT), and neutrophils exhibited abnormal patterns in at least

one of the GC cohorts (Figures 4A, B). We posit that alterations in the

TME may have contributed to the prognostic changes.
3.5 ARM can serve as a reference tool for
assessing ICI treatment effectiveness

Microsatellite instability (MSI), tumor mutational burden

(TMB), and CD274 (PD-L1) expression are recognized as

emerging markers for evaluating the efficacy of ICI therapies (25,

26). In the context of the IMvigor210 PD-L1 treatment cohort, an

analysis of risk score disparities among patients stratified into the

complete response (CR), partial response (PR), progressive disease

(PD), and stable disease (SD) groups demonstrated that the CR

group had lower risk scores than the SD group. However,

comparisons among other groups did not reveal statistically

significant differences (Figure 5A). In both the TCGA and

GSE62254 cohorts, chi-square tests indicated a greater prevalence

of MSI GC in the low-risk group compared to the high-risk group

(Figure 5B). Similarly, TMB values and PD-L1 expression were

higher in low-risk individuals, and risk scores were negatively

correlated with both parameters (Figures 5C, D). TIDE score, an

indicator of immune response, suggested that lower scores were
FIGURE 4

Landscape of immune cell distribution in high/low-risk ARM populations. (A) Heat maps depicting variations in immune cell infiltration levels across
the high- and low-risk groups within the TCGA, GSE62254, and GSE84437 cohorts, presented in a top-to-bottom orientation. (B) Variations in
immune cell infiltration levels in the GSE26942, GSE15459, and GSE26253 cohorts (from top to bottom).
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correlated with favorable outcomes in tumor immunotherapy. In

this study, a lower TIDE score was observed in the low-risk TCGA

group. (Figure 5E). Taken together, these results suggest that the

low-risk group is more likely to respond favorably to ICI therapy.
3.6 ARM accurately predicts the prognosis
of GC patients from Hainan General
Hospital

To investigate the potential of ARM in predicting GC prognosis,

GC and matched paracarcinoma tissues from 55 patients (clinical

details are listed in Supplementary Table 3) from Hainan General

Hospital were subjected to immunohistochemical analysis. The

immunohistochemical images of APOD and PROC expression

patterns in tissues showed a predominant cytoplasmic localization

for both APOD and PROC proteins (Figure 6A).

The H-score, a semi-quantitative metric derived from the

intensity of IHC antibody staining as an indirect measure of

protein expression levels, was applied. The results demonstrated

that APOD and PROC expression was significantly higher in GC

tissues compared to the adjacent non-malignant tissues (Figure 6B).
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KM analysis further demonstrated that the high-risk group had a

significantly poorer prognosis than the low-risk group.

Additionally, AUC values (2-year: 0.697, 3-year: 0.673, 5-year:

0.648) highlighted the strong prognostic ability of ARM

(Figures 6C, D), implying that it could effectively predict GC

prognosis at both the mRNA and protein levels.
3.7 Molecular docking of small molecules
targeting ARM-related immune genes
inhibits GC cell proliferation, migration,
and invasion

To identify therapeutic drugs targeting APOD and PROC, the

HERB database was utilized. Ba and Ca emerged as promising

small-molecule candidates that selectively target APOD and PROC.

Subsequent molecular docking experiments, conducted using

AutoDock Vina software, yielded compelling results: a binding

energy of -7.9 kcal/mol was observed for the APOD-Ba

interaction, while the PROC-Ca interaction exhibited a binding

energy of -6.8 kcal/mol, indicating a substantial potential for

binding affinity between these protein-ligand pairs. To further
FIGURE 5

Correlation between ARM and biomarkers of ICI therapy efficacy. (A) Stratification of ARM risk scores within four PD-L1 response groups in the
IMvigor210 cohort. (B) Comparison of MSI percentages across different groups within two independent cohorts using the chi-square test. (C)
Comparison of TMB values between the two groups (left) and Spearman correlation analysis of ARM risk scores and TMB values in TCGA-STAD
(right). (D) Comparison of PD-L1 mRNA levels across groups (left), with analysis of their correlation with risk scores using Spearman’s method (right).
(E) Variations in TIDE scores between the low-risk and high-risk populations of ARM. Complete response [CR], partial response [PR], stable disease
[SD], progressive disease [PD]; * for p < 0.05; *** for p < 0.001.
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elucidate the nature of these interactions, PYMOL software was

employed to construct three-dimensional visualizations of the

protein-ligand complexes. Moreover, the binding sites for APOD-

Ba and PROC-Ca, were delineated (Figure 7A). The results

collectively suggested that both APOD-Ba and PROC-Ca

interactions exhibit high binding specificity and strength.

The CCK8 assay showed that Ba and Ca exerted concentration-

dependent inhibition of the proliferative ability of GC cells after 48h

of treatment (Figure 7B). Then, the drug concentrations (Ba, 40mM;

Ca, 80mM) with minimal effects on cell viability were chosen for the

subsequent experiments. The results of the clone formation assay

showed that the clonogenic ability of cells in the drug-treated

groups was significantly reduced (Figure 7C). The EdU assay also

revealed a lower EdU-positive rate in the Ba and Ca groups

compared with that in the matched control group (Figure 7D).

The above results conjointly demonstrated that Ba and Ca can

inhibit the proliferation of GC cells in vitro. Further, in vivo

experiments demonstrated that the Ba-treated group exhibited a

significantly reduced mean tumor weight and a markedly smaller

mean tumor volume at multiple time points (days 7, 11, and 15)

compared to the control group (Figures 8A-C). Likewise, the Ca-

treated group also displayed robust antitumor effects, with its mean

tumor weight and mean tumor volume being significantly lower

than those of the control group at all measured time points

(Figures 8D-F). These findings further substantiate the potential
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of Ba and Ca in suppressing the growth of GC cells in vivo, thereby

providing promising insights for the development of novel

therapeutic strategies for GC treatment or the retardation of

disease progression.

Metastasis is a key feature of tumor cells (27). To explore the

effect of Ba and Ca on the migratory and invasive abilities of GC

cells in vitro, a wound healing assay was performed. The results

revealed that the relative migratory ability in the Ba and Ca groups

was lower compared to the control group (Figure 9A). Similarly,

after 24h, the results of the Transwell assay validated that the

number of migrating and invading cells was lower in the Ba and Ca

groups compared to the control group (Figure 9B). In conclusion,

these results provide preliminary evidence supporting the

antitumorigenic effects of Ba and Ca.
4 Discussion

ARID1A is frequently mutated across various types of cancers,

with loss-of-function mutations being the most prevalent (28).

Dysfunction of ARID1A can lead to immune escape of tumor

cells by upregulating PD-L1. On the other hand, immune

cell infiltration abundance is higher in cancer tissues by

regulating the expression of immune genes (25, 29, 30). This

phenomenon confers a molecular signature associated with
FIGURE 6

Prognostic Significance of ARM in 55 GC patients Evaluated by Immunohistochemistry (IHC). (A) Representative IHC images of APOD (left) and
PROC (right) in GC tissues and corresponding adjacent non-cancerous tissues. (B) H-score for APOD and PROC expression in GC and adjacent
non-cancerous tissues. (C, D) KM curves and time-dependent ROC curves for the Hainan GC cohort. H-scores, indicative of the protein expression
intensity, were computed using Visiopharm software; *p <0.05. T, tumor; N, adjacent non-cancerous tissues.
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enhanced immunotherapeutic efficacy, which may explain the

improved prognosis observed in ARID1AMut cancer populations

undergoing ICI therapy.

Herein, the high mutation frequency of ARID1A was associated

with a stronger immune-activating phenotype and a higher

abundance of CD8+ and CD4+ T cells in GC tissues. In addition,

ARID1AMut cancer patients had a better prognosis following ICI

treatment. ARID1AMut-related differentially expressed immune

genes might have significant clinical value in predicting prognosis

and response to immunotherapy.

To develop a prognostic model for more precise prognosis

assessment, APOD and PROC, two ARID1A mutation-associated

prognostic immune genes were selected to construct the prognostic

model (ARM), which demonstrated satisfactory prognostic

predictive ability in TCGA datasets and five independent GC

patient cohorts from the GEO database. More importantly, it

successfully predicted the prognosis of GC patients from Hainan

General Hospital. Overall, these findings underscore the utility and

reliability of ARM as a prognostic assessment tool for GC.
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APOD overexpression was correlated with poor prognosis in

GC and breast cancer (31, 32). Notably, a model incorporating

APOD and nine other genes demonstrated considerable prognostic

value for GC (33). APOD belongs to the broader family of

apolipoproteins and participates in lipid metabolism. It can

transform normal stromal cells into COL11A1+ tumor-associated

fibroblasts, which is associated with tumor progression and

prognosis (34). In addition, the PROC gene encodes protein C, a

component of the protein C anticoagulant system that plays an

essential role in maintaining normal anticoagulant function. Studies

demonstrated that aberrant expression of PROC can impair

coagulation processes and consequently facilitate tumor cell

migration and invasion (35). Bioinformatics analysis identified

PROC as a gene significantly associated with CD4+ T cells, with

immunohistochemical evaluations of 139 GC cases identifying it as

a high-risk factor (36). Herein, APOD and PROC were highly

expressed in GC tissues compared to non-cancerous tissues.

Moreover, Ba and Ca were identified as potential small-molecule

compounds of ARM-related genes that exert antitumorigenic
FIGURE 7

Molecular docking and drugs on GC cell proliferation. (A) Three-dimensional (3D) view of the optimal conformations for APOD and baicalein (up),
PROC, and capsaicin (down). Green areas indicate target proteins, whereas red areas represent small molecules, yellow areas denote hydrogen
bonds between the protein and the small molecule, and purple areas indicate binding sites. (B) CCK8 assay was performed to assess the proliferative
ability of GC cells (HGC-27 and SNU-216) after drug treatment. (C) A colony formation assay was performed to assess the colony-forming ability of
GC cell lines after drug treatment. (D) EdU assay for GC cells after drug intervention and matched quantitative analysis results. Ba, baicalein; Ca,
capsaicin. ** for p < 0.01, and *** for p < 0.001. Error bars indicate SD; The error bars are short due to the low variance.
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effects. Ba and Ca have been widely reported to inhibit cancer cell

proliferation and metastasis and promote cell death (37–42).

However, relevant studies in GC are limited. In the present study,

these two drugs influenced the proliferative, migratory, and invasive

abilities of GC cells, highlighting their utility in the treatment of GC

patients or for delaying disease progression.

Alterations in TME have been reported to be strongly associated

with cancer progression and prognosis (43). Therefore, variations in

immune characteristics between the low- and high-risk groups were

examined. The results revealed a higher infiltration level of tumor-

suppressive immune cells, such as activated CD4+ T cells whereas

tumor-promoting immune cells, such as mast cells and

macrophages, exhibited lower infiltration levels. These variations

in TME components between the high- and low-risk groups might

explain the disparities in prognosis between these groups.

ARM also demonstrated potential utility in evaluating

immunotherapy responses, as confirmed in an ICI treatment

cohort comprising more than 300 cases. This enhanced predictive

capability may be attributed to the low-risk group exhibiting higher

TMB, a greater proportion of MSI patients, and increased PD-L1

expression levels. Notably, the ARM-risk score is negatively

correlated with TMB values and PD-L1 expression levels; the

latter was confirmed in multiple GC cohorts. These findings

highlights the potential of our model as a robust tool for

identifying GC patients who are more likely to respond

to immunotherapy.
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The other six prognostic genes identified in this research have

also been recognized for their potential as cancer prognostic

markers and their involvement in the regulation of cancer cell

proliferation, invasion, migration, and chemoresistance. For

example, VTN knockdown in GC cell lines reduced proliferative

and invasive capacities, with VTN identified as a poor prognostic

factor in 156 GC patients (44). Meanwhile, SFTPD has been

identified as a potential prognostic marker for lung and colorectal

cancer (45). The RBP4/RhoA/Rock1 axis has been found to regulate

the proliferation, migration, and invasion of ovarian cancer cells

(46), while NRG2 was identified as a prognostic marker for GC and

breast cancer (47, 48) and LBP as a prognostic marker for GC (49).

Several studies identified AGT as a prognostic marker for GC (50–

52), with one study demonstrating that AGT was implicated in the

regulation of chemosensitivity and proliferation and metastatic

abilities of GC cells (53). These studies emphasized the critical

role of these genes in tumorigenesis.

Nevertheless, several limitations of this study merit

acknowledgment. ARID1A plays a critical role in chromatin

remodeling and gene expression. However, this study did not

establish a direct causal relationship between ARID1A mutations

and the altered expression of the two immune genes included in the

ARM. The mechanism by which ARID1A mutations influence

interactions between the immune system and GC remains to be

elucidated. Secondly, additional research is necessary to validate the

robustness and clinical applicability of the ARM. Finally, further
FIGURE 8

Ba and Ca inhibit subcutaneous tumorigenicity in nude mice. (A-C) From left to right, real images of tumors in the Control and Ba groups,
histograms of tumor weight differences between the two groups, and volume curves at different time points (days 7, 11, and 15). (D–F) Control and
Ca groups. Note: *p < 0.05. **p < 0.01; ***p < 0.001. Ba, baicalein; Ca, capsaicin.
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investigation is required to elucidate the biological functions and

roles of these two immune genes in tumorigenesis.
5 Conclusion

In summary, a prognost ic r isk model (ARM) was

developed herein based on two immune genes associated
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with ARID1A mutations. ARM effectively predicted the

prognosis of GC patients using data from the TCGA and

GEO datasets, as well as our hospital cohort. Furthermore,

low-risk individuals exhibited a more favorable response to

ICI therapy. These findings collectively provide a novel

approach for assessing clinical prognosis in GC. Moreover,

Ba and Ca were identified as potential small-molecule

compounds for GC treatment.
FIGURE 9

Correlation between drugs and the migratory and invasive abilities of GC cells. (A) Analysis of alterations in the migratory capability of GC cells 24h
post-drug intervention utilizing a wound healing assay. (B) Differences in the migratory and invasive abilities of GC cells between drug and non-drug
groups were assessed after 24h via the Transwell assay. Ba, baicalein; Ca, capsaicin. * for p < 0.05, ** for p < 0.01, and *** for p < 0.001.
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