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1Department of Biomedical Engineering, University of Houston, Houston, TX, United States,
2Department of Mechanical Engineering Technology, University of Houston, Houston, TX, United
States, 3Iolight Co, Hampshire, United Kingdom, 4Department of Biostatistics, University of Texas MD
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Introduction: Lupus nephritis (LN) leads to end stage renal disease (ESRD), and

early diagnosis and disease monitoring of LN could significantly reduce the risk.

however, there is not such a system clinically. In this study we aim to develop a

biomarker-panel based point-of-care system for LN.

Methods: Immunoassay screening combined with genomic expression

databases and machine learning techniques was used to identify a biomarker

panel of LN. A quantitative biomarker-panel mini-array (BPMA) system was

developed and the sensitivity, specificity, reproducibility, and stability of the

were examined. The performance of BPMA in disease monitoring was validated

with machine models using a larger cohort of LN. The BPMA was also used to

determine LN flare using a machine-learning generated flare score (F-Score).

Results: Among 32 promising LN serum biomarkers, VSIG4, TNFRSF1b, VCAM1,

ALCAM, OPN, and IgG anti-dsDNA antibody were selected to constitute an LN

biomarker Panel, which exhibited excellent discriminative value in distinguishing

LN from healthy controls (AUC = 1.0) and active LN from inactive LN (AUC =

0.92), respectively. Also, the 6-biomarker panel exhibited a strong correlation

with key clinical parameters of LN. A multiplexed immunoarray was constructed

with the 6-biomarker panel (named BPMA-S6 thereafter). An LN-specific 8-point

standard curve was generated for each protein biomarker. Cross-reaction

between these biomarkers was minimal (< 1%). BPMA-S6 test results were

highly correlated with those from ELISA (Spearman’s correlation: fluorescent

detection, rs = 0.95; colorimetric detection, rs = 0.91). The discriminative value of
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BPMA-S6 for LN was further validated using an independent cohort (AUC =

0.94). Using a longitudinal cohort of LN, the derived F-Score exhibited superior

discriminative value in the training dataset (AUC = 0.92) and testing dataset

(AUC=0.82) to distinguish flare vs remission.

Conclusion: BPMA-S6 may represent a promising point-of-care test (POCT)

for the diagnosis, disease monitoring, and assessment of LN flare.
KEYWORDS

biomarker panel, lupus nephritis, disease monitoring, flare assessment, point-of-
care diagnostics
Introduction

Systemic lupus erythematosus (SLE) is a multifactorial

autoimmune disease with high comorbidity and multiorgan damage

(1). Lupus nephritis (LN), one of the most severe organ

manifestations of SLE, affects 30%–60% of adults and up to 70% of

children with SLE disease (2). Fifteen years after the first diagnosis,

10%–30% of LN patients will deteriorate into end-stage renal disease

(ESRD), requiring regular hemodialysis or kidney transplantation (3).

Hence, LN flare represents a significant risk for SLE patients and may

cause a tremendous socioeconomic burden. For effective clinical

management of LN flare, diagnosis, disease monitoring, and LN

flare assessment are critical. The gold standard for the clinical

diagnosis of LN is a renal biopsy (4); however, it is invasive and

may cause further kidney damage (5). Hence, it is particularly

unfeasible to perform multiple renal biopsies to monitor disease

progression or drug responses for LN (6). Compared to the

traditional renal biopsy approach, the detection of LN-specific

biomarkers in body fluids could be minimally invasive or

noninvasive for early diagnosis and disease monitoring of LN (7). It

is especially attractive and useful when serial detection or real-time

monitoring of LN is needed (8). Importantly, the detection of urine or

serum-based biomarkers for LN has great potential to inform the

disease activity of LN using simple but rapid tests (1, 9). Currently, the

need for biomarker-based tests is underscored by the inadequacy of

conventional clinical measures to detect ongoing disease activity in

lupus kidneys and early recurrence of nephritis (10). Given the

heterogeneity of LN, it is particularly difficult to accurately diagnose

or monitor LN or predict LN flare using a single biomarker. The up-
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njury; SLE, systemic
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ne Ontology; scRNA,

DEPs, differential

and Genomes; PPI,

SSO, Least Absolute
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and-coming Omics technologies, bioinformatics, and machine

learning techniques may be promising in identifying a disease-

specific biomarker panel to improve the sensitivity and specificity

for early diagnosis and disease monitoring of LN (11–14).

Current clinical biomarker tests, such as polymerase chain

reaction (PCR), biosensor, chemical reaction-based assays, enzyme-

linked immunosorbent assay (ELISA), and lateral flow immunoassay

(LFA), are mostly designed for the detection of individual

biomarkers, such as DNA/RNA, blood glucose, electrolytes,

enzymes, hormones, lipids, other metabolites, and proteins (15).

These assays are either qualitative or quantitative and have been

instrumental in detecting individual biomarkers. However, these

platforms cannot simultaneously detect multiple biomarkers as a

biomarker panel due to the technical difficulty of multiplexing.

Currently, commercially available multiplex assays include

bead-based arrays such as Luminex® xMAP® (Luminex

Corporation, Austin, TX) and planar microarrays such as

Kiloplex array (Raybiotech, Inc, Peachtree Corners, GA). The

bead-based arrays immobilize capture molecules on the surface of

the bead to achieve multiplexing, whereas the planar microarray

uses the arrayed capture molecules for the detection of multiple

targets on a chip (16). However, these technologies not only need

specialized large laboratory equipment to run the experiments and

detect the signals but also need sophisticated commercial software

for data analysis.

In this study, we aimed to (1) identify a biomarker panel that

can reflect the disease activity of LN with superior sensitivity and

specificity; (2) to develop a low-cost, quantitative, portable, and

multiplexed biomarker panel miniarray (BPMA) system, which

requires a smaller reaction volume, shorter incubation time, and

an easy-to-use 3D-printed chip cassette for sample loading and

washing, a low-cost microscopic array reader for smartphone

imaging and a user-friendly open-source smartphone app for data

analysis and reporting. More importantly, this may represent the

first detection system for quantifying autoantibody (anti-dsDNA),

protein biomarkers, and immune complexes on one chip. All these

features could be beneficial for future diagnosis and disease

monitoring of LN in homecare or community medicine.
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Materials and methods

Selection of serum biomarkers of LN from
the literature

Based on our recent literature analysis on biomarkers in LN and

SLE (13), 255 relevant research articles were retrieved from

PubMed, and candidate biomarkers exhibiting an overall AUC >

0.8 with p-value < 0.05, and sample size > 10 per group were

selected. After screening for the availability of properly paired

antibodies (capture antibody and detection antibody), 32

promising LN biomarkers were selected for independent
Frontiers in Immunology 03
validation (Supplementary Table S1). Additionally, a novel high-

performance candidate LN biomarker, V-set, and immunoglobulin

domain containing 4 (VSIG4), recently discovered by our group

(17), as well as IgG anti-dsDNA were incorporated into our initial

biomarker panel for validations.
Patients and clinical samples

Serum samples from lupus nephritis and healthy controls were

collected at the University of Texas, Southwestern Medical Center

in Dallas. All human subject-related procedures were performed in
TABLE 1 Demographic and clinical characteristics of subjects.

LN-Active LN-Inactive Mann–Whitney
p-value

Cohort 1: Lupus nephritis cross-sectional patients

Total No. of subjects 49 13 –

Female (No.; %) 89.80% 100.00% –

Age (mean ± SE, years) 28.90 ± 8.47 34.51 ± 13.14 0.053

Ethnicity (Asian/Black/Hispanic/White, no) 4/23/12/20 1/1/0/11 –

SLEDAI (median; interquartile) 9 (8–12) 2 (0–4) < 0.0001

Renal SLEDAI (median; interquartile) 4 (4–8) 0 (0–0) < 0.0001

No. of patients with renal SLEDAI = 0 (%) 0.00% 100% –

AI (median; interquartile) 5 (2.0–8.0) 4 (2.5–4.5) 0.49

CI (median; interquartile) 4 (2.0–6.0) 1 (0.5–2.0) 0.067

Serum creatinine (mg/dl, median; interquartile) 0.920 (0.71–1.84) 0.75 (0.64–0.81) 0.058

Urine protein:creatinine ratio (mg/mg, median; interquartile) 2.91 (1.43–5.31) 0.20 (0.18–0.30) < 0.0001

Cohort 1: Healthy controls

Total No. of subjects 23

Female (No.; %) 65.22%

Age (mean ± SE; years) 31.33 ± 10.88

Ethnicity (Asian/Black/Hispanic/White, no) 5/10/0/8

Cohort 2: Lupus nephritis cross-sectional patients

Total No. of subjects 36 19 –

Female (No.; %) 86.11% 84.21% –

Age (mean ± SE; years) 31.90 ± 10.25 39.67 ± 14.30 0.032

Ethnicity (Asian/Black/Hispanic/White, no) 12/8/9/7 6/1/4/8 –

SLEDAI (median; interquartile) 10 (6–12) 2 (0–2.5) < 0.0001

Renal SLEDAI (median; interquartile) 4 (4–8) 0 (0–0) < 0.0001

No. of patients with renal SLEDAI = 0 (%) 12.82% 100% –

No. of patients with DNA positive (%) 71.70% 32.25% –

Serum creatinine (mg/dl, median; interquartile) 0.93 (0.72–1.48) 0.87 (0.67–1.08) 0.512

(Continued)
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accordance with the University of Houston-approved IRB

protocols, and informed consent was obtained from all subjects

before sample collection. Detailed demographics and clinical

information are summarized in Table 1. Three different cohorts

were used for biomarker panel discovery, disease diagnostics, and

monitoring and flare assessment, respectively. All human serum

samples were aliquoted upon receipt and stored at − 80°C. The

active lupus nephritis (LN-Active) patient group was defined as

Systemic Lupus Erythematosus Disease Activity Index (SLEDAI)

greater than 4 and the renal domain of SLEDAI (rSLEDAI) greater

than 0. The inactive lupus nephritis (LN-Inactive) patient group

was defined as having a SLEDAI less than 4 and rSLEDAI equal to 0.

The lupus nephritis flare (LN-Flare) patient group was defined with
Frontiers in Immunology 04
the following three criteria: (1) the urine protein/creatinine ratio

(uPCR) > 0.5 mg/mg (2) serum creatinine increase > 15%–20% of

the baseline (3) > 5 RBC/HPF in urine. Otherwise, the patient was

defined as being in remission lupus nephritis (LN-Remission) (18).

The matched healthy controls or disease controls were tested

alongside the lupus nephritis samples.
Measurement of serum biomarkers using
ELISA

In the prescreening stage, each of the 32 protein biomarkers

(Supplementary Table S1) was measured individually using ELISA,
TABLE 1 Continued

LN-Active LN-Inactive Mann–Whitney
p-value

Cohort 2: Lupus nephritis cross-sectional patients

Urine protein:creatinine ratio (mg/mg,
median; interquartile)

1.92 (1.13–3.31) 0.29 (0.18–0.47) < 0.0001

Cohort 2: Chronic kidney disease patients

Total No. of subjects 11

Female (No.; %) 63.64%

Age (mean ± SE; years) 44.92 ± 14.42

Ethnicity (Asian/Black/Hispanic/White, no) 0/6/1/4

Serum creatinine (mg/dl, median; interquartile) 1.63 (1–2)

Urine protein:creatinine ratio (mg/mg,
median; interquartile)

3.7 (1.44–6.35)

CKD stage (2/3/4/5, no) 3/3/3/2

Cohort 2: Health control

Total No. of subjects 23

Female (No.; %) 69.56%

Age (mean ± SE; years) 32.53 ± 10.27

Ethnicity (Asian/Black/Hispanic/White, no) 2/12/0/9

Cohort 3: Lupus nephritis longitudinal patients

Total No. of patients 8 7 –

Total No. of subjects 33 18 –

Average visit interval (month) 11.12 5.57 –

Female (No.; %) 100.00% 71.43% –

Age at baseline (mean ± SE; years) 31.90 ± 12.45 26.45 ± 6.63 0.77

Ethnicity (Asian/Black/Hispanic/White, no) 1/2/0/5 2/3/0/2 –

SLEDAI (median; interquartile) 5 (4–8) 8 (4.6–11) 1.50E−01

Renal SLEDAI (median; interquartile) 4 (0–4) 4 (1–8) 1.20E−01

No. flare status at visit (%) 63.64% 67% –

Serum creatinine (mg/dl, median; interquartile) 0.76 (0.70–0.83) 0.81 (0.72–0.95) 0.52

Urine protein:creatinine ratio (mg/mg, median; interquartile) 0.7 (0.30–1.40) 0.62 (0.28–2.74) 5.70E−01
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assembled with paired capture antibodies (cAbs) and detection

antibodies (dAbs) in LN and healthy control (HC) samples, where

various serum dilutions were optimized. The list of analytes and

manufacturers is provided in Supplementary Table S1. Of these,

nine markers showed no difference between LN and HC groups,

and another seven markers were below the lowest limit of detection

(L-LOD) in the serum samples. The remaining 16 biomarkers with

elevated expression in the LN group were further validated, along

with IgG anti-dsDNA, using commercial or in-house ELISA kits

and a cohort of 85 serum samples (LN-Active, N = 49; LN-Inactive,

N = 13; healthy control, N = 23). ELISA signals were read using an

Epoch plate reader (BioTek, VT, Winooski, Vermont) at 450 nm. In

addition to IgG anti-dsDNA, the serum concentrations of the

remaining biomarkers were determined by the four-parameter

logistic (4PL) standard curves based on serially diluted standards.
Development of biomarker-panel miniarray
(BPMA-S6)

The LN biomarker panel (BPMA-S6) consists of IgG anti-

dsDNA as well as five candidate protein biomarkers—VSIG4,

Tumor Necrosis Factor Receptor 2 (TNFRSF1B), Vascular Cell

Adhesion Molecule 1 (VCAM1), activated leukocyte cell adhesion

molecule (ALCAM) and Osteopontin (OPN)—selected based on (1)

statistical analysis of our screening test data, (2) analysis of lupus-

related Omics databases, and (3) machine-learning algorithms. The

epoxy-modified polymer slide (STRATEC Consumables GmbH,

Birkenfeld, Germany) was chosen for cAb/antigen immobilization

and subsequent detection, based on our previous work (19–21).

Capture antibodies against VSIG4, TNFRSF1B, VCAM1, ALCAM,

and OPN (R&D Systems, Minneapolis, MN) were individually

diluted to the optimal concentrations (Supplementary Table S2) in

1× phosphate-buffered saline (PBS) buffer (R&D Systems), and

dsDNA (Sigma, St. Louis, MO) was diluted to 200 mg/ml with 100

mg/ml mBSA buffer (Sigma, St. Louis, MO). A 100-mg/ml BSA-Biotin

solution (Thermo Fisher Scientific, Waltham, MA) and 1× PBS buffer

(R&D Systems) were used as positive and negative controls,

respectively. All diluted antigen/antibody and control solutions

were then transferred to a 384-well microtiter plate (Thermo Fisher

Scientific) and briefly centrifuged (2,000×g at 4°C for 2 min) to

remove aggregates and bubbles. The highest standard (Standard 1

[STD1]) mixture and detection antibody cocktail were prepared as

indicated in Supplementary Table S2. The serum concentrations of

the five protein biomarkers were calculated using the 4PL standard

curves generated from serially diluted standards derived from STD1.

The slides were loaded onto a noncontact microarray printing

robot (sciFLEXARRAYER S3; SCIENION GmbH, Berlin, Germany),

and each biomarker was printed in triplicates (drop volume: 450 pl ±

20 pl) on the slide using PDC90 (SCIENION) at 25°C and 60%

humidity (Figure 1B). Positive and negative controls were printed in a

nonsymmetrical “T” shape to indicate the orientation of each array,

as well as the positions of each row and column (Figure 1A). After
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printing, the slides were dried in the printing chamber overnight and

assembled with SecureSeal™ Hybridization 16-well Chambers

(Grace Bio-Labs, Bend, OR). The slides were stored in a vacuum-

sealed bag with desiccant and stored at 4°C or − 20°C prior to use.
Quantitative detection of biomarkers in LN
serum with BPMA-S6

The BPMA-S6 slides were brought to room temperature at least

30 min before testing. Two BSA-based dilution buffers—reagent

diluent (R&D System) and QBLOCK™ (Grace Bio-Labs)—and two

non-BSA dilution buffers—Super G™ (Grace Bio-Labs) and Super

G™ plus (Grace Bio-Labs)—were used to dilute the serum samples

or standard mixtures, respectively. The slides were blocked with 40

ml of dilution buffer per subarray by injecting it through the

SecureSeal chamber input inlet. Serum samples and standard

mixtures (seven twofold diluted mixtures) were diluted with

dilution buffer, and 40 ml of each solution was injected into each

subarray and incubated on a shaker at room temperature for 2 h,

followed by three washes with TBS-Tween 20. The array was then

incubated with 40 ml of a cocktail dAb solution in each array at

room temperature on a shaker for 1 h. Slides were washed three

times, followed by incubation with 40 ml streptavidin-HRP solution

for 30 min. The slides were washed again before incubation with 40

ml of Cy™3 streptavidin (Jackson ImmunoResearch, West Grove,

PA) for fluorescent signals or SeramunBlau (Seramun Diagnostica

GmbH, Heidesee, Germany) solution for colorimetric signals.

Finally, the slides were washed three times, and the gasket was

detached from the slide. After rinsing with deionized water and air

drying, the slide was scanned using a GenePix 4000B scanner

(Molecular Devices, San Jose, CA) for fluorescent signals, an

office scanner (Epson, Los Alamitos, CA), or a customized

portable microscopic reader (Iolight Limited, UK, Hampshire,

United Kingdom) for colorimetric signals. Each spot was

quantified as described previously (19, 22, 23).
Gene expression analysis of promising
biomarker candidates

Six publ ic ly avai lable lupus microarray databases

(Supplementary Table S3) were downloaded to crossvalidate the

transcription expression levels in different tissues or cell types.

Each dataset was normalized and scaled before comparisons

between lupus and healthy groups were made, using average

fold-change and the Wilcoxon test. The aggregated, clustered

“h5ad” file of lupus PBMC single-cell RNA-seq (scRNA-seq)

data was downloaded from the GEO Database (GSE174188)

(24). A total of 1.2 million PBMC cells from 162 lupus patients

and 99 healthy control patients were analyzed with Scanpy 1.9 to

examine biomarker expression levels across different clusters and

deduce potential cell origin (25).
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Construction of the PPI network

The PPI network was constructed by inputting the protein

list into the Search Tool for the Retrieval of Interacting

Genes (STRING) (26), using the full STRING network and

interaction score > 0.15. Cytoscape and its plug-in Cyto-Hubba

were then utilized to calculate the degree of each protein to

identify the hub gene based on its Maximal Clique Centrality

(MCC) rank (27, 28).
Frontiers in Immunology 06
Flare-Score based on the BPMA-S6
measurement

The BPMA Flare-Score was derived with reference to previous

algorithms for multibiomarker disease activity scores, with few

modificat ions (29–31) . In our a lgor i thm, the serum

concentrations of five protein biomarkers and the binary values of

anti-dsDNA antibody (“1” for “positive” and “− 1” for “negative”)

were used to train the Least Absolute Shrinkage and Selection
FIGURE 1

Construction and optimization of the lupus biomarker-panel miniarray (BPMA-S6). (A) Schematic of the slide construction for BPMA-S6. (B) Active
control image of antibody/antigen contactless spotting. (C) Boxplot of signal intensities across different serum dilution ratios. (D) Array images
showing the performance buffers in both fluorescent and colorimetric groups. (E) Prototype of the 3D-printed BPMA washer. (F) Customized
portable colorimetric microscope. (G) Smartphone application developed for BPMA-S6.
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Operator (LASSO) to optimize a generalized linear model for

assessing Flare and Remission status of LN. The Flare-Score (F-

Score) was generated as the sum of each biomarker serum level

multiplied by the respective weights:

F − Score = 6:79 − 7:20 · ALCAM  · 10−5 − 3:16 · dsDNA · 10−1

+1:37 ·OPN · 10−4 − 1:41 · TNFRSF1B · 10�4

+4:00 · VCAM1 · 10−6 + 7:99 · VSIG4 · 10−4

In the training step, the LASSO-Flare model was fine-tuned

with 33 longitudinal samples from eight LN patients using threefold

crossvalidation to determine the optimal regularization strength

(lambda) using the “glmnet” package (32). Next, the same set of

weights was used to calculate the F-Score for an independent testing

dataset of 18 longitudinal samples from seven LN patients. The

optimal cut-point was determined by maximizing the Youden index

using the “cutpointr” package (33).
3D-printed BPMA chip cassette

In order to suit BPMA for easy-to-use at home or community

settings, we designed an all-in-one chip cassette for sample loading

and washing. The cassette was designed in SolidWorks software

(3DS) and manufactured using a 3D printer (Qidi Max X) with PLA

plastic materials. The chip cassette was optimized through several

design iterations to achieve the following goals: (1) the top openings

of the cassette align exactly with the corresponding inlet on each

subarray for the entry of samples, reagents, or washing buffer; (2)

the side openings collect the waste from the outlet of each subarray;

(3) the chip cassette is airtight, and each subarray can be washed

separately with the aid of a syringe. The injection topping (length:

width:height: 105.8:29.5:29.5 mm) and bottom tray (length:width:

height: 105.8:59.5:11 mm) were printed separately, and BPMA chip

can be inserted between the injection topping and the bottom tray

(Figure 2E; Supplementary Figure S1). The topping injection holes

were designed into a cone shape (diameters of 5.2 mm at the top

and 1.6 mm at the bottom) to fit 1~5 ml syringes for adding serum

or reagents or washing buffer. In the bottom tray, the outlet holes

are connected through the channel (4 mm in diameter) to a waste

tank which was designed to collect the waste.
Customized BPMA imaginer

The microscopic imager was built starting from an ioLight 2-

mm portable microscope (https://iolight.co.uk/product/portable-

microscope-x150-2mm-field-of-view/). The lens was removed and

replaced with a 10-mm focal length lens. This lens was mounted in

the microscope focusing motor using a custom-made 3D printed

nylon mounting ring and a 2.5-mm diameter aperture was inserted

in front of the lens to restrict its aperture of the lens to increase

image contrast. The mount for the image sensor in the microscope

was modified so that the sensor was positioned at the correct

distance from the lens to deliver an image with a horizontal field
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of view of 4.8 mm. To accommodate this wider field of view, the

diameter of the substage illuminator was increased from 7 to 10

mm. The microscope can be controlled via a computer or a

smartphone, which views live images and saves them. This

interface is accomplished by a web server running on the

microscope so that a web browser can be used to control the

microscope and view images. This web server was modified to

enable a monochrome imaging option. The cost of this imager is

around $100 in a large volume manufacturing.
Statistical analysis

All data were analyzed, plotted, and visualized using the R 4.1.0

language and the “ggplot2” package (34). Group significant

differences were determined using the Kruskal–Wallis test and

group-wise comparisons of statistical significance (p-values) were

performed using the Wilcoxon test unless stated otherwise. AUC

analysis was performed using a pROC package (35), and LASSO

analysis was performed with the “glmnet” package (32). The

correlation between biomarker levels and clinical or pathological

parameters was determined using Spearman’s correlation

coefficient and the COR package (36), and their interchangeable

relationship was measured using a linear regression model. The

coefficient of variation (CV) is calculated as the mean divided by

the standard deviation of a set of measurements. The limit-of-

detection (LOD) is the lowest concentration, calculated from the

standard curve using the mean of the blanks plus three times the

blanks’ standard deviation. Six machine-learning models were

trained with “SciKit-learn” and plotted with “matplotlib” from

Python (37).
Results

Selection of serum biomarker panel for LN

Serum samples from an independent cohort of 85 subjects (49

LN-Active, 13 LN-Inactive, and 23 HC) were used in validation

studies of 17 promising biomarkers using sandwich ELISA, as shown

in Figure 3A. Ten of the 17 biomarkers exhibited outstanding

discriminatory abilities (AUC ≥ 0.9) in distinguishing LN patients

from healthy controls. Interestingly, TNFRSF1B, TFPI, OPN,

VCAM1, and VSIG4 showed strong discriminatory abilities (AUC

≥ 0.7) in differentiating LN-Active from the LN-Inactive group, as

shown in Figure 3B. Importantly, when six biomarkers—IgG anti-

dsDNA, TNFRSF1B, TFPI, OPN, VCAM, and VSIG4—were

integrated into a single biomarker panel using the LASSO model,

IgG anti-dsDNA and VSIG4 were found to have the highest weights

contributing to the discriminatory capability between HC vs. LN and

LN-Active vs. LN-Inactive, respectively (Figure 3B). Next, we

investigated which biomarkers were associated with clinical (e.g.,

SLEDAI, rSLEDAI, C4, and protein urine/creatinine) or renal

pathological parameters (e.g., renal activity index [AI] and renal

chronicity index [CI], and their components). As shown in Figure 3C,
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VCAM1, and VSIG4 exhibited a significant positive correlation with

both SLEDAI and rSLEDAI, whereas the CD14 displayed a

significant negative correlation with them. TNFRSF1B, VSIG4,

OPN, IGFBP2, and VCAM1 all showed sound correlations with AI

and its components. Unsurprisingly, the anti-dsDNA antibody

results measured by in-house ELISA were consistent with the

clinical testing data of anti-DNA. To examine the functional

aspects and cellular origins of these protein biomarkers at the

transcriptional level, particularly in relation to LN, six lupus tissue-

specific RNA expression databases and an LN PBMC single-cell RNA

sequencing (scRNA-Seq) dataset comprising 1.2 million cells were

queried against the validated protein biomarkers (Figures 3D, E). The

unique transcription pattern of each biomarker and the underlying

molecular mechanisms may reflect the heterogeneity of lupus and

subsequent LN. For instance, VCAM1 was found to be relatively

highly expressed in the CD8+ T-cell cluster, while ALCAM was

highly expressed in conventional and plasmacytoid dendritic cells

(cDC and pDC). In the protein–protein interaction (PPI) network

analysis (Figure 3F), six lupus-related pathways were selected to

construct the biomarker panel based on their molecular functions

and associations with lupus and LN (38–43).

The following six criteria were used to construct a biomarker

panel for the diagnosis or disease monitoring of LN on the BPMA

chip: (1) the ability to discriminate LN from HC (AUC > 0.9) and,

more importantly, LN-Active from LN-Inactive (AUC > 0.7); (2) a
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significant positive correlation with key clinical/pathological

parameters (rs > 0 and p ≤ 0.05); (3) significant differential gene/

protein expression levels in SLE tissues (fold change > 1.5 and p ≤

0.05); (4) gene/protein expression originating from different PBMC

cell types; (5) involvement in six predefined disease-related

molecular and biological pathways; and (6) robust performance

on the BPMA chip (i.e., producing detectable signal, with signal

intensity correlating with analyte concentration).

Finally, the BPMA-S6 biomarker panel includes IgG anti-

dsDNA, VSIG4, TNFRSF1B, VCAM1, ALCAM, and OPN.
Development of BPMA-S6 immunochip for
POC

The optimized concentrat ion of ant ibody/ant igen

(Supplementary Table S2) was used to create a sandwich-

structure array for the simultaneous detection of five protein

biomarkers—VSIG4, TNFRSF1B, VCAM1, ALCAM, and OPN—

as well as IgG anti-dsDNA autoantibody. The “positivity” derived

from our BPMA-based anti-dsDNA assay correlated with clinical

test results of anti-dsDNA antibody (AUC = 0.75), with a specificity

of 95% and sensitivity of 48% (Supplementary Figures S9A, B). To

achieve the POC purpose, a SecureSeal™ Hybridization 16-well

Chamber was used, resulting in a higher signal-to-noise ratio and a
FIGURE 2

Assaying 30 serum samples with BPMA-S6. (A) Representative BPMA array images in fluorescent and colorimetric settings using serum samples from
LN and HC. (B, C) A total of 30 serum samples from active LN (LN-A, N = 10, red), inactive LN (LN-I, N = 10, green), and healthy controls (HC, N =
10, blue) were tested using BPMA fluorescent (B) and colorimetric (C) signals. (D) Linear regression and Spearman’s correlation analyses were
performed to assess the correlation between BPMA and ELISA measurements. Asterisks indicate the level of statistical significance: n.s. p > 0.05;
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 3

Omics selection for the LN serum biomarker panel. (A) Heatmap of the ELISA-based normalized protein levels for 17 promising LN serum biomarkers
from LN-Active (N = 49), LN-Inactive (N = 13), and healthy control (N = 23) groups, with row clustering performed using Euclidean distance. (B)
Barplot of AUC values (upper) for individual biomarkers distinguishing LN from HC, or LN-Active (LN-A) from LN-Inactive (LN-I), and heatmap of the
Least Absolute Selection Shrinkage Operator (LASSO) weight scores (lower) for the biomarker panel distinguishing LN from HC, or LN-A from LN-I.
(C) Correlation plot of serum biomarker levels with clinical parameters, where the color of each square represents Spearman’s correlation coefficient
value, and significance levels are indicated with asterisks. (D) Gene expression profiles of validated biomarkers at six tissue-specific bulk-seq
databases, with square colors representing fold-changes between lupus and HC, and significance levels indicated with asterisks. (E) Potential cellular
origins of the selected biomarkers were identified using a lupus scRNA database comprising 1.2 million PBMCs. The color of each square represents
the normalized expression level. (F) Protein–protein interaction (PPI) network among the 17 promising biomarkers constructed using the STRING
database, where node colors indicate the associated pathways and edge colors represent predicted functional associations: yellow for text-mining
evidence, black for coexpression evidence, purple for experimental evidence, and blue for sequence similarity evidence. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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reduced reaction volume (from 100 to 40 μL) compared to a

traditional gasket (Figure 1A). Moreover, it minimized the

contamination risk during the incubation and washing steps.

Given that the 1:10 serum dilution ratio produced the strongest

signal across all biomarkers and the lowest spot signal variations

(spot signal CV: 17.45%, 19.78%, and 28.54% for 1:10, 1:50, and

1:100 serum dilutions, respectively) (Figure 1C), we decided to use

the 1:10 serum dilution for subsequent BPMA-S6 assays. For both

fluorescent and colorimetric detection, the non-BSA-based SuperG

was selected for blocking and serum dilution, after comparing the

background noise levels and data quality among four diluent buffers

(Figure 1D; Supplementary Figure S2). In addition, a prototype of a

3D-printed BPMA chip cassette (design and dimensions shown in

Supplementary Figure S1) and a customized microscopic BPMA

reader were successfully developed in this study for the POC

application of our BPMA system. It is also worth noting that our

recently developed smartphone application for array spot detection

and analysis (23) is fully compatible with this BPMA system.

Importantly, our smartphone-based imaging and analytical

capability (using the microscopic imager and a modified

smartphone app) is comparable to that of the laboratory desktop

scanner, with a strong correlation between the data obtained from

the two devices (Spearman’s correlation rs = 0.85) (Supplementary

Figure S3). Taken together, our in-house developed integrated

BPMA device is portable and cost-effective, enabling biomarker

panel measurement, image acquisition, data analysis, and data

reporting within a single system (Figures 1E–G). This makes it

promising for homecare applications, eliminating the need for large

equipment and sophisticated techniques to run the assays.
Assessment of the panel quantification
capability, limit of detection, crossreactivity
in multiplex, shelf life, and thermostability
of the BPMA-S6 chip

To assess the quantification capability of the BPMA-S6, a

serially diluted standard mixture, and a blank control were loaded

onto the BPMA-S6 chip, followed by either Cy3-based fluorescence

detection or SeramunBlau-based colorimetric detection. The

scanned images for both methods are illustrated in Figure 2A.

Since no human IgG anti-dsDNA antibody standard is available, we

used signal intensity as a readout for IgG anti-dsDNA. The standard

curves and LOD for each biomarker are shown in Supplementary

Figure S4 and Supplementary Table S4. Both fluorescence-based

and colorimetric detection methods generated robust, biomarker

concentration-dependent standard curves for the quantitative

analysis of serum biomarker concentrations in LN samples.

To determine potential crossreactivity between the biomarkers

in the multiplex system, the precoated subarrays harboring the six

biomarker targets were incubated separately with a single

biomarker per subarray, followed by detection with a cocktail

dAb solution. As shown in Supplementary Figure S10B and
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Supplementary Figure S5, the detection of each biomarker is

highly specific with none-to-minimal crossreactivity with other

biomarkers (< 1%).

The BPMA-S6 detection time was primarily determined by the

serum and detection antibody incubation times during the reaction.

Different combinations of four serum incubation times (10, 30, 60,

and 120 min) and three detection antibody incubation times (10, 30,

and 60 min) were individually evaluated, with their colorimetric

array images shown in Supplementary Figure S10C. Notably,

shortening the incubation time down to 10 min still resulted in

good BPMA signals using the colorimetric method (Supplementary

Figure S6).

The reproducibility of our BPMA-S6 system was evaluated

through the following experiments: (1) duplicate testing of three

serum samples on the same BPMA-S6 chip (intrachip, CV: 6.87%);

(2) testing of three serum samples on three different BPMA-S6

chips (interchip, CV: 14.68%); and (3) testing of three serum

samples on three BPMA-S6 chips by three different users

(different users, CV: 21.57%). These results indicate that the

BPMA-S6 sys tem can genera te reproducib le resu l t s

(Supplementary Figure S7). Next, we assessed whether the shelf

life of the chips (1, 3, and 5 weeks; Supplementary Figure S10D) or

the storage temperature (− 20°C, 4°C, or room temperature/~ 22°C;

Supplementary Figure S10E) affected the performance of the

BPMA-S6. Our results demonstrated that the BPMA-S6

maintained stable performance for at least 5 weeks at 4°C and for

up to 10 days at room temperature.
Quantitative assay of human serum with
BPMA-S6

Using both conventional individual ELISA kits and the BPMA-

S6 platform, we measured six biomarkers in a cohort consisting of

10 LN-Active, 10 LN-Inactive, and 10 healthy control serum

samples. As shown in Figure 2A, biomarker levels/signals in the

BPMA-S6 panel were markedly elevated in LN patients compared

to healthy controls. A strong correlation between the multiplex

array test and individual ELISA results was observed (paired

Spearman’s rs > 0.9) (Figure 2D), highlighting the diagnostic

potential of the BPMA-S6 system. Additionally, the group-wise

differences observed with fluorescent and colorimetric detection

methods were highly consistent (Figures 2B, C). Group significant

difference was determined using the Wilcoxon test (Figure 2D)

Linear regression and paired Spearman’s correlation analyses

comparing ELISA-measured levels of the six biomarkers vs.

BPMA-measured levels using fluorescent (left) and colorimetric

(right) signaling. Asterisks indicate statistical significance: n.s. p >

0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Except for ALCAM in the colorimetric group, all other

biomarkers were elevated in the LN group compared to HC.

VSIG4, TNFRSF1B, and dsDNA antibodies were significantly

higher in the LN-Active group than in the LN-Inactive group in
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both fluorescent and colorimetric settings. The use of a high-affinity

antihuman IgG antibody enabled the detection of anti-dsDNA

autoantibodies, as well as immune complexes (ICx) formed with

the other five autoantigens (Figure 2A) (44, 45). The heatmap in

Supplementary Figure S8 compares the results of the full-set

cocktail detection solution (containing both antihuman IgG and

the five antigen dAbs), the five antigen dAb only (dAb-Only), and

anti-human IgG only (IgG-Only) across 30 serum samples. The

results reveal that the full-set detection group is highly correlated

with the dAb-Only group (rs = 0.71, p-value = 2.2e−16), rather than

the IgG-Only group (rs = 0.30, p-value = 1.6e−4), indicating that the

BPMA-S6 primarily detects free-form autoantigens rather than

immune complex-bound forms.
BPMA-S6 in disease diagnostics and LN
monitoring

The diagnostic and disease-monitoring capabilities of BPMA-

S6 were evaluated using a cross-sectional cohort of 89 subjects,

including 36 with LN-Active, 19 with LN-Inactive, 11 with chronic

kidney disease (CKD), and 23 HC. Principal component analysis
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(PCA), a linear dimensionality reduction method, was applied to

identify underlying patterns among the groups, as shown in

Figure 4A. The first and second principal components (PCs)

accounted for 42.4% and 17% of the total variance, respectively,

and the HC group was clearly separated from the disease groups.

Six machine-learning models with different learning principles

(linear models: Linear Discriminant Analysis and Logistic

Regression; nonparametric models: K-Nearest Neighbors and

Decision Trees; ensemble model: Random Forest; kernel-based

model: Support Vector Machines) were trained with threefold

cross-validation to solve the binary classification problems, LN

vs. HC and LN-Active vs. LN-Inactive (Figures 4B, C). Among

them, the Random Forest model outperformed the others in both

disease diagnosis (LN vs. HC, AUC = 0.96) and monitoring of LN

disease activity (LN-A vs. LN-I, AUC = 0.88). Thus, the Random

Forest model was fine-tuned using GridSearchCV on a training

dataset comprising 60% (53 samples) of the data for four-group

multiclass classification and was tested on the remaining 36

samples. The confusion matrix (Figure 4D) shows that the

overall macro-average AUC value for the test dataset was 0.94. A

small portion of patients with LN-Active were misclassified as

having either LN-Inactive or CKD.
FIGURE 4

Evaluation of the BPMA-S6 for disease diagnostics and monitoring. (A) Principal component analysis (PCA) of a cross-sectional cohort of 89
subjects, including 36 with active lupus nephritis (LN-Active, red), 19 with inactive lupus nephritis (LN-Inactive, green), 11 with chronic kidney disease
(CKD, blue), and 23 healthy controls (HC, purple). (B, C) Six machine-learning models based on different learning principles were trained using
threefold 100-iteration cross-validation to address binary classification problems: LN vs. HC (B) and LN-Active vs. LN-Inactive (C). (D) Confusion
matrix of a fine-tuned multiclass classification Random Forest model evaluated on a testing dataset of 36 samples. The model was trained using 60%
(53 samples) of the data for four-group classification.
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Assessing LN flare status with BPMA-S6

We hypothesized that measuring six serum protein biomarkers

using BPMA and combining them into a single score could

quantitatively and objectively characterize LN flare status, thereby

enhancing current LN disease assessment. The BPMA F-Score was

derived from the weighting matrix of the LASSO model trained on

longitudinal LN samples, and its performance was subsequently

verified using independent testing samples. As shown in

Figures 5A, B, the F-Score reflected flare and remission status and

was correlated with disease activity indexes (SLEDAI and rSLEDAI)

in both the training dataset (LN075, LN101, and LN102) and the

testing dataset (LN200, LN217, and LN221). For patients LN110, flare

status was observed at the last visit, during which the F-Score

dramatically while the disease activity index remained unchanged.

In the case of patient LN218 from the testing dataset, the patient

achieved the following two flare episodes—this pattern was consistent

with the F-Score, whereas the disease active indexes showed an

inverse correlation. Notably, the F-Score reflected the flare-to-

remission transition earlier than both SLEDAI and rSLEDAI in

patients LN075, LN110, and LN218, demonstrating the potential of

biomarkers for early detection in clinical applications. Compared

with the individual biomarkers (Figures 5C, D), the F-Score
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demonstrated the highest AUC value in distinguishing flare and

remission in the training dataset (AUC = 0.92). As anticipated, the

flare-distinguishing AUC (0.82) value dropped in the testing dataset.

This is expected. Identifying a specific discrimination value can

maximize the success and efficiency of clinical translation (33, 46).

As shown in Figures 5E, F, the F-Score (optimal cut-point: 10.05,

AUC = 0.86), which yielded the highest combined specificity (79%)

and sensitivity (83%), was selected and validated using all 51

longitudinal LN samples (flare N = 33 and remission N=18).
Discussion

Given the heterogeneity of lupus pathogenesis, no individual

biomarker can accurately reflect disease activity and its

comorbidities (e.g., LN). Different aspects of the pathophysiology

or manifestations of lupus or LN may be driven by distinct

molecular and signaling pathways. Therefore, identifying key

molecules involved in these pathogenic processes is essential for

diagnostics, disease monitoring, and therapeutic targeting. Indeed,

in recent years, there have been ongoing efforts to identify

biomarker panels or composite biomarkers for LN. Proteinuria is

an important clinical parameter of LN; however, persistent
FIGURE 5

LN flare assessment with ML-based Flare-Score. (A, B) Performance of the Flare-Score in tracking disease progression in the training dataset (A) and
testing dataset (B) for four representative LN patients. A total of eight patients with 33 visit samples were used to train the LASSO model to generate
the Flare-Score, and seven patients with 18 visit samples were used to test the model. The x-axis represents the visiting month, while the y-axis
shows the Flare-Score and disease activity indexes. Dot colors indicate LN flare status. (C, D) The discriminatory abilities of the Flare-Score and
BPMA-S6 panel markers in distinguishing LN flare from remission were evaluated in the training dataset (C) and testing dataset (D). (E) The optimal
cut-point for the Flare-Score (red dot, 10.05) was determined based on the highest combined sensitivity and specificity across both datasets. (F)
Distribution of Flare-Score diagnoses in the flare (left) and remission (right) groups; the red line on the x-axis indicates the optimal Flare-Score cut-
point (10.05), and the y-axis shows the density of flare (left) and remission (right) samples.
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proteinuria may largely result from preexisting renal damage and

may not necessarily indicate ongoing or new renal inflammation or

flare during disease progression.

It is worth noting that we are the first to construct a biomarker

panel assay on a single chip for the simultaneous detection of five

protein biomarkers and anti-dsDNA antibodies to monitor LN

disease activity. Mechanistically, the rationale for selecting the six

biomarkers in our BPMA-S6 panel includes the following: (1) anti-

dsDNA autoantibody is a conventional vital clinical marker of

lupus; more importantly, it can form immune complexes with

crossreactive antigens, which are subsequently deposited in the

kidney parenchyma to initiate lupus nephritis. The synergy of anti-

dsDNA antibody-mediated immune complex formation and

classical complement activation, along with immune cell

infiltration, release of chemokines, cytokines, and proteolytic

enzymes, and oxidative damage, can induce kidney inflammation

and subsequent organ damage (47); (2) activated leukocyte cell

adhesion molecule (ALCAM, also named as CD166) is a cell

adhesion glycoprotein expressed on antigen-presenting cells that

mediates immune cell adhesion and migration, co-stimulation of T

cells, and sustains T-cell activation. It is a ligand of CD6, and the

CD6/ALCAM pathway promotes lupus nephritis via T-cell-

mediated responses (48). Elevated levels of ALCAM were

observed in both serum (this study) and urine (49) of LN patients

compared to healthy controls; (3) VCAM-1, a member of the

integrin and immunoglobulin superfamily, is induced on

endothelial cells in response to inflammatory cytokines, binds to

integrin partners on leukocytes, and is elevated in the urine of LN

patients (50). Our previous studies showed that urinary VCAM-1

levels were correlated with the renal pathology activity index in LN

(51). (4) TNFRSF1B (also known as TNFRII or P75) is a

transmembrane receptor for TNF. Its induction has been

correlated with the primary site of renal injury (52), and it was

found to be elevated in the serum of LN patients (53); (5)

osteopontin (OPN) is a pleiotropic protein expressed by various

cells. It is upregulated in response to injury and inflammation and

plays a role in regulating immune responses (54). Elevated levels of

OPN were also observed in the serum of LN patients (53); (6)

VSIG4 is a novel transmembrane complement receptor belonging

to the immunoglobulin superfamily (also known as CRIg). It

functions as an intrinsic inhibitor of complement activation via

the alternative pathway. Administration of CRIg-Fc to MRL/lpr

mice resulted in reduced kidney inflammation, proteinuria, and

pyuria (55). We recently found that VSIG4 was elevated in the

serum of LN patients and was associated with renal pathology

(Tang et al.).

To date, most biomarker panel studies in LN have focused on

urinary biomarkers. For example, transferrin, a1-acid-glycoprotein
(AGP), ceruloplasmin, and lipocalin-type prostaglandin D

synthetase (L-PGDS) were proposed as a biomarker panel for

pediatric LN. The initial evaluation of this panel demonstrated an

area under the ROC curve of 0.84-0.88 for assessing LN activity and

damage (56). In another study, urinary biomarkers eotaxin 1, GM-

CSF, IFN-a2, IFN-g, IL-1a, IL-1b, IL-6, IL-8, IP-10, monocyte

chemoattractant protein-1 (MCP-1), MIP-1b, PDGF-BB, lipocalin
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2, TWEAK, OPG, cystatin C, and NAG were used to build Random

Forest models, which demonstrated a higher AUC and statistical

significance compared to models based on traditional clinical

markers alone (AUC = 0.79 vs. AUC = 0.61) (57). In a more

recent study, individual ELISA measurements of urinary protein

biomarkers L-PGDS, ICAM-1, VCAM-1, along with conventional

biomarkers anti-dsDNA, C3, and C4, were used to develop a

biomarker panel that showed excellent ability to identify renal

flare (AUC = 0.98) in a small cohort of LN patients with flare (N

= 8) (58). In a more recent study, protein biomarkers adiponectin,

EGF, and T-cell immunoglobulin mucin-1/kidney injury molecule-

1 (TIM-1/KIM1) were combined with baseline clinical parameters

—baseline uPCR, baseline eGFR, race, and C4—to construct a

biomarker panel using Random Forest modeling. The combined

biomarkers were able to reflect treatment responses with an AUC =

0.74 in an internal crossvalidation cohort of LN, in which the

protein biomarkers were measured using Luminex custom assay

kits (R&D System) and the FlexMap 3D system (Thermo Fisher

Scientific) (14). To date, more than 20 proteomic or genomic

biomarker panels for lupus have been proposed (13). However,

less than 10% of these contain more than 4 biomarkers and the

majority of them focused on distinguishing LN from Healthy

controls with moderate performance. In comparison, our BPMA-

S6 can distinguish LN from HC (AUC = 1) and LN-Active from

LN-Inactive (AUC = 0.92). Moreover, our six-plex biomarker pane;

demonstrated excellent discriminative value in identifying LN flare

in both the training dataset (AUC = 0.93) and testing dataset (AUC

= 0.82) within a longitudinal LN cohort.

It is important to note that the six biomarkers in our BPMA-S6

are representative of several major pathogenic pathways of lupus

nephritis, including autoantibody production and B-cell activation

or migration (anti-dsDNA, VCAM-1, ALCAM) (59–61), T-cell

activation (ALCAM, OPN, TNFRSF1B) (48, 62, 63), and

complement activation (VSIG4) (55). More importantly, the six

biomarkers can be measured simultaneously on a single chip

developed in this study, highlighting the great potential of this

platform for diagnostics, disease monitoring, or LN flare assessment

in clinical practice or clinical trials.

Additionally, we refined the biomarker panel using a LASSO

regression model, a machine-learning technique that selects the

most relevant features while discarding redundant ones (14, 64).

Our recently discovered novel serum biomarker, VSGI4, has

demonstrated excellent performance in distinguishing between

LN-Active and LN-Inactive nephritis, as well as in reflecting renal

pathology activity (Tang et al.), and has significantly contributed to

the overall performance of our BPMA-S6.

Similar to paper-based LFAs and vertical flow assays (VFAs),

BPMA also offers attractive features such as low cost and portability

for clinical use. Importantly, BPMA overcomes limitations seen in

LFAs, including issues with multiplexability, the hook effect, and

false-negative results. More importantly, BPMA exhibits excellent

sensitivity, quantitation capability, and, particularly, multiplexability

(65–67). It is worth noting that by optimizing the protocol, we were

able to shorten the sample reaction time in the array by > 10-fold—

achieving similar detection performance with a 10-min incubation
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time as with the original 2-h incubation. In addition to using

florescent dye Cy3 to detect the array signal, we successfully

developed a robust colorimetric-based detection method using

SeramunBlau, which simplifies array imaging and eliminates the

need for an expensive fluoroimager. This makes BPMA-S6 a more

promising platform for implementation in point-of-care settings (68).

After optimizing the reaction conditions, the colorimetric detector

demonstrated comparable performance to the fluorescence detector

in BPMA-S6, including a similar dynamic range of signal detection,

sensitivity, specificity, and disease discrimination.

Although our 3D-printed chip cassette and shortened

incubation protocol have significantly increased the rapidity of

detection, the current protocol for BPMA-S6 assay still includes a

washing step. An improved protocol that eliminates the need for

washing is desirable. Nevertheless, the BPMA-S6 system may

represent a promising serum biomarker panel and detection

system for future homecare or community care of LN.
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