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Background: The bile acid metabolism (BAM) and fatty acid metabolism (FAM)

have been implicated in Kawasaki disease (KD), but their precise mechanisms

remain unclear. Identifying signature cells and genes related to BAM and FAM

could offer a deeper understanding of their role in the pathogenesis of KD.

Method: We analyzed the public single-cell RNA sequencing (scRNA-seq)

dataset GSE1687323 to characterize the immune cell-type landscape in KD.

Gene sets related to BAM and FAMwere collected from the Gene Set Enrichment

Analysis (GSEA) database and previous literature. We analyzed the cellular

heterogeneity of BAM and FAM at the single-cell level using R packages.

Through differential expressed genes (DEG) analysis, high-dimensional

Weighted Correlation Network Analysis (hdWGCNA) and machine learning

algorithms, we identified signature genes associated with both BAM and FAM.

The cellular expression patterns of signature genes were further validated using

our own scRNA-seq dataset. Finally, quantitative real-time PCR (qRT–PCR) was

performed to validate the expression levels of signature genes in KD, and

Receiver Operating Characteristic (ROC) curve analysis was conducted to

evaluate their diagnostic potential.

Results: Enhanced BAM and FAM were detected in monocytes and natural killer

(NK) cells from KD in the public scRNA-seq dataset. Our scRNA-seq data

confirmed the signature genes identified by machine learning algorithms:

Vimentin (VIM) and chloride intracellular channel 1 (CLIC1) were upregulated in

monocytes, while integrin subunit beta 2 (ITGB2) was elevated in NK cells of KD.

qRT-PCR results also validated the bioinformatic analysis. Moreover, these genes

demonstrated significant diagnostic potential. In the training dataset

(GSE68004), the area under the curve (AUC) values and 95% CI were as

follows: VIM: 0.914 (0.863–0.966), ITGB2: 0.958 (0.925–0.991), and CLIC1:

0.985 (0.969–1). The validation dataset (GSE73461) yielded similarly robust

results, with AUC values and 95% CI: VIM: 0.872 (0.811–0.934), ITGB2: 0.861

(0.795–0.928), and CLIC1: 0.893 (0.837–0.948).
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Conclusion: This study successfully identified and validated VIM and CLIC1 in

monocytes, as well as ITGB2 in NK cells, as novel metabolism-related genes in

KD. These findings suggest that BAM and FAM may play crucial roles in KD

pathogenesis. Furthermore, these signature genes hold promising potential as

diagnostic biomarkers for KD.
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1 Introduction

Kawasaki disease (KD), also known as mucocutaneous lymph

node syndrome, predominantly affects children under 5 years old.

The main symptoms include fever, polymorphic rash, conjunctival

congestion, cervical lymphadenopathy, oral mucosa and extremities

lesions, etc. (1). However, many patients do not exhibit classic

clinical features, leading to delays in diagnostic and treatment and

increasing the risk of coronary artery complications. Therefore,

elucidating the pathogenesis of KD and identifying potential

molecular biomarkers are crucial for the timely and accurate

diagnosis, effective treatment, and prevention of adverse outcomes.

Bile acid metabolism (BAM) and fatty acid metabolism (FAM)

have been implicated in the development and progression of various

diseases (2, 3). Shao et al. (4) reported a strong association between the

upregulation of BAM and FAM and increased expression levels of

cytokines and inflammation-related genes in the macrophages of

COVID-19 patients. Clinical studies have demonstrated a significant

correlation between fasting serum total bile acid (BA) levels and the

severity of coronary heart disease, where activation of bile acid

receptors promotes cholesterol clearance and exerts anti-

atherosclerosis effects (5). During the acute phase of KD, elevated

serum total BA levels may serve as a potential biomarker for predicting

IVIG treatment responsiveness (6). Zhu Q et al. (7) reported that

palmitic acid, a fatty acid compound, could exacerbate endothelial cell

apoptosis by fostering the production of reactive oxygen species in KD.

Our previous study also revealed an upregulation of bile acid and fatty

acid in KD (unpublished). Collectively, these studies suggest a potential

role of BAM and FAM in KD. Previous study have indicated that a-
linolenic and linoleic acid (LA) are related to elevated isolithocholic

acid levels, suggesting a possible crosstalk between BAM and FAM (8).

However, the precise pathological mechanisms of BAM and FAM in

KD, as well as the potential crosstalk between them, remain unclear.

Advances in sequencing technologies have facilitated the

widespread application of single-cell RNA sequencing (scRNA-

seq) in the biomedical research, establishing it as a crucial tool for

analyzing cellular heterogeneity and deepening our understanding

of disease pathogenesis (9). The integration of machine learning

algorithms with other bioinformatics approaches offers the prospect

of identifying disease biomarker based on pathogenesis (10, 11). In
02
this study, we adopted a novel approach by integrating scRNA-seq

and bulk RNA-seq data to identify cellular subpopulations and core

genes with BAM and FAM upregulation in KD. Using machine

learning algorithms, we further refined these identified genes to

reveal signature genes that may serve as candidate metabolic

biomarkers for the early diagnosis of KD.
2 Materials and methods

2.1 Data source

The scRNA-seq dataset, including 9 samples from 3 healthy

controls (HC) and 6 KD patients, was obtained from the GEO

database (Accession ID: GSE1687323) (12). The six KD patients

were between 1.6 and 5.4 years old, with an equal male-to-female

ratio (1:1). None of the KD patients had coronary artery lesions

(CALs) and one of them was diagnosed with incomplete KD.

Two bulk RNA-seq datasets GSE68004 (13) and GSE73461 (14)

containing samples from both HC and KD children were also collected

from the GEO database. The GSE68004 dataset included 44 male and

32 female KD patients, aged between 3 and 138.6 months. All of them

were complete KD and 12 patients companied with CALs. In the

GSE73461 dataset, there are 43 male and 35 females KD patients, with

amedian age of 27 (16–45) months. All of themwere complete KD and

33 patients companied with CALs. Among these datasets, GSE68004

was used as the training set while GSE73461 was employed for

validation. Detailed information of all datasets used in this study is

provided in Supplementary Table 1. Additionally, to validate the results

from public database analysis, we utilized our previous single-cell data

(15). Finally, we incorporated 6 complete KD patients (4 with CALs

(KL) and 2 without CALs) and 4 healthy controls, with a male-to-

female ratio of 1:1 and aged 0.6-4.6 years old.
2.2 Gene set source

BAM-related genes were retrieved from the Gene Set

Enrichment Analysis (GSEA) database (http://www.gsea-

msigdb.org/gsea/index.jsp) using the search term “bile acid”,
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resulting in the identification of four BAM-related gene sets (KEGG,

REACTOME, GO, Hallmark MSigDB v5.2). Moreover, a set of

BAM-related genes was obtained from a previous study (16). In

total, 189 BAM-related genes were included for analysis in this

study (Supplementary Table 2). In addition, 92 FMA-related genes

was gathered for further analysis based on previous research

(Supplementary Table 3) (17).
2.3 Data processing

The raw data were processed into a Seurat object via the Seurat

R package (18, 19). The following conditions are indicative of low-

quality cells (1): fewer than 200 or more than 7000 detected genes

(2), mitochondrial gene expression exceeding 20% of the total, or

(3) red blood cell gene expression below 3%. Following

normalization, 52,681 high-quality cells were retained for further

exploration. The data was then normalized using the Harmony

package (20) to e l imina t e ba t ch e ff e c t s ( 21 ) . The

“FindVariableFeatures” function was applied to identify the top

3000 most variable genes. Principal component analysis (PCA) was

subsequently performed to reduce the dimensionality of the

scRNA-seq data, using the top 3000 most variable genes as input.

The “FindCluster” function was then used for clustering, with the

resolution parameter set to 0.8 (22). The clustering results were

visualized using UMAP. To identify marker genes for various cell

clusters, the “FindAllMarkers” function from Seurat was applied to

distinguish cells within specific clusters from all other cells. Known

biological cell types were annotated based on typical marker genes

(Supplementary Table 4). The internal queue was analyzed using

the same approach. For bulk RNA-seq data, samples who did not

meet the criteria for complete KD were removed.
2.4 Signaling pathway score

BAM and FAM scores at the single-cell level for all samples in

GSE1687323 were evaluated using the AUCell (23), UCell (24),

Singscore (25), ssGSEA (26), and AddModuleScore (27) algorithms.

To refine BAM or FAM scores, we applied Z-score standardization

and Min-Max normalization to the raw score matrix, first

transforming the features to a zero-mean, unit variance scale, and

then rescaling them to the range [0,1] for consistency. The

combined BAM or FAM scores were derived by summing the

standardized feature values row-wise (28). All cells from HC and

KD were then classified into three groups: those with a high

combined BAM or FAM score exceeding 75%, those with a low

combined BAM or FAM score below 25%, and the remaining cells

classified as the median BAM or FAM group based on the quartile

value of the total score. Correlation analysis was performed between

high BAM and FAM cells. Subsequently, based on the previously

computed BAM and FAM scores, cells were further classified into

three groups: those both exhibiting high BAM and FAM scores,

those with both low BAM and FAM scores and the remaining cells

designated as the median group. The “FindMarkers “ function was
Frontiers in Immunology 03
employed to conduct a differential expressed genes (DEGs) analysis,

identifying differential genes between high BAM/FAM and low

BAM/FAM cells (29).
2.5 High-dimensional weighted correlation
network analysis (hdWGCNA)

A co-expression network was constructed in high BAM and

FAM cells of both healthy controls and KD patients based on single-

cell level data using the “hdWGCNA” package (30). The

hdWGCNA enables the construction of cell-type specific co-

expression networks, the identification of robust gene modules,

and the establishment of a biological framework for these modules.

The genes expression profiles related to high BAM and FAM

modules were explored by eigengene-based connectivity (kME).

The “ConstructNetwork” function was utilized to generate the co-

expression network. All analyses followed the official standard

procedure, as detailed in https://smorabit.github.io/hdWGCNA/

articles/hdWGCNA.html.
2.6 Protein–protein interaction analysis
and enrichment analysis

The STRING database (https://string-db.org/) was used to

assess protein-protein interaction (PPI) interactions among the

hub genes identified through DEG and hdWGCNA analyses. The

“organism” parameter was set to “Homo sapiens,” while all other

parameters were left at their default settings. In the results, nodes

represent genes and edges denote interactions between them.

Pathway and functional enrichment analyses of these genes were

conducted using Gene Ontology (GO) and Disease Ontology (DO).
2.7 Machine learning algorithms identify
the signature genes

We employed seven machine learning algorithms (LASSO,

SVM-RFE, Boruta, RandomForest (RF), Decision tree (DTs),

XGBoost and Gradient Boosting Machine (GBM)) to identify the

signature genes associated with BAM and FAM upregulation.

LASSO regression was implemented for feature selection, with

the optimal regularization parameter identified through 10-fold

cross-validation. The glmnet package was used to train the model

using binary logistic regression (family=binomial) and L1

regularization (alpha=1). A regularization path comprising 100l
values was generated, and the l value that minimized cross-

validation error (lambda.min) was chosen for the final model. To

ensure reproducibility in cross-validation data partitioning, a

random seed of 123 was set. The model automatically

standardized features and retained only those with non-zero

coefficients. Feature importance was evaluated via 10-fold cross-

validation, with SVM-RFE iteratively removing the 10 least

important features per iteration (k=10). In each subsequent
frontiersin.org
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iteration, the number of removed features was halved. A linear

kernel SVM was used to compute feature weights, with importance

determined by the average ranking (AvgRank) across 10 cross-

validation runs. An error rate curve was generated for all feature

subsets, and the subset with the lowest error rate (optimal count: 22)

was selected. Feature importance was assessed using RF algorithm

with 500 decision trees (ntree = 500).At each node split, √p features

were randomly selected (where p is the total feature count). Model

performance was evaluated by out-of-bag (OOB) error, with the

optimal tree count determined by minimizing OOB error. Features

were ranked based on their mean decrease in Gini impurity

(MeanDecreaseGini), with the top 50 genes retained. The RF

package was used to generate error curves and gene importance

rankings. XGBoost was applied with a tree depth of 15, a learning

rate of 0.2, and 50 iterations. Feature importance was ranked based

on gain metrics. Boruta was executed with 1,000 iterations to

resolve uncertain features, leveraging shadow features for

comparative decision plots. GBM was trained using 4-fold

repeated cross-validation with a default tree depth of 1 and 100

iterations. Log2-transformed feature importance scores were

reported. A minimally pruned classification tree was constructed

using a complexity parameter of 1e-10 in DTs to maintain its full

structure. Feature importance was determined based on node purity

improvement. By integrative the results of these machine learning

algorithms by a Venn plot, we identified the optimal signature genes

associated with BAM and FAM upregulation.
2.8 Gene set enrichment analysis of the
signature genes

In the bulk RNA-seq dataset, we conducted gene set enrichment

analysis (GSEA) on the signature genes to evaluate their relevance

to specific biological processes or disease states.
2.9 Revaluated the signature genes at the
cellular level

To validate our findings, we analyze signature genes in our own

scRNA-seq data. Through the analysis of annotated scRNA-seq

data, we examined the distribution of these signature genes across

different cell subtypes. This in-depth analysis identified the specific

cell types in which these genes play a crucial role in regulating both

BAM and FAM.
2.10 Trajectory analysis

Cell trajectory inference was performed using the Monocle 2

algorithm (31). Following dimension reduction and single-cell

sequencing, differentiation trajectories were inferred using

standard parameters. We also performed Cellular Trajectory

Reconstruction Analysis (CytoTRACE) using default parameters

(21, 32), leveraging the well-established principle that
Frontiers in Immunology 04
transcriptional diversity decreases during differentiation. This

algorithm predicts differentiation states on scRNA-seq data,

complementing the trajectory analysis conducted with Monocle2.
2.11 Interactions between intercellular
communication and transcription factors

The CellChat (33) approach was employed to assess variations

in intercellular communication modules by inferring, analyzing,

and visualizing hypothesized receptor-ligand signaling interactions.

Cell type-specific interactions were identified by detecting over-

expressed ligands or receptors within the cell group, followed by the

recognition of enhanced ligand-receptor interactions.
2.12 RNA extraction and qRT-PCR analysis

The study was approved by the Ethics Committee. From

November 2023 to December 2024, three KD patients and three

healthy controls were recruited from the Children’s Hospital

Capital Institute of Pediatrics. Peripheral blood mononuclear cells

(PBMCs) were isolated from patient blood samples as described

previously (15). Total RNA was extracted from PBMCs using the

Tissue Total RNA Isolation Kit (TIANGEN, Beijing). The extracted

RNA was reverse transcribed into cDNA using the PrimeScript™

RT Reagent Kit and gDNA Eraser. Quantitative real-time PCR

(qRT-PCR) was conducted using real-time PCR instruments, with

GAPDH as the endogenous control for mRNA. The reaction

conditions were as follows: pre-denaturation at 95°C for 30

seconds, denaturation at 95°C for 10 seconds, and annealing at

60°C for 30 seconds (40 cycles). The amplification of target genes

and the internal reference gene was performed separately for each

sample. Each sample was analyzed in triplicate. Data analysis was

performed using the 2^(-DDCt) method. Differences between the

HC and KD groups were assessed using a two-sided Student’s T-

test. The primer sequences used in this study are provided in

Supplementary Table 13.
2.13 The expression and predictive
significance of the signature genes in KD

The Wilcoxon rank-sum test was used to analyze the expression

of signature genes in the training set samples (GSE68004). To assess

the diagnosis value of these signature genes, the area under the

receiver operating characteristic (ROC) curve was calculated (34).

The same approach was then applied to verify the results in the

validation dataset (GSE73461).
2.14 Statistical analysis

All data processing and statistical analysis were conducted using

R version 4.1.3 (package versions detailed in Supplementary
frontiersin.org
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Table 14) and GraphPad Prism 10.4 statistical software (USA). The

data was presented as the standard error of the mean ± mean

(SEM). Differences in continuous variables between two groups

were assessed using either the Wilcoxon test or t-test, while

comparisons among multiple groups were evaluated by one-way

analysis of variance test (ANOVA). Correlation between variables

was analyzed using Pearson’s correlation coefficient. All p-values

were calculated using the two-tailed tests, with statistical

significance defined as p < 0.05.
3 Results

3.1 BAM and FAM are upregulated in
monocytes and NK cells in KD

Following quality control, we identified 52,681 high-quality

cells from GSE1687323 that were eligible for further analysis.

Upon reanalyzing the single-cell data, we identified 10 distinct

cell lineages based on marker genes: CD4+ T cells (CD40LG), B cells

(MS4A1, CD79A, CD79B), CD8+ T cells (CD8A, CD8B),

monocytes (CD14, S100A9, LYZ), natural killer (NK) cells

(KLRB1, NKG7, KLRD1), dendritic cells (DCs) (CST3),

plasmablasts (CD38, IGHA1, MZB1), megakaryocytes (PPBP,

PF4), plasmacytoid dendritic cells (pDCs) (LILRA4, IL3RA,

CLEC4C) and hematopoietic stem and progenitor cells (HSPCs)

(CD34) (Figures 1A–D, Supplementary Figures 1A–C), consistent

with Wang’s study (12). Notably, a high proportion of monocytes

and B cells was observed in KD (Figure 1E). GO analysis provided a

comprehensive insight into the characteristics of these cell types

based on their respective marker genes (Figure 1F).

To examine BAM at single-cell level, we computed BAM score

for each cell using multiple algorithms. The results revealed

heterogeneous BAM profiles among different cell populations in

both healthy controls and KD patients. Specifically, monocytes, DC

cells and NK cells exhibited elevated BAM scores, while B cells,

plasmablasts and CD8+ T cell displayed decreased BAM scores in

KD (Figures 2A–C). Based on the BAM scores, all cells were

classified into three groups according to quartile values: 13170

high BAM cells (scores exceeding 75 percentage), 13170 low

BAM cells (scores below 25 percentage), and 26341 median BAM

cells (Figure 2D, Supplementary Figure 2A). DEGs analysis between

the high BAM score cells and low BAM score cells identified 257

genes associated with BAM upregulation (Figure 2E,

Supplementary Table 5).

Subsequently, FAM was analyzed using the same methodology.

The results revealed increased FAM scores in monocytes, DC cells,

plasmablasts and NK cells, whereas B cells and CD8+ T cells

exhibited decreased FAM scores (Figures 2F–H). Similarly, cells

were also divided into three groups: 13170 high FAM cells, 13170

low FAM cells, and 26341 median FAM cells (Figure 2I,

Supplementary Figure 2B). Additionally, DEGs analysis identified

120 genes associated with FAM upregulation (Figure 2J,

Supplementary Table 6).
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Based on the preceding outcomes, we conducted correlation

analysis between high BAM and FAM cells, revealing a strong

correlation (Supplementary Figures 2C, D). The cells were then

categorized into three groups: 5137 cells with both high BAM and

FAM scores named as High_BAM_FAM cells, 4999 cells with both

low BAM and FAM scores named as Low_BAM_FAM cells, and the

remaining cells classified as median cell groups (Supplementary

Figure 2E). The metabolic plasticity of these cells may reflect the

specific characteristics of different cell types.
3.2 HdWGCNA identified genes
upregulating both BAM and FAM

To gain deeper insights into key markers in high BAM and

FAM cells, we conducted hdWGCNA analysis with a soft power

value of 9 to construct the co-expression network, identifying five

distinct gene co-expression modules (Figures 3A, B). The top 10

most influential genes within these modules were determined based

on kME values (Figure 3C). Correlation analysis of the modules

revealed strong positive associations among the turquoise, yellow,

and brown modules (Figure 3D). Moreover, the distribution of

these modules across different cells types demonstrated high

expression of the turquoise, yellow, and brown modules in

high_BAM_FAM cells (Figures 3E, F). To investigate the

functional roles of genes within these three modules, we selected

a total of 408 genes with kME above 0.2, which were more likely to

play central regulatory roles within their respective modules

(Supplementary Table 7), with hub genes presented in Figure 3G.

Notably, within these modules, CD3E, LEF1, and ACTB have been

previously reported to be associated with BAM (35, 36). CTSW,

LDHB, and IL32 have been reported to be linked to FAM (37–39).

Additionally, SLC9A3R1 and GAPDH are implicated in the

regulation of both BAM and FAM (40–43). These findings not

only supported the robustness of our results but also suggested the

potential role of BAM and FAM in the pathogenesis of KD.
3.3 Identifying a hub gene set named
Up_BAM_FAM_hdWGCNA

Through DEG analysis, we identified 257 BAM-related genes

(Figure 2E) and 120 FAM-related genes (Figure 2J). Meanwhile, 408

high kME genes were obtained in the high-BAM and high-FAM cell

group by hdWGCNA analysis (Figure 3). By taking the intersection

in a Venn diagram, we discovered a hub gene set consisting of 65

genes named as Up_BAM_FAM_hdWGCNA, relating to the up-

regulation of both BAM and FAM (Figure 4A, Supplementary

Table 8). Among these 65 genes, only 61 genes demonstrated

successful cross-platform matching in GSE68004 dataset, allowing

for further analysis eventually. In these 61 genes, vimentin (VIM),

integrin subunit beta 2 (ITGB2), chloride intracellular channel 1

(CLIC1), and S100A4 exhibited high expression levels (Figure 4B,

Supplementary Table 9).
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FIGURE 1

Screening of public single-cell data. (A) Principal component analysis (PCA) revealed a consistent cellular distribution across all samples. (B) Uniform
manifold approximation and projection (UMAP) plot delineated 23 distinct cellular clusters precisely. (C) The UMAP of cells from the public scRNA-
seq dataset, colored by cell-type annotation. (D) Dot plot showing typical marker genes for each cell type. (E) The proportion of each cell type
between KD and HC. (F) The heat map showing the relationship between marker genes across the 10 identified cell types, complemented by Gene
Ontology (GO) pathway enrichment analysis. HC, healthy control; KD, Kawasaki disease; DC, dendritic cell; Mono, monocyte; Mega, megakaryocyte;
NK, natural killer; pDC, plasmacytoid dendritic cells; HSPC, hematopoietic stem and progenitor cells.
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FIGURE 2

Analysis of bile acid metabolism (BAM) and fatty acid metabolism (FAM) in Kawasaki disease (KD). (A) The violin plot showed BAM score in different
cell subtypes calculated by AUCell, UCell, singscore, ssGSEA and AddModuleScore algorithms. (B) The UMAP visualized BAM score in different cell
subtypes. (C) The violin plot demonstrated BAM score in different cell subtypes in KD and healthy controls. Significant differences were determined
with Wilcoxon test (p>0.05 (ns), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001). (D) The UMAP plot illustrating three groups: high BAM score
cells, low BAM score cells and median cell groups based on quartile of the BAM score. (E) The result of differential expression gene (DEG) analysis
associated with BAM. (F) The violin plot showed FAM score in different cell subtypes. (G) The UMAP visualized FAM score in different cell subtypes.
(H) The violin plot demonstrated FAM score in different cell subtypes in KD and healthy controls. Significant differences were determined with
Wilcoxon test (p>0.05 (ns), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001). (I): The UMAP plot illustrating three groups: high FAM score cells,
low FAM score cells and median cell groups based on quartile of the FAM score. (J): The volcano plot showing differential expression gene (DEG)
results associated with FAM. HC, healthy control; KD, Kawasaki disease; BAM, bile acid metabolism; FAM, fatty acid metabolism; UMAP, Uniform
manifold approximation and projection. p>0.05 (ns), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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FIGURE 3

Identification of the crucial modules related to BAM and FAM by hdWGCNA. (A) The top left panel indicated the choice of the soft power threshold
to achieve a fit of the scale-free topology model ≥0.9. The other three panels showing the mean, median and maximum connectivity of the
topological network against various minimum soft thresholds. (B) The hdWGCNA dendrogram showing five modules identified. (C) Five modules
were obtained and the top genes in each module were verified and ranked by kME (eigengene-based connectivity). (D) The relationship analysis
between different modules. (E) The UMAP plots showing the expression density of the five modules. (F) A bubble plot represented the scores of the
five modules in different metabolic cell groups. (G) Networks of the representative genes from turquoise, yellow and brown module.
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In order to elucidate the relationship between the genes of

Up_BAM_FAM_hdWGCA and their roles in various biological

processes and disease states, we reviewed the relevant literatures,

which revealed that most genes were associated with BAM and

FAM, as detailed in Supplementary Table 8, further supporting

our findings. For further analysis, all 61 genes were imported into

the STRING database. The query was restricted to “Homo

sapiens,” and genes without known associations were excluded.

The results of PPI analysis demonstrated that these hub genes

were highly interconnected and exhibited strong functional

correlations (Supplementary Figure 3). GO and DO analysis

were performed to further confirm our results (Figures 4C,D,
Frontiers in Immunology 09
Supplementary Tables 10, 11). The GO analysis indicated that,

within the biological process (BP) category, these genes were

upregulated in platelet aggregation and activation, neutrophil

mediate immunity, and mononuclear cell differentiation. In

terms of molecular function (MF), pathways related to

phospholipase and lipase inhibitors activity, as well as integrin

binding, also exhibited an upregulation trend. The DO analysis

revealed upregulation in pathways associated with inflammatory-

responsive diseases like Crohn’s disease and osteoarthritis,

infectious diseases including bacterial infections disease and

influenza, and thrombocytosis, which may share common

pathogenic mechanisms with KD.
FIGURE 4

Characterization of the identified hub gene set. (A) The venn diagram obtained a hub gene set named Up_BAM_FAM_hdWGCNA which contained a
total of 65 genes using differential expression gene (DEG) analysis and hdWGCNA. (B) Dot plot showing expression level of the 65 identified genes
between KD patients and healthy controls. (C) Gene Ontology (GO) enrichment pathway of the hub gene set. (D) Disease Ontology (DO) enrichment
pathway of the hub gene set. BP, biological process; CC, cellular component; MF, molecular function.
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3.4 Machine learning algorithms identified
signature genes

Seven machine learning algorithms were employed to identify

potential biomarkers for KD diagnosis. The LASSO algorithm

identified 12 key genes (Figure 5A), whereas the SVM-RFE

algorithm identified 22 key genes (Figure 5B). The Boruta

algorithm selected 30 significant variables following 500

iterations (Figures 5C, D). Subsequently, the RF algorithm

pinpointed 12 genes, each with an importance score >0

(Figures 5E, F). The decision tree (DT) algorithm identified 10

important genes (Figure 5G), while the xGBoost algorithm

detected 5 key genes (Figure 5H). Furthermore, the GBM

algorithm identified 30 key genes related to BAM and FAM

upregulation (Figure 5I). The genes identified by these

algorithms are listed in Supplementary Table 12. Ultimately, by

integrating the gene sets from all seven machine learning

algorithms, we acquired three optimal diagnostic genes: VIM,

ITGB2 and CLIC1 (Figure 5J).
3.5 Biological function analysis of signature
genes

In order to reveal distinct characteristics between the signature

genes and their potential biological processes of interest, KEGG

pathway enrichment analysis using GSEA was performed on the

GSE68004 dataset. Two commonly enriched pathways were

identified: primary bile acid biosynthesis and fatty acid

metabolism KEGG pathways (Supplementary Figures 4A–C),

consistent with previous studies (44–46). These findings indicate

that BAM and FAM biological pathways were relevant to the

pathogenesis of KD.
3.6 Expression landscape of the signature
genes at single-cell level

VIM, ITGB2 and CLIC1 exhibited significantly increased

expression in cells with simultaneous upregulation of both

BAM and FAM (Figure 6A), implying their important role in

regulating BAM and FAM. To validate these findings, scRNA-Seq

analysis was conducted on our own dataset. After dimensionality

reduction and clustering analysis, nine distinct cell clusters were

identified based on classical marker genes (Figure 6B,

Supplementary Figures 5A–E). The distribution of each cell

type across different groups (HC, KD, KL) was shown in

Supplementary Figure 5F, demonstrating an increase of

monocytes in KD and KL. To further identify the specific cell

types in which the characteristic gene function, we conducted a

validation at the single-cell level. The results showed that VIM

and CLIC1 were both highly expressed in monocytes

(Figures 6C–E, Supplementary Figures 6A, B), whereas ITGB2
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was predominantly expressed in NK cells (Figure 6C,

Supplementary Figures 6C, D).
3.7 Trajectory analysis and cell interactions

Given the transcriptional heterogeneity of cells in KD patients,

we employed pseudo-time analysis to examine monocytes marked

by VIM and CLIC1, and as well as NK cells marked by ITGB2.

Notably, the proportion of VIM+ and CLIC1+ monocytes, along

with ITGB2+ NK cells, gradually increased over time (Figure 7A,

Supplementary Figures 7A, 8A). Figure 7B illustrated the relative

expression of VIM in the pseudo-time analysis, while the results for

CLIC1 and ITGB2 are presented in Supplementary Figures 7B, 8B.

These findings offer insights into the transcriptional heterogeneity

of monocytes and NK cells in KD patients. Consistent with the

pseudo-time analysis results, CytoTrace analysis revealed that

VIM+, CLIC1+ monocytes and ITGB2+ NK cells exhibited a

higher degree of differentiation status compared to VIM-, CLIC1-

monocytes and ITGB2- NK cells (Figures 7C, D, Supplementary

Figures 7C, D, 8C, D).

To further invest igate differences in intercel lular

communication between VIM+ and VIM- monocytes, we

analyzed the expression profiles of receptors and ligands.

Figures 7E, F indicate that VIM+ monocytes exhibited more

efficient signal transmission than VIM- monocytes. Intercellular

communication analyses involving CLIC1+ monocytes and ITGB2+

NK cells with other cell types highlighted the extent and intensity of

these interactions (Supplementary Figures 7E, F, 8E, F). Figure 7G

illustrated the heightened communication capacity of VIM+

monocytes, characterized by distinct outgoing signaling patterns

(e.g., ANNEXIN, RESISTIN, and BAFF) and incoming signaling

patterns (e.g., GALECTIN, ANNEXIN, CCL, and CD40).

Moreover, Figure 7H demonstrated the binding of VIM+

monocytes to different cell types via receptor-ligand pairs such as

RETN−CAP1, MIF−(CD74+CD44) and ANXA1−FPR1. Similar

findings were observed in CLIC1+ monocytes (Supplementary

Figures 7G, H). Conversely, ITGB2+ NK cells exhibited outgoing

signaling patterns involving MIF, ANNEXIN, IL16, CCL, and

PARs, while their incoming signaling patterns included

GALECTIN, RESISTIN, MK, and BAG (Supplementary

Figure 8G). Notably, beyond their similarities with VIM+

monocytes, ITGB2+ NK cells also engaged in key ligand-receptor

interactions like LGALS9−CD45 and MIF−(CD74+CXCR4)

(Supplementary Figures 8H).
3.8 Validation of the signature genes and
evaluation of their diagnostic efficacy

The qRT - PCR results showed that VIM, ITGB2 and CLIC1

were up-regulated in KD patients compared with healthy controls

(Figure 8A), consistent with the bioinformatic analysis. To evaluate
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FIGURE 5

Machine learning identifies signature genes with high BAM and FAM in KD. (A) LASSO algorithm for selection genes related with elevated BAM and
FAM. (B) The results of SVM-RFE algorithm for selection key genes. (C, D) The Boruta algorithm obtained 30 genes up-regulating BAM and FAM.
(E, F) Results from the Random Forest (RF) algorithm. (G) The results of the Decision Tree (DT) algorithm. (H) The xGBoost algorithm selecting 18
key genes. (I) Gradient Boosting Machine (GBM) algorithm showing 30 genes were correlated to high BAM and FAM. (J) Venn diagram showing the
signature genes between seven machine learning algorithms: VIM, ITGB2 and CLIC1.
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the expression level and diagnostic value of the signature genes, we

initially performed analysis on the training set (GSE68004). VIM,

ITGB2, and CLIC1 exhibited significantly higher expression in KD

patients than healthy controls (p < 0.001, Figure 8B). Moreover,

these genes demonstrated significant diagnostic potential. In the

training dataset (GSE68004), the area under the curve (AUC) values

and 95% CI were as follows: VIM: 0.914 (0.863–0.966), ITGB2:

0.958 (0.925–0.991), and CLIC1: 0.985 (0.969–1) (Figure 8C). The

validation dataset (GSE73461) yielded similarly robust results, with

AUC values and 95% CI: VIM: 0.872 (0.811–0.934), ITGB2: 0.861

(0.795–0.928), and CLIC1: 0.893 (0.837–0.948) (Figures 8D,E).

These findings further validate our analysis and highlight the

potential of these genes as diagnostic biomarkers for KD.
4 Discussion

KD, a self-limited multisystemic vasculitis, has been shown to

result from activated immune and inflammatory responses,

particularly within monocytes, in genetically susceptible children

after exposure to the pathogenic agent or agents in the environment

(47, 48), especially within monocytes. Dysregulation of BAM and

FAM is closely associated with changes in immune status, as well as
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alterations in cell adhesion and migration, and other related functions

(4, 49, 50). Studies have reported that bile acid and fatty acid levels

were increased during the acute phase of KD (7, 51–53), and are

associated with treatment response (6) and the development of CALs

(7). However, a comprehensive understanding of BAM and FAM at

the single-cell level in KD remains lacking. Here, by integrating

machine learning algorithms and multi-omics data, our study for

the first time found that the change of BAM and FAM in KD,

suggesting the potential crosstalk between these metabolic pathways.

Subsequently, three BAM-related and FAM-related signature genes:

VIM, ITGB2 and CLIC1 were identified. These genes were found to be

upregulated in cell groups with high BAM and FAM. Moreover, our

own scRNA-seq data confirmed that VIM and CLIC1 were elevated in

monocytes, while ITGB2 was upregulated in NK cells. qRT-PCR

results further validated these bioinformatic findings. At the bulk-

RNA level, these genes also demonstrated high diagnostic value for

KD. Hence, our findings provided novel metabolism-related

biomarkers for KD diagnosis and offer new insights into the

metabolic influences on KD pathogenesis.

The protein encoding gene VIM has been widely studied for its

role in regulating numerous fundamental cellular processes

associated with various pathophysiological conditions, such as

cataracts, Crohn’s disease, rheumatoid arthritis, HIV, and cancer.
FIGURE 6

Expression landscape of the signature genes at single-cell level. (A) The violin plot showing the expression level of the characteristic genes in
different metabolic cell groups. (B) Uniform manifold approximation and projection (UMAP) projections for cell clustering identified 9 cell types in
our own scRNA-seq data. (C) Bubble plot showing the expression of VIM, ITGB2 and CLIC1 of each cell type. Each dot is colored by the expression
and sized by the fraction of cells expressing the gene in the specific cell type. (D) Violin plot depicting the expression level of VIM in different cell
subtype. (E) The UMAP plot showing the distribution of VIM across different cell types. ****p ≤ 0.0001.
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FIGURE 7

The landscape of cell trajectory and cell-cell communication of VIM. (A) Quasi-temporal analysis showing the change of proportions of VIM+
monocytes. (B) The results of pseudotemporal analysis portrayed the relative expression of VIM. (C) CytoTRACE analysis illustrated cell differentiation
level in VIM labeled monocytes. (D) Bar graph showing the differentiation status of VIM labeled monocytes. (E, F) Circle plots showing the quantity
and intensity of interactions between VIM+ monocytes and other cell types. (G) The heat map depicting the efferent or afferent contributions of all
signals to different groups of cells. (H) The bubble chart shows ligand–receptor interactions. Bubble size represents p value generated by the
permutation test, and the color represents the possibility of interactions.
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FIGURE 8

Validation of the signature genes and evaluation of their diagnostic efficacy. (A) The box plot showing the relative expression of VIM, ITGB2 and
CLIC1 in peripheral blood mononuclear cells (PBMCs) from KD patients compared to healthy controls. Significant differences were determined with
a two-sided Student’s T-test (***p<0.001, ns p>0.05). (B) Box plot showing the expression level of VIM, ITGB2, and CLIC1 in KD and healthy controls
within the training dataset (GSE68004). (C) The ROC score and 95% confidence interval (CI) of the characteristic genes were present in the training
dataset. (D, E) Validation of expression level of VIM, ITGB2 and CLIC1, along with corresponding ROC curves and 95% confidence interval (CI) in the
validation dataset (GSE73461).
Frontiers in Immunology frontiersin.org14

https://doi.org/10.3389/fimmu.2025.1541939
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2025.1541939
Its strong association with intracellular lipid metabolism (44)

suggests a potential role in KD pathogenesis. Additionally, a

previous study indicated that VIM regulates the activation of

NLRP3 inflammasome, leading to increased IL-1b expression

(54). Given the pivotal role of NLRP3 inflammasome in KD

pathogenesis and vasculitis development (55, 56), VIM may

contribute to the release of inflammatory mediators by

modulating BAM and FAM.

ITGB2 (CD18), an adhesion molecule of the integrin family

and a key marker of NK cells maturation, plays a crucial role in

mediating adhesion between inflammatory cells and endothelial

cells, inflammatory cell chemotaxis, and other processes involved

in the early stages of atherosclerosis (57). Wang et al.

demonstrated that the expression of ITGB2 was down-regulated

following Tangzhiping intervention (45). Furthermore,

immunofluorescence and ELISA experiments indicated a

reduction in both adipose tissue and systemic inflammation in

diabetic mice, supporting the hypothesis that ITGB2 may be

involved in lipid metabolic inflammation. Additionally, ITGAM,

which encodes the integrin alpha M chain in conjunction with

ITGB2, exhibits elevated expression in acute KD (52). These

findings provide a valuable foundation for further investigations

into the role of ITGB2 in KD.

CLIC1, a member of the CLIC family, plays a crucial role in a

number of important physiological functions, including cell cycle

progression, differentiation and cell migration. Cholesterol-rich

lipid rafts have been shown to enhance CLIC1 channel activity.

Furthermore, the over-expression of CLIC1 has been

demonstrated to raise the expression of several key proteins,

including vascular endothelia l growth factor , matr ix

metallopeptidase 2, matrix metallopeptidase 12 and matrix

metallopeptidase 13 (46). Evidence from animal and cellular

experiments indicate that CLIC1 contributes to the accelerated

development of atherosclerotic plaques, increased oxidative stress,

and the release of inflammatory cytokines in vivo (46). High-fat

diet-fed mice showed CLIC1 overexpression in aortic tissues,

while CLIC1-deficient human umbilical vein endothelial cells

(HUVECs) displayed significantly reduced levels of tumor

necrosis factor-a (TNF-a), interleukin-1b (IL-1b), intercellular
cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion

protein 1 (VCAM-1) proteins (58). The similarities pathogenesis

between KD and atherosclerosis suggests a potential role for

CLIC1 in KD.

There are several limitations in our study. Firstly, there is

population heterogeneity between the public scRNA-seq dataset

and our in-house dataset. For instance, the public scRNA-seq

dataset includes one case of incomplete KD, whereas all patients

in our in-house dataset are complete KD. Additionally, our dataset

includes four cases with CALs. The sample size and heterogeneity

may introduce biases into our results. Secondly, in our qRT-PCR

results, although VIM and ITGB2 showed an increasing trend, the

differences were not statistically significant, possibly due to the

small sample size of our PBMCs. Nevertheless, these findings offer

preliminary insights for future research.
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5 Conclusion

In conclusion, VIM and CLIC1 in monocytes, as well as ITGB2

in NK cells were identified as novel metabolism-related genes in

KD. These signature genes might serve as biomarker for the

diagnosis of KD.
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