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Background: Effective intrauterine treatments for placental-mediated fetal

growth restriction (FGR) remain limited, necessitating reliable protein

biomarkers for early diagnosis and management.

Methods: In this study, we analyzed differential protein expression in peripheral blood

plasma samples from 44 placental-mediated FGR patients and 44 normal pregnant

women using the Olink-Explore-384-Inflammation panel. The analysis identified

significant differences in protein expression levels, followedby enrichment analyses to

explore the underlying biological mechanisms. Protein-protein interaction (PPI)

network analysis and Least Absolute Shrinkage and Selection Operator (LASSO)

modeling were used to identify key proteins as potential biomarkers.

Results:We identified 225 proteins with significantly altered expression between

FGR patients and normal pregnancies. Proteins such as Placental Growth Factor

(PGF) and Hepatocyte Growth Factor (HGF) were previously found to be strongly

associated with FGR. In addition, we discovered novel proteins potentially

associated with FGR, including ESM1 and TIMP3. Enrichment analyses revealed

that several pathways, including placental dysfunction, inflammatory responses,

and oxidative stress, may play crucial roles in FGR pathophysiology. PPI network

analysis further identified key proteins such as ANGPT2, CD40, and HGF, as

potentially linked to FGR. LASSO modeling validated PGF and ESM1 as important
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1542034/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1542034/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1542034/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1542034/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1542034/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1542034/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1542034&domain=pdf&date_stamp=2025-05-16
mailto:luming_sun@163.com
mailto:chinsir@sjtu.edu.cn
https://doi.org/10.3389/fimmu.2025.1542034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1542034
https://www.frontiersin.org/journals/immunology


Zhou et al. 10.3389/fimmu.2025.1542034

Frontiers in Immunology
biomarkers. Additionally, integrating a multi-protein panel with blood flow

disruption analysis significantly improved diagnostic accuracy.

Conclusion: Our findings provide valuable insights into the molecular

mechanisms of FGR, identifying key proteins as potential biomarkers. The

multi-protein panel model offers a promising tool for early screening and

diagnosis of FGR.
KEYWORDS

fetal growth restriction (FGR), Olink proteomics platform, proximity extension assay
(PEA), biomarkers, targeted proteomics analysis
1 Introduction

Fetal Growth Restriction (FGR) occurs when a fetus fails to achieve

its genetically determined growth potential within the uterus,

manifesting as a fetal weight below the 10th percentile for

gestational age (1). The etiology of FGR is complex, placental-

mediated FGR is the most prevalent subtype. It holds the greatest

promise for improving adverse outcomes through clinical prevention

and management strategies (2). As the mechanism of placental-

mediated FGR is unknown and there is a lack of effective clinical

screening, prevention, diagnosis and intervention, related research has

become a hotspot of concern at home and abroad (3). Placental-

mediated FGR is associated with several pathological states of

pregnancy, with the mother leading to the development of

preeclampsia and the fetus showing growth restriction, poses

substantial risks to both maternal and fetal health (4). While the

global incidence of FGR varies is approximately 5%-10%, it can exceed

30% among pregnant women with preeclampsia (5). The clinical

manifestations of FGR are often subtle and typically diagnosed

through routine prenatal check-ups and ultrasound examinations

(6). Pregnant women may exhibit symptoms of preeclampsia, such

as gestational hypertension and proteinuria (7). During ultrasound

examinations, fetal growth indicators such as biparietal diameter,

abdominal circumference, and femur length are significantly smaller

for the corresponding gestational age. Additionally, decreased fetal

biophysical scores and reduced amniotic fluid also signal FGR (8). FGR

not only affects fetal growth and development but may also lead to a

series of adverse pregnancy outcomes. Infants born with FGR may

experience low birth weight, neonatal asphyxia, neonatal death, and in

the long term, may face intellectual developmental delays, growth

retardation, and an increased risk of metabolic diseases in adulthood

(9). Therefore, early diagnosis and intervention for FGR are crucial for

improving maternal and fetal outcomes.

Current intervention strategies based on abnormal placental-

mediated FGR phenotypes are extremely limited, with the underlying

reason being a lack of understanding of placental-mediated FGR

etiological mechanisms. It is currently believed that the placenta is

the organ of origin for placental-mediated FGR pathogenesis, with
02
placental development, cellular communication at the maternal-fetal

interface, and the placenta-fetal gut axis being the key events

surrounding placental-mediated FGR etiological mechanisms (10).

Extensive studies have explored potential biomarkers for FGR,

including placental hormones, inflammatory cytokines, and

metabolites (11). However, individual biomarkers often lack sufficient

sensitivity and specificity (12). Noteworthy biomarkers include human

placental lactogen (hPL) (13) and pregnancy-associated plasma protein

A (PAPP-A) (14), whose decreased levels correlate with FGR. Elevated

Inflammatory cytokines like interleukin-6 (IL-6) (15) and tumor

necrosis factor-a (TNF-a) (16) reflect placental inflammation and

oxidative stress. Additionally, alterations in metabolites such as

placental growth factor (PlGF) (17) and soluble fms-like tyrosine

kinase-1 (sFlt-1) (18) have been studied to assess placental function

and predict FGR risk.

However, current research still faces several unresolved

problems. Firstly, existing biomarkers often lack adequate

sensitivity and specificity for broad clinical use (19). Secondly,

FGR is multifactorial, including maternal, fetal, and placental

factors, complicating comprehensive assessment of FGR through

single biomarkers (20). Lastly, early diagnosis of FGR remains

challenging due to its nonspecific nature of early symptoms and

the limitations of ultrasound examinations (21).

Until a validated single screening indicator or model is

established, both domestic and international guidelines do not

recommend clinical screening for placental-mediated FGR in

isolation (22). Currently, the majority of clinical studies rely on

early-pregnancy preeclampsia screening models or first- and

second-trimester Down syndrome serum screening models to

predict FGR. Except for placental growth factor (PlGF), which has

a sensitivity of 27%, most single biomarker screenings exhibit low

sensitivity and limited value (14). With the widespread adoption of

noninvasive prenatal testing, the establishment of predictive models

for early-onset severe placental-mediated FGR during the first

trimester, based on fetal free DNA and RNA derived from

maternal plasma, combined with novel biomarkers such as

SPINT1 and Ang2, represents a focal area of future clinical

research (23, 24).
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To address these challenges, the objective of our research is to

identify differentially expressed proteins as potential biomarkers for

placental-mediated FGR through the application of advanced

targeted proteomics technology, specifically the OLINK technology.

In recent years, this technology has gradually been applied in

research, offering the potential to discover biomarkers through

large-scale screening of protein changes in maternal plasma (25).

However, there are currently limited examples of OLINK

technology’s application in FGR research, which represents an

innovative aspect of our study. The FGR cases included in this

project are all attributed to placental perfusion insufficiency, and

we have initially established a precise diagnostic process for placental-

mediated FGR: this involves screening for fetal factors (genetic,

structural, infectious, etc.) and assessing ultrasound and maternal

blood biomarkers related to placental function (26). Our inclusion

criteria are stringent compared to previous basic and clinical studies.

Ultimately, we aim to identify novel FGR biomarkers with higher

sensitivity and specificity. This will facilitate early diagnosis, risk

assessment, and individualized treatment of FGR, ultimately

improving maternal and fetal outcomes.
2 Methods

2.1 Patient sample collection

From 2019 to 2024, we conducted a retrospective and

prospective study at Shanghai First Maternity and Infant
Frontiers in Immunology 03
Hospital, enrolling 44 patients with placental-mediated FGR and

44 normal controls. Inclusion criteria for placental-mediated FGR

patients included an Abdominal Circumference (AC)/Estimated

Fetal Weight (EFW) ratio below the 3rd percentile for gestational

age, abnormal blood flow, negative genetic testing, and a gestational

age ranging from 19 to 31 weeks (with a mean of 25 weeks).

Exclusion criteria included multiple gestations and fetal structural

abnormalities. Control participants were matched for gestational

age with the FGR group and excluded for any fetal/placental

abnormalities and abnormal noninvasive prenatal test results. All

participants provided written informed consent, and the study was

approved by the Ethics Committee of Shanghai First Maternity and

Infant Hospital (Approval Number: KS20262). The workflow of this

study is illustrated in Figure 1.

Peripheral blood samples (2 mL) were collected from each

participant. Plasma samples were obtained by centrifugation at

1200g for 15 minutes, processed to remove cellular debris, fats, and

other impurities, and then stored at -80°C for subsequent analysis.
2.2 Protein abundance measurement

Plasma samples were analyzed for 368 inflammation-related

proteins using the Olink-Explore-384-Inflammation panel

(Olink™ Proteomics, Uppsala, Sweden) with Proximity Extension

Assay (PEA) technology on the Illumina NGS sequencing platform.

The procedure involved three main steps: incubation (where plasma

samples interacted with 368 antibody pairs tagged with unique
FIGURE 1

Workflow of the study. The analytical workflow and key findings are presented in this figure. We analyzed differential protein expression in peripheral
blood plasma samples from 44 placental-mediated FGR patients and 44 normal pregnant women using the Olink-Explore-384-Inflammation panel.
The analysis identified significant differences in protein expression levels, followed by enrichment analyses to explore the underlying biological
mechanisms. PPI network analysis and LASSO modeling were used to identify key proteins as potential biomarkers.
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DNA oligonucleotides), extension (amplification and enrichment of

DNA fragments), and detection (sequencing of enriched DNA

fragments for data collection).

Each detection panel included two quality control (QC)

systems. The internal QC system monitored amplification using

an Immuno control, an Extension control, and a Detection control,

while external QC system consisted of eight references (two sample

controls, three negative controls, and three inter-plate controls) for

data normalization. The QC criteria required that the median value

of the negative controls remain within five standard deviations of

predefined value set for each experiment and each sample’s average

count exceeded 500.
2.3 NPX data calculations

Sequencing data were converted into counts files using Olink’s

bcl2count software, and processed through the NPX Explore Software

to obtain the Normalized Protein Expression (NPX) values on a log2

scale. We used Z-score normalization, calculated as: NPXnorm=NPXi

−mean(NPX)/SD(NPX). Tools like ComBat from the ‘sva’ R package

was utilized to correct them. The NPX calculation formula, ExtNPXi,j

= log2 (counts (samplejAssayi)/counts (ExtCtrlj)) (where i represents a

specific assayed protein and j represents a sample), standardizes data

using plate controls and applies transformations for normalization

across all assays and samples.

Batch effect correction was performed using ComBat to eliminate

systematic biases between different experimental batches. The data

were analyzed using R software. We utilized data below the Limit of

Detection (LOD) as actual usage data, as it could potentially enhance

statistical power and reduce false positives.
2.4 Differential protein analysis

Differentially Expressed Proteins (DEPs) between different

groups were identified using the R-package OlinkAnalyze (version

3.3.1). Based on variance homogeneity and normality testing, we

employed either a t-test or Wilcoxon rank-sum test to compare

protein levels between FGR patients and controls. Plasma proteins

with FDR-adjusted p-values less than 0.05 were considered as

differentially expressed Principal Component Analysis (PCA) was

conducted to assess the degree of separation between different

groups. Visualizations (boxplots, volcano plots, heatmaps) were

created using the R package ‘ggplot2’.
2.5 Enrichment analysis and network
analysis

All genes with p-values less than 0.05 were utilized for

enrichment analyses for DEPs included GO, KEGG pathway, and

COG enrichment analyses using R packages. PPI analysis was

conducted focused on the top 10 upregulated and top 10

downregulated proteins using the STRING database (STRING:
Frontiers in Immunology 04
functional protein association networks (string-db.org)) to

investigate the biological processes underlying protein interactions.
2.6 Diagnostic predictive model
construction and validation

To establish a predictive model distinguishing FGR patients,

samples were split into training and test sets (3:1 ratio) using the

caret R package (27). LASSO regression analysis was conducted

using the glmnet R package (28) (29). The training set samples were

trained using a 10-fold cross-validation, and the model

hyperparameter lambda with the minimum mean square error

(MSE) and corresponding feature set (corresponding modelled

protein sets) were selected. The model’s performance was

evaluated by Receiver Operating Characteristic (ROC) curves,

sensitivity, specificity, and AUC values in the test set using the

pROC R package (30).

A comparison was made between a model incorporating clinical

information (gestational age and blood flow restriction phenotype)

and a model solely based on protein expression levels to analyze the

impact of clinical information on model performance. Another

LASSO regression model was established by combining protein

features with gestational age. Additionally, a LASSO regression

model was constructed by integrating protein features with the

phenotype of blood flow disruption.
3 Results

3.1 Participants clinical information
characteristics

This study enrolled a total of 44 patients with placental-

mediated FGR and 44 matched controls. Table 1 presents their

clinical details. The mean gestational age at blood collection was 25

weeks, with the control group matched accordingly, as shown in

Figure 2A. Blood flow abnormalities were common among FGR

patients, with 36% showing mild abnormalities (Doppler changes

(UA PI >95th percentile, UtA PI >95th percentile, absent or

reversed end-diastolic velocity) 100%), with 52% showing end-

diastolic umbilical artery blood flow issues (43% with intermittent

ischemia and 9% with persistent ischemia), while 11% exhibited

reversed end-diastolic flow (Figure 2B).

Complications and disease states were noted, with preeclampsia

(38%, including 11% severe cases) being the most prevalent,

followed by placental thickening, gestational hypertension, and

enhanced fetal intestinal echogenicity (all at 7%) (Figure 2C).
3.2 Protein detection and differential
expression analysis

We utilized the Olink-Explore-384-Inflammation panel to

analyze 368 proteins in plasma samples from FGR patients and
frontiersin.org
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FIGURE 2

Descriptive statistics of clinical information of FGR patients. (A) Gestational Week for Collection of Maternal Peripheral Blood for FGR patients and
control samples; (B) Blood flow conditions for FGR patients; (C) Combined symptoms for FGR patients.
TABLE 1 Clinical characteristics of placental-mediated FGR patients and the healthy controls.

Clinical information Patients Controls

Cohort size, n 44 44

Amniocentesis Gestational Week
(Blood Collection Gestational Week)

25 + 2 25 + 2

Blood Flow Condition
Mild abnormalities (Doppler changes(UA PI >95th percentile, UtA PI >95th percentile, absent or reversed

end-diastolic velocity)100%) (36%); Intermittent Absence (43%); Persistent Absence (9%); Reversed
flow (11%).

Normal (100%)

Medical History Remarks

Preeclampsia (27%);
Severe preeclampsia (11%); Hashimoto’s thyroiditis (2%);

Increased placental thickness (5%);
Pregnancy-induced hypertension (5%);
Gestational diabetes mellitus (2%);

Fetal dysplasia (2%);
Severe ICP (Intrahepatic Cholestasis of Pregnancy) (2%);

Multiple uterine fibroids (2%);
Increased fetal bowel echogenicity (7%);

Chronic hypertension (2%);
Undifferentiated connective tissue disease (2%);

ICP (Intrahepatic Cholestasis of Pregnancy) (2%);
Pregnancy with obesity (5%);

Pregnancy with hypothyroidism (2%);
Increased fetal bowel echogenicity and increased placental thickness (2%)

Normal (100%)
F
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controls. PCA plot illustrates distinct distribution of plasma

samples (Figure 3A). Differential analysis identified 225 proteins

with significant differences (P ≤ 0.05), of which 200 were

upregulated and 25 were downregulated (FDR-corrected P ≤

0.05) (Figure 3B). PGF (P-value: 1.33E-26) exhibiting the most

significant down regulation, ESM1 (P-value: 3.71E-15) was

significantly up regulated. Heat map of the top 10 upregulated

and downregulated proteins both groups are shown in Figure 3C.

Table 2 provides corresponding NPX data and p-values, showing

significant proteomic differences in FGR patients compared to the

control group.
Frontiers in Immunology 06
3.3 Enrichment analysis of differentially
expressed proteins

GO and KEGG enrichment analyses of the 225 differentially

expressed proteins revealed key pathways. The top 30 GO terms

(Figure 4A) included Positive Regulation of Endothelin Production

(P-Value: 9.66E-12), Positive Regulation of Monocyte Extravasation

(P-Value: 3.56E-11), Positive Regulation of Superoxide Dismutase

Activity (P-Value: 6.34E-10).

KEGG pathway analysis (Figure 4B) identified several signaling

pathways potentially relevant to FGR, including AGE-RAGE
FIGURE 3

Alterations in Plasma Proteins in FGR Patients Compared to Controls. (A) A Principal Component Analysis (PCA) plot illustrates the distribution of
samples from 44 FGR patients (depicted in yellow) and 44 control donors (depicted in blue). (B) A volcano plot visualizes the log2 fold changes and
-log10 (FDR-adjusted p-values) of 368 proteins in FGR samples compared to controls. The size of the points is proportional to the log10 (FDR-
adjusted p-value), with the top 8 downregulated (blue) and upregulated (red) proteins highlighted. The FDR-adjusted p-value threshold of 0.05 is
indicated by a dashed red line. (C) A heatmap depicting protein level changes between FGR and control groups; only the top 10 upregulated and
downregulated proteins are displayed.
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Signaling Pathway in Diabetic Complications (P-value: 1.74E-13),

NF-kB (P-value: 3.98E-20), IL-17 (P-value: 5.21E-17), and TNF

Signaling Pathway (P-value: 1.74E-13). These pathways underscore

mechanisms like inflammation, immune regulation, and oxidative

stress as central to FGR pathology.

COG analysis (Figure 4C) categorized DEPs based on cellular

metabolism, signal transduction, cell cycle control, and

immune responses.
3.4 Network analysis of differentially
expressed proteins

PPI analysis (Figure 4D) identified hub proteins, including

ANGPT2, CD40, NRP2 and HGF.

Subcel lular Location analysis (Figure 4E) revealed

mitochondrial-associated proteins (14.22%) and extracellular

proteins (40.00%) as significant increase, suggesting altered

energy metabolism and extracellular signaling in FGR.
Frontiers in Immunology 07
3.5 FGR prediction model and calculation
of disease prediction rates

Using LASSO, we constructed a prediction model consisting of

PGF and ESM1 (Figure 5). PGF (P-value: 1.33E-26) had the smallest

p-value among downregulated proteins) while ESM1(P-value:

3.71E-15) was the most significant upregulated protein.

Figure 5A presents the NPX values of PGF in FGR patients

compared to controls, demonstrating significant down regulation of

PGF in FGR patients. Similarly, Figure 5B shows the NPX values of

ESM1, revealing a significant upregulation of ESM1 in FGR

patients. Figure 5C compares the Protein Risk Score (PRS)

differences between FGR and control groups modeled using the

combination of PGF and ESM1, indicating significantly higher PRS

for the FGR group.

Figures 5D and 4E demonstrate that the PGF and ESM1 model

effectively distinguished between FGR patients and normal controls

in both the discovery and validation sets, achieving Area Under the

Curve (AUC) values of 0.98 and 0.97, respectively. Figure 5F
TABLE 2 Top 10 up regulated and down regulated DEPs of placental-mediated FGR patients and the healthy controls (P<0.05).

Protein NPX in FGR NPX in control P.value Up/Down

OID20530_LSP1 0.139172727 -0.614604545 1.54e-09 up

OID20725_OMD 1.939686364 1.173961364 1.34e-12 up

OID20724_CD40 0.440115909 -0.127293182 8.02e-11 up

OID20668_CCL11 -0.294215909 -1.004059091 2.14e-10 up

OID20737_LAIR1 -0.689518182 -1.290847727 4.55e-12 up

OID20596_KRT19 1.456854545 0.268697727 2.27e-10 up

OID20656_HGF 1.074422727 0.365086364 6.91e-10 up

OID20684_TIMP3 2.984511364 1.245163636 3.24e-11 up

OID20758_ESM1 1.773231818 0.438634091 3.71e-15 up

OID20706_NELL2 1.028463636 0.119579545 2.22e-13 up

OID20770_FST 1.872045455 2.697547727 1.08e-07 down

OID20673_PGF 1.829329545 4.828772727 1.33e-26 down

OID20747_CRHBP -0.315909091 0.555163636 9.54e-11 down

OID20774_DAG1 1.230606818 1.642861364 1.47e-05 down

OID20780_B4GALT1 1.401286364 1.733475 6.08e-06 down

OID20590_CLEC4G 0.07615 0.384172727 9.76e-04 down

OID20595_CD200R1 -0.096979545 0.519045455 1.55e-05 down

OID20638_LAMP3 -1.214970455 -0.804790909 6.16e-04 down

OID20614_PCDH1 0.053875 0.143943182 3.79e-04 down

OID20529_FCRL6 1.006875 1.481004545 4.96e-04 down
NPX, Normalized protein expression data, which were relative and log2 transformed.
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displays the Receiver Operating Characteristic (ROC) curve of the

combined PGF and ESM1 model within an inflammatory protein

panel, yielding an AUC value of 0.98.

To elucidate the impact of gestational age at sampling on

diagnostic performance, we incorporated gestational age into a

new LASSO-based model. This model exhibited an AUC value of

0.98 in the discovery cohort and 1.0 in the validation set, suggesting

its effectiveness as a diagnostic tool for FGR.

We then constructed a diagnostic model using the 225

differentially expressed proteins, selecting a model with the
Frontiers in Immunology 08
minimum number of proteins (10) after 100 rounds of cross-

validation. The final set included DNAJA2, NFATC1, JCHAIN,

KRT19, CD40, HSD11B1, PGF, EIF4G1, NELL2, and OMD. This

model achieved AUC values of 1 in both the training and validation

sets, with significant PRS differences and significantly higher scores

for FGR patients compared to controls.

Given the importance of the blood flow restriction as a key

phenotype in FGR, we developed another model incorporating

blood flow restriction alongside the 225 proteins. After 100

rounds of cross-validation, we selected a model with 13 proteins
FIGURE 4

Analysis of the Top 30 Differential Proteins between FGR and Control Groups: (A) GO Pathways and (B) KEGG Pathways; (C) COG Classification;
(D) PPI Interaction Network Plot for the Top 10 Upregulated and Downregulated Proteins; (E) Subcellular Localization; (F) Path View of EGFR
Tyrosine Kinase Inhibitor Resistance.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1542034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2025.1542034
plus one blood flow restriction indicator (NFATC1, KRT19, FGF2,

CD40, PTX3, HSD11B1, PGF, TNFSF10, CCL23, PROK1, NELL2,

OMD, and CD244). This model also achieved perfect AUC values

in both the training and validation sets, demonstrating significant

PRS differences and significantly higher scores for FGR patients.
Frontiers in Immunology 09
4 Discussion

FGR is a major cause of intrauterine fetal demise in late

pregnancy and is associated with profound long-term health risks,

including increased susceptibility to metabolic disorders such as
FIGURE 5

Comparison and Analysis of PGF and ESM1 Proteins in Control and FGR Groups: (A) Expression Levels of PGF Protein in Control and FGR Groups;
(B) Expression Levels of ESM1 Protein in Control and FGR Groups; (C) Comparison of PRS Risk Scores between Control and FGR Groups after
Modeling with Combined PGF and ESM1; (D) ROC Curve of the PGF and ESM1 Model in the Training Set; (E) ROC Curve of the PGF and ESM1 Model
in the Test Set; (F) ROC Curve of the PGF and ESM1 Model in the Inflammatory Panel Protein Set.
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metabolic syndrome, diabetes, and hypertension in adulthood (1).

Due to the limited intrauterine treatments options currently

available, identifying reliable protein biomarkers for early FGR

diagnosis and management is critical (5). In this study, we

utilized the Olink-Explore-384-Inflammation panel to analyze

peripheral blood plasma from 44 placental-mediated FGR

patients and 44 matched controls, revealing 225 differentially

expressed proteins.

Key findings include PGF andHGF, which are well-documented in

their associations with FGR. PGF, critical for placental angiogenesis,

was notably downregulated, consistent with previous studies linking its

reduced levels to poor uterine spiral artery remodeling and placental

hypoperfusion in FGR (31, 32). Brouillet et al. (2012) demonstrated

that impaired PGF signaling leads to placental developmental

abnormalities and fetal hypoperfusion, making it a strong predictor

of FGR (33) (34). HGF is another factor closely related to cell growth,

motility, and angiogenesis (35). Somerset et al. (1997) found that

abnormal HGF signaling results in placental hypoplasia, which is a

critical factor in FGR (36). Research reports have indicated that lower

HGF levels are associated with impaired trophoblast invasion and

reduced placental vascularization, leading to fetal growth

restriction (37).

In addition to these established markers, we identified two novel

potential protein biomarkers: ESM1 and TIMP3. ESM1(Endothelial

Cell-Specific Molecule-1), is a dermatan sulfate proteoglycan. ESM1

plays a pivotal role in the pathogenesis of several cancers, with its

overexpression closely associated with tumor growth, progression, and

angiogenesis (38). In our research, ESM1 was significantly upregulated

in MVM-FGR samples. Considering ESM1’s functions in cell

proliferation, migration, and angiogenesis, there may be a correlation

between ESM1 and the occurrence and development of FGR, though

this requires further validation. TIMP3(Tissue Inhibitor of

Metalloproteinase 3), functions as an inhibitor of inflammatory

cytokines. It negatively regulates TACE (TNF-a Converting

Enzyme), thereby influencing the release of TNF-a (Tumor Necrosis

Factor-a). This regulatory effect, in turn, can impact the body’s

inflammatory response and vascular remodeling processes (39). In

our study, TIMP3 was upregulated in patients, suggesting that

abnormal expression of TIMP3 may affect blood flow in the placenta

and umbilical cord, hindering the fetus’s ability to obtain adequate

nutrition from the mother, potentially leading to FGR. However, this

also necessitates further verification. Collectively, these proteins hold

promise as potential biomarkers for placental-mediated FGR screening.

Functional enrichment analyses (GO, KEGG, and COG) provided

insights into the pathways associated with FGR. The GO analysis

highlighted pathways such as the positive regulation of endothelin

production pathway involves endothelin, a potent vasoconstrictor,

which plays a crucial role in regulating placental blood flow (40),

affecting the nutrient and oxygen supply to the fetus, and consequently

resulting in FGR (41). Similarly, the positive regulation of monocyte

extravasation is associated with chronic placental inflammation, where

monocytes may play a significant role in the immune regulation of the

placenta, impacting fetal growth (42). The positive regulation of CD8+

T-cell proliferation pathway is related to immune responses, and

abnormal placental immune function is a common feature of FGR
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(43); the proliferation and regulation of T-cells may affect placental

health and fetal growth (44). KEGG pathway analysis identified

pathways like AGE-RAGE signaling pathway, implicated in oxidative

stress and inflammation, and NF-kB and IL-17 signaling pathways

(45). The NF-kB signaling pathway, an important inflammatory and

immune regulatory pathway, may affect fetal growth through the

induction of placental inflammation via its abnormal activation (46).

The IL-17 signaling pathway is associated with proinflammatory

responses and may exacerbate placental inflammation, influencing

the pathogenesis of FGR (47).

A logistic regression model using LASSO regression (48) was

employed to identify key protein biomarkers for differentiating

placental-mediated FGR patients from controls. The model, which

incorporated PGF and ESM1, achieved AUC values of 0.98 and 0.97

in discovery and validation sets, respectively, demonstrating high

diagnostic accuracy. Incorporating gestational age further enhanced

model performance, achieving an AUC of 0.98 in the discovery set

and 1.0 in the validation set. Our research not only validated the

importance of PGF and ESM1 as potential biomarkers for placental-

mediated FGR but also significantly improved the diagnostic

accuracy of the model through multi-protein combination models

and the inclusion of blood flow disruption analysis.

This research project has made meaningful progress in

exploring protein biomarkers for placental-mediated FGR, with

notable advantages: All cases of placental-mediated FGR included

were specifically caused by placental perfusion insufficiency,

confirmed through prenatal ultrasound blood flow assessments

and postpartum pathological examinations, while excluding

genetic and infectious causes. Compared to previous basic and

clinical studies, the inclusion criteria were rigorously defined. This

is the first time that the Olink technology has been employed to

analyze human samples of placental-mediated FGR.

While our study provides novel insights into FGR-associated

biomarkers, several limitations must be acknowledged. First,

although this study included 44 patients with placental-mediated

FGR and 44 normal pregnant women, the sample size remains

relatively small. This limitation may hamper statistical power,

increase the risk of false positives or false negatives, and may not

fully reflect the heterogeneity in the placental-mediated FGR patient

population. Future studies with larger cohorts are essential to validate

our findings and improve the generalizability of these biomarkers. If

increasing sample size is not feasible, meta-analyses integrating

multiple datasets could enhance robustness. Secondly, our study

samples are based on the Chinese population, which may introduce

population-specific biases. Regional, ethnic, and socioeconomic

factors could influence plasma protein expression, and expanding

research to multi-ethnic cohorts is necessary to assess cross-

population validity. Currently, there are no international studies

identifying ESM1 and TIMP3 as biomarkers for placental-mediated

FGR, highlighting the innovative nature of our research. We are going

to lead a global multicenter study, we have sufficient resources to

conduct this research. The plan is to initially conduct a small-scale

clinical cohort study domestically; if the results are promising, we will

proceed with an international multicenter study. Thirdly, our findings

are primarily based on statistical correlations rather than direct causal
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relationships. Functional validation of PGF, HGF, ESM1, and TIMP3

through in vitro trophoblast models and in vivo animal studies is

crucial for confirming their mechanistic roles in FGR pathogenesis. If

experimental validation is not feasible, literature-based discussion on

their biological functions should be expanded to provide further

mechanistic insights. Additionally, longitudinal studies tracking

biomarker expression at different gestational stages would help

assess their predictive value. Independent replication in different

clinical settings will also confirm the robustness of these biomarkers.

If longitudinal studies are currently unfeasible, discussing the

importance of time-series analyses in biomarker evaluation can

strengthen future research directions. Comparative studies including

patients with other placental disorders, such as preeclampsia, could

help distinguish FGR-specific markers from general placental

dysfunction markers. If such comparisons are not feasible, future

studies should aim to delineate disease-specific biomarker signatures

through comparative analyses. Lastly, our pathway analysis identified

NF-kB and IL-17 signaling pathways as potentially relevant to FGR. A

more detailed discussion on how these pathways may serve as

therapeutic targets could add clinical value to our findings. Further

research should explore pharmacological interventions targeting these

pathways to mitigate FGR progression. If experimental validation is

not available, reviewing existing therapies targeting these pathways

and their potential applications in FGR treatment could be an

informative addition.
5 Conclusion

In conclusion, this study utilized Olink proteomic analysis to

PGF, HGF ESM1 and TIMP3 as key biomarkers for placental-

mediated FGR. Biological pathway enrichment analysis underscores

the significance of placental vascular function, immune regulation,

and oxidative stress in the development of placental-mediated FGR.

Our combined PGF and ESM1 model, alongside a multi-protein

panel, demonstrated high demonstrated accuracy with strong

sensitivity and specificity, highlighting their potential for clinical

application in early detection and risk assessment of placental-

mediated FGR.
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