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Ruifen Li1, Wenqian Zhao1, Youfei Guan3* and Xiaoyan Zhang1*

1Health Science Center, East China Normal University, Shanghai, China, 2Department of Nephrology,
Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China,
3Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
Background: Metabolic dysfunction-associated steatohepatitis (MASH) is

becoming increasingly prevalent. Regulated cell death (RCD) has emerged as a

significant disease phenotype and may act as a marker for liver fibrosis. The

present study aimed to investigate the regulation of RCD-related genes in MASH

to elucidate the role of RCD in the progression of MASH.

Methods: The gene expression profiles from the GSE130970 and GSE49541

datasets were retrieved from the Gene Expression Omnibus (GEO) database for

analysis. A total of 101 combinations of 10 machine learning algorithms were

employed to screen for characteristic RCD-related differentially expressed genes

(DEGs) that reflect the progression of MASH. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to

explore the enrichment pathways and functions of the feature genes. we

performed cell classification analysis to investigate immune cell infiltration.

Consensus cluster analysis was performed to identify MASH subtypes

associated with RCD. The GSE89632 dataset was utilized to analyze the

correlation of characteristic genes with clinical features of MASH. The DGIdb

database was employed to screen for potential therapeutic drugs and

compounds targeting the feature genes. In addition, we established mouse

liver fibrosis models induced by methionine-choline-deficient (MCD) diet or

CCl4 treatment, and further validated the expression of characteristic genes

through quantitative real-time PCR (q-PCR). Lastly, we knocked down EPHA3 in

LX2 cells to explore its effect on TGFb-induced activation of LX2 cells.

Results: This study discovered a total of 11 RCD-associated DEGs, which

predicted the progression of MASH. Advanced MASH has higher levels of

immune cell infiltration and is significantly correlated with the RCD-related

DEGs expression. MASH can be classified into two subtypes, cluster 1 and

cluster 2, based on these feature genes. Compared with cluster 1, cluster 2 has

highly expressed RCD-related DEGs, shows an increase in the degree of fibrosis.

Furthermore, We discovered that the expression levels of feature genes were

positively correlated with AST and ALT levels. Subsequently, We also evaluated

the expression of these 11 feature genes in the liver tissues of mice with fibrosis
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induced by MCD or CCl4, and the results suggested that these genes may be

involved in the development of fibrosis. WB results showed that the protein level

of EPHA3 significantly increased in both mouse models of liver fibrosis. In vitro,

we observed that knocking down EPHA3 in LX2 cells significantly inhibited the

activation of the TGF-b/Smad3 signaling pathway.

Conclusion: Our study sheds light on the fact that RCD contribute to the

progression of MASH, high lighting potential therapeutic targets for treating

this disease.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is one of the most

prevalent chronic liver diseases worldwide and poses a significant

threat to public health (1). The disease has now been renamed

metabolic dysfunction-associated fatty liver disease (MAFLD) (2).

The initial stage in the development of MAFLD is simple hepatic

steatosis, which is characterized by the accumulation of large

triglyceride vacuoles within hepatocytes. Diagnosis is based on

imaging or histological examination that reveals steatosis in at

least 5% of liver cells, along with the exclusion of excessive

alcohol consumption or other concurrent causes of liver disease

(3). MASH represents a more severe form of MAFLD. The

diagnosis of MASH requires confirmation of steatosis, lobular

inflammatory infiltrates, hepatocellular ballooning, and fibrosis

through liver biopsy (4). Up to 30% of patients with MAFLD may

progress to MASH (5), which can ultimately lead to cirrhosis and

HCC (6). Liver fibrosis is the primary pathological feature of

MASH. As MASH progresses, the severity of liver fibrosis

gradually increases. Numerous studies aim to predict the degree

of fibrosis in MASH to improve diagnosis and treatment strategies.

Currently, there are very few clinically approved drugs available for

the treatment of liver fibrosis, and the underlying mechanisms of

liver fibrosis are still complex and not yet fully understood.

Therefore, elucidating these molecular mechanisms and

identifying potential new drug candidates is critical for halting the

progression of MASH.

Cell death is a fundamental biological process that is integral to

various life phenomena, including growth, development, aging, and

disease (7). In 2018, the Cell Death Nomenclature Committee

established guidelines addressing the morphological and

biological aspects of cell death, classifying it into two primary

types: accidental cell death (ACD) and RCD (8). ACD is an

uncontrolled cell death process triggered by unexpected insult

stimuli. These damaging stimuli exceed the regulatory capacity of

the cell, ultimately leading to cell death. In contrast, RCD refers to
02
the autonomous and orderly death of cells, which is controlled by

genes to maintain the stability of the internal environment. The

RCD that occurs under physiological conditions is called

programmed cell death (PCD) (9). The liver serves as a crucial

defense organ capable of responding to various pathogenic

microorganisms and their products. Upon stimulation by

damage-associated molecular patterns (DAMPs) and pathogen-

associated molecular patterns (PAMPs), the liver activates a range

of RCD modalities (10). Dead cells can mediate natural immunity

or inflammatory responses, ultimately leading to the activation,

proliferation, differentiation and secretion of extracellular matrix

(ECM) by hepatic stellate cells (HSCs), leading to matrix deposition

and fibrosis (11, 12). Different lethal subroutines during RCD

influence the progression of MASH and the response to

treatment. Therefore, understanding the role of cell death in

fibrosis during the progression of MASH is essential for a

comprehensive study of its fibrotic mechanisms and the

identification of potential drug targets.

The immune system function in patients with MASH is

compromised to varying degrees. During the progression of

MASH, as fibrosis worsens, the characteristics of immune cells

alter in accordance with the state of fibrosis (13, 14). Immune cells

in the liver, including macrophages, T cells, B cells, and eosinophils,

are implicated in various forms of RCD and play a role in the

development of liver fibrosis. For instance, macrophages and

eosinophils are involved in pyroptosis and necrosis, which in turn

promote liver fibrosis (15, 16). However, the relationship between

liver fibrosis and this phenomenon remains unclear and warrants

further investigation. It follows that the immune microenvironment

may serves as a crucial link between cell death and MASH.

In recent years, bioinformatics analysis and machine learning

have gained recognition as effective strategies for the comprehensive

and in-depth analysis of large datasets, such as transcriptome

sequences (17). In this study, we selected two transcriptome

datasets (GSE130970 and GSE49541) from the GEO database for

our analysis. We used ten different types of machine learning to
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screen for key RCD-related DEGs. To further elucidate the changes

in immune cells between early and late MASH samples, we

conducted a cell classification analysis to investigate immune cell

infiltration. Moreover, we validated the expression of the

characteristic genes in MASH patients by the GSE89632 dataset

and analyzed the correlation between the characteristic genes and

the clinical features of MASH patients. Notably, we constructed

mouse models of liver fibrosis induced by MCD diet or CCL4 to

verify the expression changes of characteristic genes as fibrosis

progresses. Overall, our findings reveal key genes related to RCD

during the progression of liver fibrosis in MASH, which may serve

as new targets for future clinical diagnosis and treatment of MASH

patients, and provide a reference for liver fibrosis resulting from

other causes.
Materials and methods

Data acquisition

According to Brunt staging, MASH can be classified into five

stages: F0, F1, F2, F3, and F4. The GSE130970 dataset includes 23

patients in stage F0, 28 patients in stage F1, 9 patients in stage F2, 14

patients in stage F3, and 2 patients in stage F4. Additionally, the

GSE49541 dataset comprises 40 patients in stages F0 and F1, as well

as 32 patients in stages F2 through F4. In the subsequent analysis,

we defined stages F0 and F1 as early MASH, while stages F2, F3, and

F4 are categorized as late MASH. The GSE130970 and GSE49541

datasets were merged using the R packages limma and SVA (13, 18,

19). We first converted the RNA-seq data into log2(FPKM + 1) to

approximate a normal distribution, while quantifying and

normalizing the microarray data. For the initial mixed dataset, we

first applied the combat function to eliminate batch effects, followed

by the use of the preprocessCore software package in R to

standardize the data. Ultimately, a mixed dataset comprising 91

early MASH samples and 57 late MASH samples was obtained. As a

validation dataset, GSE89632 had 24 control samples, 19 MASH

samples, and 21 simple steatosis (SS) samples, with the

corresponding clinical information.
Identifcation of DEGs

We utilized the R package “limma” to identify DEGs between

early and late stages of MASH, applying thresholds of |logFC| ≥ 0.5

and adj.P. Val. < 0.05 for DEG identification. A list of key regulatory

genes associated with 18 modes of RCD was compiled from a

previous study (Supplementary Table 1) and intersected with the

aforementioned differential genes, resulting in the identification of

55 key genes for subsequent analysis (20). The principal

components analysis (PCA) plot, expression heatmap, and

volcano plot of the DEGs were created using the “ggbiplot”,

“pheatmap” and “ggplot2” packages via R software.
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Functional enrichment analysis

Functional enrichment analysis was conducted on the data to

assess the potential functions of the identified targets. We

performed enrichment analysis utilizing the KEGG and GO

through the R package “clusterProfiler”. In these analyses,

adjusted P values <0.05 were deemed statistically significant, and

the top 20 results from each analysis were extracted

for visualization.
Machine learning models

We integrated ten diverse machine learning algorithms and

evaluating 101 algorithmic combinations. Tese machine learning

algorithms included Support Vector Machine (SVM), Least

Absolute Shrinkage and Selection Operator (Lasso), Gradient

Boosting Machine (GBM), Random Forest, Elastic Net, Stepwise

Cox, Ridge, CoxBoost, Super Partial Correlation (SuperPC), and

Partial Least Squares with Cox regression (plsRcox). We conducted

10-fold cross-validation on all suitable models. Additionally, we

implemented several safeguard measures to prevent overfitting,

which include regularization, early stopping, and sparsity. The

GSE49541 dataset serves as the training set, while other datasets

are utilized for validation. We calculated the area under the curve

(AUC) as a criterion for optimal model selection. Correlations

among variables were assessed using Pearson or Spearman

correlation tests, with a significance threshold set at p < 0.05.

Subsequently, we employed the receiver operating characteristic

(ROC) curve and the AUC to evaluate the diagnostic efficacy of the

characteristic genes.
Immune infiltration analysis

To better identify immune cell signatures in the livers of MASH

patients, we compared the differences in expression of immune cell

types between the two groups using single-sample gene set

enrichment analysis (ssGSEA). Pearson correlation analysis was

used to reveal the correlation between immune cell distribution and

DEGs expression, and the results were presented in the form of

lollipop diagrams.
Gene set enrichment analysis

GSEA is widely utilized to assess alterations in pathways and

biological activities across samples within expression datasets.

Based on the correlation analysis results between 11 individual

genes and the entire gene set, we employed GSEA to conduct

Reactome pathway enrichment analysis. The criterion for

significance was set at a P value of < 0.05, and the top 20

pathways from each analysis were extracted for visualization.
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Drug gene interaction analysis

The Drug-Gene Interaction Database (DGIdb, www.dgidb.org)

is a web resource that provides information on drug-gene

interactions and druggable genes from publications, databases,

and other web sources. We used the DGIdb database to predict

drugs that may interact with DEGs.
Consensus clustering analysis

Hierarchical clustering analysis was conducted on 150 MASH

samples utilizing the “Consensus Clustering” R package, with the

expression profiles of 11 characteristic DEGs serving as input data.

A PCA plot was generated to illustrate the differences between

subgroups A and B, employing the ggplot2 package. Additionally,

box plots and heat maps were utilized to depict the expression

differences of the 11 characteristic genes in type 2. We downloaded

the hallmark, KEGG, and reactome pathways from the Msigdb

database and subsequently employed the R package GSVA to

perform pathway scoring to compare the pathway differences

between the two subtypes. Heatmaps comparing the two groups

were drawn using the R package pheatmap.
Animals and treatment

Male C57BL/6 mice (8 weeks old) were purchased from

Beijing HuaFuKang Biotechnology Co., Ltd. and maintained

under specifc pathogen-free conditions in the Animal Care

Facility of East China Normal University. All the mice were

used in compliance with the guidelines of Institutional Animal

Care and Use Committee of East China Normal University. The

experiment was divided into 3 groups (CON, MCD 4w, MCD 8w),

with 6 mice in each group. To induce MASH, mice were fed with

MCD diet for 4 or 8weeks. Liver fibrosis in mice was induced by

intraperitoneal injection of 2 ml/kg body weight of 20% CCL4

dissolved in mineral oil, twice a week for up to 4 or 8weeks. This

experiment is divided into 3 groups (CON, CCL4 4w, CCL4 8w),

with 6 mice in each group.
Cell culture and treatment

The human hepatic stellate cell line LX2 was derived from the

Cell Bank of the Chinese Academy of Sciences (Shanghai, China).

Cells were seeded in culture plates and dishes at appropriate

densities and cultured in DMEM supplemented with 10% fetal

bovine serum (FBS). Once the confluence reached 80-90%, LX2

cells were treated with 10 ng/mL TGF-b1 for 24 hours.

Recombinant Human TGF-b1 (Cat# 100–21) was purchased from

Peprotech. To further investigate the influence of EPHA3 on the

activation of LX2 cells, we employed siRNA interference to knock

down the expression of EPHA3 (Supplementary Table 2).
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Histopathological staining

Livers were excised and immediately fixed with 10% bufered

formalin. Samples were embedded in parafn and cut into 5 mm
sections. Liver sections were deparafnized, rehydrated, and

routinely stained with hematoxylin and eosin (HE) or Sirius Red.

Frozen liver sections were cut into 10 mm sections. Tissues were

fixed in acetone for 10 min and then washed in PBS for 3 min. After

fixation, tissue was washed with PBS and subjected to Oil

red staining.
Real-time PCR

Total RNA was extracted with Trizol reagent and then reverse

transcribed using the Tian Gen Biotech (Beijing, China).

Amplifcation was performed using the Power SYBR® Green PCR

Master Mix (Applied Biosystems) according to the manufacturer’s

instruction. The relative expression level of each transcript was

normalized to murine GAPDH by using the 2 (DDCt) method. The

primers were listed in Supplementary Table 2.
Western blot

Proteins were extracted with radioimmunoprecipitation (RIPA)

lysis bufer with protease inhibitor cocktail (#04693132001, Roche

Applied Science, Mannheim, Germany). Lysates containing equal

amounts of protein were separated by 10% SDS-PAGE and

transferred to a polyvinylidene difluoride membrane (Millipore).

The membrane was incubated with 5% skim milk for 1 h and then

incubated with primary antibodies at 4°C overnight. Primary

antibodies against the following proteins were used: b-actin
(#66009, Proteintech), a-SMA (ab7817, Abcam), EPHA3

(PA1391, Abmart), Fibronecting (#15613 Proteintech), p-Smad3

(#9520, CST), Smad3 (#9520, CST).
Statistical analysis

All statistical tests were conducted using R software version

4.2.2. The Wilcoxon test or Student’s t-test was employed to analyze

differences between the two groups. Correlations between variables

were assessed using either Pearson or Spearman correlation tests.

All p-values are two-sided, with a significance level set at p < 0.05.
Results

Identification of differentially expressed
genes and enrichment analysis

In this study, two high-throughput sequencing datasets,

GSE130970 and GSE49541, were normalized and merged into
frontiersin.org
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one dataset. Subsequently, the merged dataset was subjected to

batch effect elimination before data analysis. The PCA plot shows

that before the removal of the batch effect, the sample distribution

of each dataset varied significantly, indicating the presence of a

batch effect (Figure 1A). After applying SVA and Limma correction,

samples from different batches overlapped, indicating a substantial
Frontiers in Immunology 05
reduction in batch effects across two gene sets (Figure 1B). Next, we

normalized the merged dataset to eliminate the adverse effects of

singular sample data (Figures 1C, D). The fibrosis stages of MASH

are classified as follows: F0 indicates no fibrosis, F1 represents

perisinusoidal fibrosis, F2 denotes perisinusoidal fibrosis combined

with portal area fibrosis, F3 refers to bridging fibrosis, and F4
FIGURE 1

Identification of DEGs. (A) PCA cluster plot of GSE130970 and GSE49541 before batch effect removal and correction. (B) PCA cluster plot showed
that batch effect has been removed. (C) Box plots of the original data before normalization. (D) Box plots of the original data after normalization.
(E) Volcano plot of DEGs between early-stage and late-stage MASH patients. (F) Heatmap for the DEGs between early-stage and late-stage MASH
patients. Red: Up-regulation; Green: Down-regulation.
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signifies cirrhosis. In our classification, F0 and F1 are categorized as

early MASH, while F2 through F4 are classified as late MASH. The

final training dataset consisted of an early MASH group (including

85 patients) and an advanced MASH group (including 91 patients).

Using the limma differential gene analysis package in R, we

identified 115 DEGs in the merged dataset, comprising 85 up-

regulated genes and 30 down-regulated genes. Figures 1E, F

illustrate volcano plots and heatmaps of the DEGs between the

early and late stages of MASH in the merged dataset.
Frontiers in Immunology 06
To investigate the role of these DEGs in MASH, we conducted

GO and KEGG pathway enrichment analyses. As illustrated in

Figures 2A-C, the GO results indicate that DEGs are predominantly

enriched in ECM-related pathways, including extracellular matrix

organization and structural organization. Furthermore, immune-

related pathways, such as chemokine-mediated signaling pathways,

cellular responses to chemokine stimulation, and granulocyte

migration, were also found to be enriched. The KEGG analysis

revealed additional enrichment in cytokine-cytokine receptor
FIGURE 2

Function and pathway enrichment analysis of DEGs. (A-C) Top 20 enriched biological functions of DEGs determined by GO. (D) Top 20 enriched
KEGG pathways of DEGs determined by KEGG pathway enrichment analysis.
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interactions, ECM-receptor pathways, chemokine signaling

pathways, and TNF signaling pathways (Figure 2D). Collectively,

these findings suggest that both ECM-related and immune-related

pathways play significant roles in the occurrence and progression

of MASH.
Identification of RCD-related DEGs and
enrichment analysis

Studies have shown that the development of MASH is

accompanied by a variety of RCD. RCD regulates the

infiltration of immune cells and plays a key role in the

fibrogenesis and inflammatory damage of MASH. Important

regulatory genes containing 18 RCD modes have been collected

in the literature (20). Subsequently, the 115 differential genes

identified were intersected with 7,460 RCD-related genes

(Supplementary Table 1), resulting in 55 overlapping differential

genes, which included 49 up-regulated genes and 6 down-

regulated genes (Figures 3A-E). Following this, we performed

GO and KEGG enrichment analyses on the samples based on

RCD-related DEGs to investigate the biological characteristics of

these characterized differential genes (Figures 4A-D). The results

showed that RCD-related DEGs were relatively enriched in

inflammatory processes, extracellular matrix organization, and

immune-related pathways.
Identifying characteristic RCD-related
DEGs by machine learning

Based on 55 RCD-related DEGs with predictive significance, we

employed 10 machine learning algorithms to construct a diagnostic

model. Using the GSE49541 dataset as the training set, we

developed 101 prediction models (Figure 5A) and assessed the

performance of each model on additional independent validation

sets. Subsequently, we calculated AUC for all training and

validation sets, selecting the genes associated with the top three

machine learning algorithms that exhibited the highest AUC. This

process yielded a total of 11 characteristic genes.

Subsequently, we analyzed the correlation among 11

characteristic DEGs to investigate the potential role of RCD in

the progression of MASH. The results indicated a strong correlation

among these 11 genes (Figure 5B). Furthermore, the expression

levels of these characteristic genes, as depicted in the figure, were

significantly higher in late-stage MASH compared to early-stage

MASH (Figure 3C), suggesting their potential involvement in the

progression of the disease.We also evaluated the diagnostic

performance of each signature gene in predicting the progression

of MASH within the combined GSE130970 and GSE49541 cohorts.

Among these genes, BICC1 exhibited the highest AUC value,

reaching 0.885. The AUC values for THBS2, DKK3, EPHA3,

CD24, EFEMP1, COL1A2, AQP1, MGP, TAGLN and S100A4

were 0.881, 0.88, 0.874, 0.85, 0.848, 0.846, 0.845, 0.779, 0.776 and
Frontiers in Immunology 07
0.731, respectively (Figure 5C). These results indicate that these

signature genes can effectively estimate the progression of MASH.
Evaluation of immune cell infiltration in
MASH

We evaluated the immune microenvironment of MASH patients

by analyzing immune cell infiltration. Compared with early-stage

MASH, most innate and adaptive immune cells presented higher

infiltration levels in advanced-stage MASH (Figure 6A). Moreover,

there were remarkable interactions between immune cell populations

across MASH (Figure 6B). These findings suggested that advanced

MASH is associated with a more robust immune response.

Subsequently, we conducted a further investigation into the

correlation between 11 key RCD-related DEGs and immune cell

infiltration. The results of the correlation analysis revealed a

significant interaction between the signature genes and immune

cell infiltration (Figures 6C-M). Notably, S100A4, EPHA3 and

MGP were found to be closely associated with the infiltration of

the greatest variety of immune cells. These results indicate that the

key RCD-related DEGs may play a regulatory role in immune

characteristics during the progression of MASH.
Single-gene enrichment analysis of
characteristic RCD-related DEGs

RCD can be triggered by the stimulation of DAMPs and PAMPs.

The presence of some dead cells elicits inflammatory responses,

facilitates innate immunity, and prompts myofibroblasts to secrete

ECM, resulting in matrix deposition and fibrosis. To investigate the

biological significance of core genes, we analyzed the correlation

between 11 key genes and the entire gene set, employing a heat map

to illustrate the expression of the top 50 positively correlated genes

(Figures 7A-K). As shown in the heatmap, the majority of positively

correlated genes are associated with inflammatory chemokines (such

as CXCL6 and CCL2) and fibrotic factors (including COL1A2,

COL3A1, and COL4A1). Building on the results of the correlation

analysis, we employed the GSEA algorithm to further investigate the

functions associated with the core genes. The Figures 8A-K present

the top 20 results from the reactome pathway derived from 11 single-

gene GSEA analyses. GSEA results indicate that the expression levels

of AQP1, BICC1, DKK3, CD24, COL1A2, EFEMP1, EPHA3,

TAGLN, THBS2, and MGP are primarily positively associated with

ECM organization and ECM proteoglycans. Additionally, the

expression of AQP1, COL1A2, THBS2, and CD24 shows a positive

correlation with collagen formation. The expression levels of AQP1,

COL1A2, BICC1, DKK3, EPHA3, TAGLN, MGP, THBS2, CD24,

and EFEMP1 are positively correlated with the formation of elastic

fibers. In contrast, S100A4 is primarily associated with neutrophil

degranulation and the innate immune system. These indicate that

these RCD-related genes play a significant role in the development of

MASH fibrosis.
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MASH unsupervised clustering
identification and analysis

To explore the predictive potential of RCD-related genes in

MASH patients, we performed unsupervised cluster analysis

utilizing the R package “ConsensusClusterPlus” by varying the

clustering variable k from 2 to 10, it is found that when k = 2, the
Frontiers in Immunology 08
intra-group correlation is the highest and the inter-group

correlation remained low (Figure 9A). This finding suggested that

the 176 MASH patients can be effectively categorized into two

distinct clusters based on the aforementioned 11 DEGs. The

expression of all characteristic genes was higher in cluster 2 than

in cluster 1 (Figure 9B). The heat map results also demonstrate the

expression levels of these 11 genes in both cluster 1 and cluster 2,
FIGURE 3

RCD-related DEGs expression and enrichment analysis in early-stage and late-stage groups. (A, B) Venn diagram of the intersection of RCD-related
genes and DEGs. (C-E) Volcano plot, heatmap plot and box plot of the RCD-related DEGs. Red: Up-regulation; Green: Down-regulation. (*, P <
0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001).
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revealing significant differences between the two groups. Notably,

there was a marked difference in the degree of fibrosis between the

subgroups, with the group exhibiting high expression of the

signature gene showing a greater extent of fibrosis (Figure 9C).

In order to explore the differences between different pattern

clustering in biological processes mediated by characteristic genes,

we downloaded the hallmark, KEGG, and reactome pathways from

the Msigdb database. Subsequently, we performed pathway scoring
Frontiers in Immunology 09
using the R package GSVA and identified significant differences in

pathways between the two clusters. The Hallmark pathway analysis

revealed that cluster 2 is predominantly enriched in the Notch

signaling pathway, TGFb signaling pathway, Hedgehog signaling

pathway, TNFa-NF-kB signaling pathway, epithelial-mesenchymal

transition (EMT) signaling pathway, apoptosis, and hypoxia

(Figure 9D). The KEGG pathway analysis reveals that cluster 1 is

primarily enriched in peroxisomes, fatty acid metabolism, and
FIGURE 4

RCD-related DEGs enrichment analysis. (A-C) Top 20 enriched biological functions of DEGs determined by GO. (D) Top 20 enriched KEGG
pathways of DEGs determined by KEGG pathway enrichment analysis.
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tryptophan metabolism, while cluster 2 also shows significant

enrichment in the p53 signaling pathway, TGFb signaling pathway,

ECM receptors, and leukocyte migration (Figure 9E). Reactome

pathway analysis indicated that cluster 2 was predominantly

enriched in extracellular matrix tissue, ECM proteoglycans, the

PDGF signaling pathway, elastic fibers, and collagen fibers

(Figure 9F). Consequently, utilizing these 11 RCD-related DEGs,

MASH patients can be categorized into two distinct groups,

exhibiting significant differences in fibrosis-related characteristics.
Frontiers in Immunology 10
The correlation between RCD-related
DEGs ang clinical features of MASH
patients

We validated 11 RCD-related DEGs using the GSE89632

dataset and found that the characteristic genes were significantly

upregulated in patients with MASH compared to those with SS

(Figure 10A). Additionally, we analyzed the relationship between

changes in gene expression and clinical variables, discovering that
FIGURE 5

Identification of feature RCD-related DEGs via machine learning. (A) A total of 101 kinds of prediction models via a tenfold cross-validation
framework and further calculated the C index of each model across all validation datasets. (B) Chord diagram displaying the relationship between
the feature RCD-related DEGs. (C) ROC curve of the feature RCD-related DEGs in late-stage MASH diagnosis.
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AST and ALT levels were positively correlated with the expression

of the signature genes (Figures 10B-L). It is well-known that the

degree of liver dysfunction is closely associated with the severity of

MASH. MASH is a more severe form of MAFLD. Among patients
Frontiers in Immunology 11
with MASH-induced cirrhosis, the estimated annual incidence of

HCC ranges from 0.5% to 2.6% (4, 21). To further investigate the

relationship between the signature genes and HCC, we analyzed the

expression of key genes in HCC tissues and adjacent non-cancerous
FIGURE 6

Evaluation of immune cell infiltration. (A) A box plot comparing the infiltration rates of immune cells between early-stage and late-stage MASH
groups. (B) Correlation between 22 distinct populations of immune cells. The red color represents a positive correlation. (C–M) Correlation analysis
between feature genes and immune cells. A larger circle shows a stronger correlation. A higher density of green color shows a more robust
association. (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, no statistical signifcance.).
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tissues. Our findings indicated that the majority of the DEGs are

significantly upregulated in HCC tissues (Figure 10M). These

results illustrate that characteristic RCD-related DEGs identified

in our study not only have the potential to predict liver function

impairment in patients with MASH but may also serve as

biomarkers for HCC.
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Prediction of drug-gene interactions

Next, we investigate the potential of these signature genes as

drug targets for the treatment of MASH. Drug-gene interaction data

from the DGIdb database revealed 64 candidate therapeutic drugs

or compounds for MASH. Here, the top 30 drugs/compounds
FIGURE 7

Correlation analysis of feature RCD-related DEGs with all genes. (A-K) Correlation analysis of 11 RCD-related DEGs with all genes was performed
using heatmaps to show the expression of positively correlated top50 genes, respectively.
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ranked according to their “interactome score” from the DGIdb

database were presented (Figure 8C). Among these, 12 drugs target

AQP1 with high prediction scores; 7 drugs target EPHA3; 5 drugs

target COL1A2; and 2 drugs each target THBS2, S100A4, and

TAGLN, respectively. Notably, no potential drugs have been

identified for treating BICC1, DKK3, CD24, EFEMP1, and

MGP (Table 1).
Frontiers in Immunology 13
The expression level of RCD-related DEGs
in mice with liver fibrosis

To further verify the expression of characteristic genes in the

progression of MASH fibrosis, we constructed a MASH fibrosis

mouse model induced by feeding a MCD diet for 4 or 8 weeks.

Histological examination of liver tissue from mice using HE and Oil
FIGURE 8

Single-gene GSEA of feature RCD-related DRGs. (A-K) Top 20 enriched reactome pathways of the key RCD-related DRGs determined by GSEA.
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Red O staining, revealed that MCD diet induced obviously steatosis

compared with control group, and more lipid accumulation was

observed in mice fed with MCD diet for 8 weeks compared to mice

fed for only 4 weeks (Figures 11A, B). Western blot analysis
Frontiers in Immunology 14
indicated that the protein level of the fibrosis marker a-SMA in

the liver tissue of mice on the MCD diet for 8 weeks was

significantly higher than that in mice on the MCD diet for 4

weeks (Figures 11C, D). To analyze the correlation between the
FIGURE 9

MASH classifcation based on the RCD-related DEGs. (A) The consensus clustering with k=2. (B) A box plot showed the expression of 11 RCD-related
DEGs between two diferent subgroups. (C) Heatmap for the the expression of 11 RCD-related DEGs between two diferent subgroups. (D-F) Pathway
activity between two diferent subgroups based on GSVA. (***, P < 0.001).
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expression of 11 characteristic genes and the progression of MASH,

we measured the expression levels of these genes using qPCR. As

shown in Figure 11E, all 11 characteristic genes were up-regulated

in MCD diet-fed mice compared to the control group, with
Frontiers in Immunology 15
expression levels gradually increasing in correlation with the

severity of steatosis and fibrosis. Given the critical role of

signature genes in MASH progression, we wondered whether they

also play a similar role in other fibrosis models. Consequently, we
FIGURE 10

The correlation between RCD-related DEGs and clinical features of MASH. (A) Expression of the RCD-related DEGs in the GSE89632 dataset.
(B-L) Spearman correlation analysis of the RCD-related DEGs with MASH clinical variables. Larger circles indicate stronger correlations. Higher
density of blue color indicates stronger correlation. (M) Expression of the RCD-related DEGs in HCC. (**, P < 0.01; ***, P < 0.001.).
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constructed a CCL4-induced mouse liver fibrosis model. Results

from HE, Sirius red staining and WB demonstrated that the degree

of liver fibrosis increased with prolonged CCL4 treatment

(Figures 12A-D). Additionally, qPCR results showed that DKK3,

S100A4, EPHA3, BICC1, AQP1, COL1A2, MGP and TAGLN

expression were up-regulated as fibrosis progressed (Figure 12E).

Collectively, these results reveal that these genes may be involved in

the development of fibrosis and could serve as molecular targets for

the diagnosis and therapeutic development of fibrosis.
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Knockdown of EPHA3 inhibits TGF-b1
mediated pro-fibrotic signaling in LX2 cells

By screening candidate therapeutic drugs or compounds for

MASH through the DGIdb database, we identified EPHA3 as the

target with the highest predicted score. Therefore, we conducted a

preliminary investigation on the role of EPHA3 in liver fibrosis. First,

we validated the protein expression of EPHA3 in two mouse models of

hepatic fibrosis, and Western blotting results showed that increased

EPHA3 protein expression correlated with the degree of hepatic

fibrosis (Figures 13A-D). In addition, we accessed the Human Liver

Protein Database (http://www.liverproteome.org/) and found that

EPHA3 is highly expressed in HSCs (Figure 13E). Subsequently,

we cultured the LX2 cells in vitro and treated it with TGF-b1 to

induce the expression of fibrosis-related genes. We observed that

TGF-b activates LX2 cells and upregulates EPHA3 expression.

When we utilized siRNA to knock down EPHA3 in these cells,

the protein expressions of fibronectin, a-SMA and p-Smad3

induced by TGF-b1 were significantly reduced (Figures 13F-J).

These findings demonstrate that knocking down EPHA3

significantly inhibited the activation of the TGF-b/Smad3

signaling pathway and the expression of its downstream fibrotic

genes, thereby reducing LX2 activation.
Discussion

MAFLD is the most prevalent chronic liver disease globally,

affecting approximately 25% of the population (22). In China,

MAFLD has supplanted viral hepatitis as the most common liver

disorder (23). The progression of MAFLD can occur from simple

steatosis to MASH, cirrhosis, and ultimately HCC (24). Research

indicates that MASH has emerged as the fastest-growing cause of

liver cancer (4, 21). Currently, histological evaluation remains the

gold standard for diagnosing, prognosing, and monitoring

treatment of MASH, however, its accuracy is highly dependent on

the pathologist’s expertise (25). Consequently, there is a pressing

need to identify new and reliable methods for predicting or assisting

in the diagnosis of MASH. Utilizing transcriptome data, we

compared the early and late stages of MASH with the aim of

discovering more additional candidate diagnostic biomarkers and

identifying potential therapeutic targets.

Different types of cell death play different roles in the

occurrence and development of MASH (26). It is of great

significance to reveal the role of RCD in the progression of

MASH fibrosis.This study investigates the role of RCD in MASH

for the first time and identified 11 characteristic genes based on the

analysis of 10 machine learning algorithms. These signature genes

are significantly up-regulated during the late stage of MASH and

can accurately predict the progression of MASH fibrosis. Currently,

these 11 characteristic genes are primarily associated with

apoptosis, autophagy, pyroptosis, ferroptosis, copper-induced cell

death, and immunogenic cell death (ICD). Increasing evidences

show that apoptosis is closely related to the development of liver

fibrosis. Tan and his team induced liver fibrosis in mice by injecting
TABLE 1 Drug–gene interaction prediction of RCD-related DEGs.

gene2 drug

EPHA3 IFABOTUZUMAB

EPHA3 KB-004

THBS2 CORTICOTROPIN

COL1A2 ST034307

EPHA3 COMPOUND 7 [WO2012007375]

EPHA3 COMPOUND 1 [WO2012007375]

EPHA3 IRAK-1/4 INHIBITOR

AQP1 CARBONIC ANHYDRASE INHIBITOR

TAGLN RECOMBINANT TRANSFORMING GROWTH FACTOR-BETA 1

COL1A2 RECOMBINANT TRANSFORMING GROWTH FACTOR-BETA-2

S100A4 CHEMBL: CHEMBL585502

EPHA3 TAKINIB

AQP1 J-2156

AQP1 L-803,087

AQP1
H-C[DCYS-PHE-LAGL(N&BETA;ME,BENZOYL)-DTRP-LYS-

THR-PHE-CYS]-OH

AQP1 BIM 23295

AQP1 &BETA;3-TETRAPEPTIDE

AQP1 NNC269100

AQP1
H-C[CYS-PHE-LAGL(N&BETA;ME,BENZOYL)-DTRP-LYS-THR-

PHE-CYS]-OH

AQP1
H-C[CYS-PHE-LAGL(N&BETA;ME,BENZOYL)-TRP-LYS-THR-

PHE-CYS]-OH

THBS2 BEVACIZUMAB-AWWB

TAGLN AZACITIDINE

AQP1 [125I]TYR11-SRIF-14

AQP1 ANALOG 32 [PMID:18543899]

AQP1 REMLARSEN

COL1A2 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM-AAES

EPHA3 BELIZATINIB

COL1A2 RECOMBINANT TRANSFORMING GROWTH FACTOR

S100A4 DAUNORUBICIN HYDROCHLORIDE

COL1A2 TNF-ALPHA
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CCL4 and found that Fas/FasL-regulated hepatocyte apoptosis is

involved in the process of liver fibrosis (27). The p53-upregulated

modulator of apoptosis (PUMA) serves as a target of the Fas/FasL

signaling pathway and is a crucial mediator of apoptosis (28). In the

CCl4-induced liver fibrosis model, PUMA-KO knockout mice

exhibited fewer apoptotic cells and lower levels of fibrosis
Frontiers in Immunology 17
compared to PUMA-WT wild-type mice (27). Additionally,

further research has demonstrated that apoptosis directly

influences HSCs by releasing apoptotic bodies or activating

macrophages, which in turn leads to the activation of HSCs,

thereby facilitating the progression of liver fibrosis (29). Recent

studies have demonstrated that autophagic vacuoles and LC3-II
FIGURE 11

Animal experiment. (A) H&E and Oil Red O staining of liver sections from mice fed with control or MCD-diet (4 or 8weeks). Scale bar: 50 mm.
(B) Semiquantitative analysis of Oil Red O area. (C) Semiquantitative measurement for the protein levels in (D) Western blot assay showed the protein
expression of a-SMA in the liver from mice fed on the control or MCD-diet (4 or 8 weeks). (E) Determination of the key RCD-related DEGs
expression in the liver of the control group or MCD-diet mice by RT-PCR (n=6 per group). (**, P < 0.01; ***, P < 0.001).
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levels are significantly elevated in models of liver injury (30, 31).

Autophagy leads to facilitates lipophagy by mediating lipid

degradation, which subsequently promotes the mobilization of

lipid droplets and mitochondrial b-oxidation, thereby supplying

energy for the activation of HSCs. Blocking autophagy in

hematopoietic stem cells using 3-methyladenine, doxazosin or
Frontiers in Immunology 18
specific siRNA targeting ATG5 and ATG7 resulted in reduced

activation of HSCs and attenuation of liver fibrosis (32, 33).

Pyroptosis plays a significant role in the progression of liver

fibrosis (34). Research has demonstrated that the activation of the

NLRP3 inflammasome in mouse hepatocytes can induce both

pyroptosis and liver fibrosis. Conversely, the inhibition of
FIGURE 12

Animal experiment. (A,B) H&E and Sirius red staining of liver sections from mice treated on control or CCL4 (4 or 8weeks). Scale bar: 50 mm.
(B) Semiquantitative analysis of fibrosis area. (C) Semiquantitative measurement for the protein levels in (D) Western blot assay showing the protein
expression of a-SMA in the liver of the control or CCL4-treated groups(4 or 8weeks). (E) Determination of the key RCD-related DEGs expression in
the liver of the control or CCL4-treated groups(4 or 8weeks) by RT-PCR (n=6 per group). (**, P < 0.01; ***, P < 0.001.).
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caspase-1 and gasdermin D (GSDMD) can suppress pyroptosis and

mitigate the progression of liver fibrosis (35). In a cohort study,

caspase-1 was detected in the serum of patients with MASH, and its

levels were positively correlated with the severity of the disease (36).

Additionally, research has demonstrated that mice overexpressing

NLRP3 can spontaneously develop liver fibrosis (37). Another study
Frontiers in Immunology 19
found that caspase-11 levels were upregulated in the livers of

MASH-affected mice, while caspase-11 knockout mice exhibited

significantly reduced levels of liver injury, fibrosis, and

inflammation; furthermore, levels of caspase-11, GSDMD, and IL-

1b were also decreased (38). Iron overload and lipid peroxidation

are commonly observed during liver injury and liver fibrosis. Su and
FIGURE 13

EPHA3 expression was significantly upregulated in the livers of mice with hepatic fibrosis as well as in LX2 cells treated with TGF-b1, and knockdown
of EPHA3 effectively suppressed the activation of LX2 cells. (A-D) Western blot analysis showed the expression of EPHA3 in liver tissues of mice with
MCD or CCL4-induced hepatic fibrosis, quantified using Image J software (n=6 per group). (E) EPHA3 expression in various cells of the liver. (F-J)
Western blot analysis demonstrated the effect of 24h TGF-b1 (10 ng/mL) treatment on the expression of EPHA3, Fibronectin, a-SMA, and p-Smad3
in LX2 with or without si-EPHA3, quantified using Image J software (n=3 per group).(*, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, no
statistical signifcance.).
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colleagues found that liver cell-specific TAK1 deficiency leads to an

imbalance of iron ions within liver cells, resulting in ferroptosis.

This process triggers oxidative stress, which subsequently

contributes to liver fibrosis. Notably, treatment with ferritin-1

significantly mitigated these issues (39). Additionally, Wu and

colleagues identified fibroblast growth factor 21 (FGF21) as a

novel inhibitor of sideroptosis. By overexpressing FGF21 in

mouse hepatocytes, they demonstrated that ferroptosis can be

inhibited, thereby rescuing liver fibrosis caused by iron overload

(40). Consequently, inhibiting hepatocyte ferroptosis may reduce

iron overload, lipid peroxidation, and inflammatory infiltration

associated with liver injury, ultimately alleviating liver fibrosis

(41). Cuprosis was first discovered and named by Tvetkov’s team

in 2022, representing a novel form of copper-dependent cell death

(42). Extracellular Cu2+ can form complexes with specific

ionophores, which facilitate its passage through the cytoplasm

and into the mitochondria, where it is converted into toxic

compounds under the key regulation of ferredoxin 1 (FDX1) and

strong Cu1+ (43–45).Currently, there are no relevant studies

examining the relationship between copper wire mesh and liver

fibrosis. Immunogenic cell death(ICD) can induce the body’s own

cells to release DAMP and drive inflammatory responses, thereby

stimulating the recruitment and activation of numerous immune

cells (8). Numerous studies have demonstrated that ICD is linked to

a range of diseases, including autoimmune disorders, cancer and

metabolic disorders (46). While no research has yet established a

correlation between ICD and liver fibrosis, gaining a comprehensive

understanding of ICD and its associated regulatory factors is

essential for advancing the treatment of liver fibrosis. In recent

years, a growing body of research has illustrated the extensive

interactions among various regulated cell death pathways that

were previously considered independent. Consequently, a

significant challenge lies in achieving a deeper understanding of

their interaction mechanisms and how these relate to disease.

Recent studies have shown that regulated cell death is a key

immunoregulatory factor that plays an important role in the

occurrence, progression, and resolution of liver fibrosis (47). The

microenvironment of MASH is composed of different innate

immune cells and adaptive immune cells. The degree of

infiltration of most innate and adaptive immune cells in late-stage

MASH is higher than that in early-stage MASH (48). This study

found that the proportions of immune cells such as gd T cells, mast

cells, NKT cells, and dendritic cells in the livers of patients with

advanced MASH were higher than those observed in patients with

early MASH. Previous studies have reported that a high-fat diet can

increase the number of gd T cells in the liver. Furthermore, TCR

delta knockout mice, which lack gd T cells, exhibited reduced liver

fibrosis after being subjected to a high-fat diet, suggesting that gd T
cells may play a role in stimulating the progression of MASH (49,

50). Additionally, studies have established that mast cells are

involved in tissue fibrosis (51). Concurrently, the number of mast

cells in the liver is directly correlated with the advanced stage of

MASH fibrosis (52). Immune cells in the liver, including NK cells, T

cells, B cells, and eosinophils, are potentially linked to various forms
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of regulated cell death and contribute to liver fibrosis. Studies have

found that NK cells and eosinophils participate in pyroptosis and

necrosis, which in turn promote liver fibrosis. This study confirmed

that RCD-related signature genes are positively correlated with

some immune cell infiltration in MASH, indicating that they may

regulate immune activation during the progression of MASH.

In this study, we identified 11 feature genes that have potential

value in predicting fibrosis progression. DKK3, a glycoprotein, has

been shown to regulate Wnt/b-catenin signal transduction and

promote the occurrence and development of renal fibrosis. In a

mouse model of chronic kidney disease (CKD), knockout of the

DKK3 gene alleviated renal fibrosis (53). Furthermore, it is well-

established that the Wnt/b-catenin signaling pathway plays a

significant role in liver fibrosis. At present, some researchers have

verified that THBS2 and its encoded secreted protein TSP-2 serve as

diagnostic markers for MASH patients (54, 55). However, in this

study, it was also found that THBS2 is closely related to the

infiltration of immune cells in the liver of MASH patients.

THBS2 may regulate the infiltration and function of immune cells

in the liver by interacting with integrin receptors on the surface of

immune cells. S100A4 is expressed in various cell types, including

fibroblasts, macrophages, etc. Studies have found that S100A4

induces the activation of HSCs through c-Myb and exacerbates

the progression of fibrosis (56). In addition, S100A4 can bind to

receptors on the surface of immune cells, influencing their activity

and function. TAGLN not only regulates the formation of ECM

during the fibrosis process is also closely associated with

mitochondrial dysfunction. Research has demonstrated that the

TAGLN blocker (iTAGLN) could significantly inhibit the

accumulation of ECM and reduce ROS levels (57). These findings

suggested that the TAGLN blocker may serve as an effective

therapeutic approach for liver fibrosis. Furthermore, some studies

have confirmed that the increased expression of AEBP1 correlates

with the severity of liver fibrosis in patients with MASH. Further

analysis of this study revealed that AEBP1 regulates the expression

of various fibrosis-related genes, including EFEMP1 (58). Our

results also indicated that EFEMP1 expression was significantly

elevated in advanced MASH patients and was positively correlated

with the infiltration of various immune cells. EPHA3 is a crucial

receptor tyrosine kinase primarily involved in the regulation of cell

adhesion and migration. It participates in these processes, as well as

in angiogenesis, by binding to the ligands Ephrin-B2 and Ephrin-

A5. Current evidence indicated that EPHA3 was closely associated

with immune cell infiltration and the efficacy of immunotherapy in

tumors such as lung cancer and bladder cancer, suggesting that

EPHA3 may play a role in regulating immunogenicity and the

immune microenvironment (59). Notably, studies have

demonstrated that the administration of anti-EPHA3 monoclonal

antibodies in mice with idiopathic pulmonary fibrosis can prevent

the progression of fibrosis (60). In this study, we evaluated the

expression of EPHA3 in the liver tissues of mice with fibrosis

induced by MCD and CCl4. The results revealed that both EPHA3

mRNA and protein levels increased in correlation with the degree of

fibrosis. To further investigate the role of EPHA3 in liver fibrosis,
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we accessed the Human Liver Proteome Database (http://

www.liverproteome.org/) and found that EPHA3 is highly

expressed in HSCs. Subsequently, knocking down EPHA3 in LX2

cells resulted in a significant reduction in LX2 activation. Therefore,

targeting EPHA3 may represent an important strategy for the

treatment of MASH.

Based on these 11 DEGs, we screened MASH candidate

therapeutic drugs or compounds through the DGIdb

database.According to the ‘interactome scoring’ ranking in the

DGIdb database, we identified the monoclonal antibody

Ifabotuzumab (KB004), which targets EPHA3, as having the

highest predicted score. The Phase I clinical study of this drug in

patients with recurrent glioblastoma multiforme (GBM) has yielded

promising results (61). However, the therapeutic efficacy of this

drug for MASH requires further validation through animal

experiments. In addition, the DNMT inhibitor Azacitidine has

shown strong antifibrotic effects in both in vivo and in vitro

experiments of skin fibrosis. Its mechanism involves enhancing

the expression of FOXP3 in CD4+ T cells, while in skin fibroblasts,

the inhibition of DNMT leads to the upregulation of the Smad3

regulator PARP1, Wnt antagonist sFRP1, and DKK1, all of which

can inhibit fibrosis (62). Currently, it has been observed that the

combined treatment of Bevacizumab and AAV9-LECT2-shRNA

can significantly enhance the efficacy against liver fibrosis, however,

a series of experimental studies are still needed for clinical

application (63). Furthermore, miR-29b has been found to

significantly inhibit fibrosis, and its mimic Remlarsen (MRG-201)

has the potential to prevent the formation of fibrotic scars or skin

fibrosis (64). The second-phase clinical trial for keloids has been

completed. miR-29b serves as a negative regulator of extracellular

matrix deposition and fibrosis, playing a crucial role in various

fibrotic organs. In the hepatocellular carcinoma microenvironment

carbonic anhydrase (CA) is able to influence immune cell function,

and CA inhibitors selectively act on tumor-infiltrating macrophages

to inhibit tumor growth in mice (65). In addition, squalene

epoxidase (SQLE) has been found to drive MASH progression by

promoting cholesterol synthesis and accumulation, as well as

binding to carbonic anhydrase 3 (CA3), and combined inhibition

of SQLE and CA3 using Terbinafine and Acetazolamide

significantly improved MASH in mice (66). Thus, the drugs

identified through the DGIdb database demonstrate certain effects

on organ fibrosis and immune regulation. However, the efficacy of

these drugs in treating MASH requires further confirmation

through in vivo and in vitro studies.

This study has certain limitations. Although we have

successfully identified genes related to MASH progression and

RCD using machine learning algorithms and confirmed their

diagnostic validity, the original dataset lacks detailed clinical

parameters (such as survival outcomes, treatment methods, etc.).

Therefore, it is essential to conduct further prospective cohort

studies to explore the correlation between these characteristic

genes and MASH. Additionally, a larger sample size is necessary

to verify the reproducibility of MASH typing in independent

cohorts from this study and systematically evaluate the predictive
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value of subtypes on disease progression, as well as to explore the

potential for subtype-guided personalized treatment. Finally, we

only performed a simple expression verification in the mouse model

of liver fibrosis and briefly examined the role of EPHA3 in LX2 cells.

More experiments are needed to confirm the mechanisms of these

characteristic genes in the progression of liver fibrosis.

In summary, this study identified 11 RCD-related genes that are

significantly upregulated in the late stages of MASH and can

predicted the progression of MASH fibrosis and may even be

markers of HCC. Furthermore, these characteristic genes are

closely associated with immune cell infiltration and play a critical

regulatory role in the liver immune microenvironment of MASH

patients. We evaluated the expression of 11 characteristic genes in

the liver tissues of mice with MCD or CCl4-induced hepatic fibrosis.

The results indicated that these genes may be involved in the

development of hepatic fibrosis. Finally, we discovered that

knocking down EPHA3 in LX2 cells significantly inhibited the

activation of the TGF-b/Smad3 signaling pathway and the

expression of its downstream fibrogenic genes. This study offers

new strategies for the clinical diagnosis of MASH fibrosis and

identifies molecular targets for drug development.
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