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Background: As an important component in preventing the progression of

endometrial cancer, CD8 T cells play a crucial role in this process and are

important targets for immunotherapy. However, the status of CD8+ T cells in

endometrial cancer and the key genes influencing their activation still remain to

be elucidated.

Methods: Genes associated with the activation of CD8+ T cells were identified

through differential analysis and weighted gene co-expression network analysis

(WGCNA). A risk score model was constructed using the least absolute shrinkage

and selection operator (LASSO) and multivariate Cox regression. The clinical

characteristics and differences between the high-risk group and the low-risk

group were explored, and the applicability of the model to chemotherapy, poly

(ADP-ribose) polymerase (PARP) inhibitors, and immune checkpoint inhibitors

was evaluated. The characteristics of the model at the single-cell level were

studied, and the tumor-suppressive effect of ASB2 was verified through

experiments on endometrial cancer cells.

Results: A risk model based on genes related to the activation of CD8+ T cells

was constructed, and the prognostic differences were verified using the Kaplan-

Meier curve. A nomogram was designed to predict the survival probability.

Pathway analysis showed that it was related to metabolism and DNA repair.

There were significant differences between the high-risk and low-risk groups in

terms of tumor mutational burden (TMB), checkpoint molecules, and major

histocompatibility complex (MHC) class I molecules, and they had different

sensitivities to different therapies. The tumor-suppressive effect of ASB2 was

confirmed in experiments on cell proliferation, invasion, and migration.

Conclusion: This study provides a predictive tool for endometrial cancer. The

classification based on the status of CD8+ T cells can distinguish the prognosis

and treatment response, highlighting the potential of this model in

personalized treatment.
KEYWORDS

endometrial cancer (EC), immunotherapy, immune microenvironment (IME), CD8+ T
cell, personalized treatment
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1 Background

Endometrial cancer (EC) is the second most common

malignant tumor of female reproductive system. According to the

data of GLOBOCAN 2018, there were 382069 new cases and 89929

deaths in 2018 (1), and the incidence of EC is still rapidly rising in

China (2). In contrast to other common cancers, the incidence and

annual mortality rates of endometrial cancer are increasing (3, 4).

According to the pathological characteristics, EC can be divided

into two types: endometrioid endometrial cancer (EEC) and uterine

serous carcinoma (USC). It is generally believed that EEC contains

most EC and has a good prognosis; However, USC contained more

aggressive histologies and had worse prognosis (5–7).

Most endometrial cancer can be detected by endometrial biopsy

in the early stage, which greatly improves the prognosis and survival

rate of patients. However, there are still a considerable number of

patients who have distant metastasis when they are found, and

another part of patients are not sensitive to chemotherapy, which

lead to the increased risk of cancer progression or recurrence, and

reduce the survival rate and quality of life of patients (8). Maybe the

higher risk can be explained by inter- tumoral and intra-tumoral

heterogeneity (9). Therefore, it is important to adopt updated

techniques to discuss possible cell subpopulations in EC.

The tumor microenvironment (TME) refers to the cellular

environment in which tumor cells exist (10). The tumor

microenvironment plays a crucial role in the occurrence,

maintenance, and progression of endometrial cancer (11, 12). In

the normal endometrium, T cells occupy the predominant subset of

immune cells, accounting for 40-80% of CD45+ immune cells

(13, 14). For patients with endometrial cancer, tumor-infiltrating

T cells(TIL)are also the predominant component of the endometrial

cancer microenvironment. Studies have demonstrated that CD8+ T

cells are essential in controlling tumor progression. They achieve

this by recognizing antigens and directly killing cancer cells via

perforin, granzymes, and other cytokines (15). Conversely, CD4+ T

cells coordinate various immune responses, either enhancing or

suppressing the immune defense against cancer cells (16).

Multiple research efforts have underscored the importance of

cytotoxic CD8+ T cells in controlling tumor progression (17, 18).

Pathological studies have confirmed that the presence of CD8+

tumor-infiltrating lymphocytes in endometrial cancer can predict a

better prognosis (19–21). Furthermore, relevant pathological studies

have also demonstrated an inverse correlation between the presence of

CD8+ T cells and histological grade, myometrial invasion, and lymph

node metastasis. This strongly suggests the resistance role of CD8+ T

cells against tumor progression (22). Additionally, the phenomenon

of lower T cell density in advanced endometrial cancer further

supports the notion that tumors are more likely to progress to later

stages when cytotoxic T cell infiltration decreases (23, 24). In

endometrial cancer, CD8+ T cells often exhibit a state of functional

impairment, which may be exacerbated by various inhibitory signals

within the tumor microenvironment (16). This dysfunction could also

be related to the tendency of the endometrium to favor a regulatory

immune environment in its healthy state (25). Furthermore, in

postmenopausal women, while the total number of CD8+ T cells
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increases in endometrial adenocarcinoma, their cytotoxic activity

significantly decreases (26). Considering that most women are at

risk of developing endometrial cancer during or after menopause (27),

the risk of tumor progression is significantly increased. Additionally,

the activity of CD8+ T cells may be significantly reduced due to

bystander effects or interaction-induced exhaustion with malignant

cells, leading to the emergence of an inhibitory tumor

microenvironment (28, 29).

Simply understanding the presence of CD8+ T cells is not

sufficient; it is also essential to delve deeper into their internal

differentiation and gene activation status. Traditional staining

methods are limited to cell identification and cannot provide

information about the intracellular state. Therefore, methods that

can better measure the transcriptome of specific T cell subsets

should be prioritized (30). Simultaneously, this necessitates the

adoption of higher-resolution techniques to study the tumor

microenvironment and CD8+ T cells in endometrial cancer.

Single-cell RNA sequencing (scRNA-seq) allows for the

simultaneous assessment of the full gene expression profiles of

thousands of individual cells within tumor tissue. Based on

characteristic genes, these cells can be classified into specific

subgroups at single-cell resolution. Recent studies have evaluated

prognostic factors in tumors based on single-cell features (31–33).

The tumor microenvironment in endometrial cancer may play a

significant role in prognosis and treatment resistance (34, 35),

Single-cell technologies will help us further understand the

intricacies within. As for T cell subgroups, some studies

recommend assessing the presence based on transcriptomic

activity (30, 36). Some molecular biomarkers used for

immunotherapy have been developed and validated in clinical

practice, including PD-1 or PD-L1 expression levels (37), tumor

mutational burden (TMB) (38, 39) and TILs (40).

However, these methods lack certain standards in practical use

and show fluctuations in predictive efficacy. The effectiveness of

immunotherapy often depends on the degree of immune escape

caused by infiltrating T cells expressing inhibitory receptors (41).

Therefore, in this study, we aimed to elucidate the immune

infiltration characteristics of CD8+ T cells in endometrial cancer.

To identify CD8+ T cell-related genes with high clinical value, we

integrated bulk-seq and scRNA-seq data from endometrial cancer

samples. This approach aimed to elucidate the fundamental

mechanisms of CD8+ T cells in tumor progression, develop new

molecular stratification and prognostic features, and assist in

determining the benefits of different treatment modalities for

patients to achieve maximum clinical benefit.
2 Method

2.1 Data download and processing

We downloaded RNA sequencing data for 578 uterine corpora

endometrial carcinoma (UCEC) cases, along with 542 mutation

datasets and the patients’Masked Copy Number Segment data from

the TCGA database (https://portal.gdc.cancer.gov/). Additionally,
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we accessed the UCSC Xena website (http://xena.ucsc.edu/) to

download clinicopathological characteristics, including age, grade,

TNM stage, and MSI value, as well as clinical outcomes of the

corresponding UCEC patients.

We utilized GEO datasets GSE21882 to validate the prognostic

value of the immune signature, and GSE78220, PRJEB23709, and

IMvigor210 to assess the immune signature’s predictive value for

immunotherapy response. Datasets E-MTAB-11552, GSE120490,

GSE216872, and GSE205209 were employed to explore the

relationship between CD8T cells and the development of

endometrial cancer.

Five primary endometrial cancer patients from GSE173682

were selected for analysis using their scRNA-seq data to

investigate the role of CD8T cells in endometrial cancer.
2.2 Evaluation of immune cell infiltration

The distribution of immune cells in each endometrial cancer

tissue sample is assessed using the CIBERSORT algorithm.

Additional tumor microenvironment components, including

matrix scores and tumor purity, are evaluated with the

ESTIMATE package (42). To quantify the relative abundance of

Tumor-Infiltrating Cells in UCEC patients, the Single-sample Gene

Set Enrichment Analysis (ssGSEA) algorithm was used. This

algorithm, featured in Bindea et al.’s study, provided 29 gene sets

that identify various TIC types (43). Concurrently, a comprehensive

evaluation of the pan-cancer tumor microenvironment immune

function was conducted, incorporating 29 features. These include

angiogenesis, anti-tumor cytokines, co-stimulatory ligands and

receptors, various trafficking characteristics (e.g., granulocyte,

myeloid, effector cell), M1 characteristics, myeloid-derived

immunosuppression, MHC class I and II molecules, tumor

proliferation rate, and more. It also considers interactions within

the microenvironment and involves cellular components like

cancer-associated fibroblasts, B cells, effector cells, endothelial

cells, macrophages, dendritic cells, NK cells, T cells, and

regulatory T cells (44). Additionally, T cell subpopulations were

identified using ImmuCellAI, providing a detailed view of their role

within the tumor microenvironment (45). Kaplan-Meier (KM)

curves were plotted to explore the correlations of immune cell

infiltration level with overall survival (OS) and disease-free

survival (DFS).

Due to the dual nature of immune function, which can both

promote and inhibit tumor progression, we utilized enrichment

scores from 29 pan-cancer tumor microenvironment immune

functions. Hierarchical clustering was employed to categorize the

samples into two groups: one characterized by high expression of

pro-inflammatory markers and the other by high expression of

inhibitory markers. Within these groups, samples with enrichment

scores exceeding the group mean were classified as immune-

activated in the pro-inflammatory group, and conversely, those

below the mean in the inhibitory group were considered

immune-suppressed.
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We conducted differential gene expression analysis on TCGA

UCEC RNAseq data between the activated and suppressed groups

(relative to tumor-adjacent tissue) using the R limma package. The

selection criteria for differentially expressed genes (DEGs) were set

as an absolute log fold change (logFC) greater than 2 and an

adjusted P-value of less than 0.05.
2.3 Weighted gene coexpression network
analysis

Weighted Gene Coexpression Network Analysis (WGCNA) is a

systematic biological method used to explore patterns of genetic

association across various samples, aiming to identify clusters of

genes with high co-variation. Initially, we performed a scale-free

topology analysis to determine an appropriate soft thresholding

power for network construction. Using this power, we constructed

an adjacency network matrix among genes.

Subsequently, we calculated the topological overlap matrix and

its corresponding dissimilarity from the adjacency matrix. The

dissimilarity-based clustering of the topology matrix led to the

generation of different gene modules through adaptive branch

pruning of hierarchical clustering dendrograms, maintaining a

specified minimum number of modules.

Finally, we assessed the correlations between these gene

modules and clinical traits using Pearson correlation analysis. We

focused on and selected the gene module that exhibited the

strongest correlation with CD8+ T cell presence, potentially

linking it to key immunological behaviors in the study context.
2.4 Establishment of risk model for the
prognosis of EC

We utilized the clinical data of patients with endometrial cancer

from The Cancer Genome Atlas (TCGA) database. Univariate Cox

regression analysis was applied, and resampling was conducted 1000

times within the dataset to identify genes associated with prognosis.

Subsequently, Least Absolute Shrinkage and Selection Operator

(LASSO) Cox analysis and multivariate Cox regression analysis were

further carried out. The regularization parameter was determined

through the cross-validation method. After 10 rounds of cross-

validation, a curve was plotted between the logarithm of the

regularization parameter l and the partial likelihood deviation. The

l value corresponding to the minimum partial likelihood deviation was

determined as the optimal regularization parameter, and the

corresponding regression coefficients were extracted. Genes

corresponding to non-zero regression coefficients were obtained, and

these genes were used to construct a multivariate Cox proportional

hazards model. The stepwise regression method was employed to

optimize the model, with variables selected bidirectionally. These

computations were implemented using the R package glmnet.

The formula for calculating the risk score is as follows:

Risk Score=coef1×exp1+coef2×exp2+…+coefn×expn
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where “coef” represents the coefficient, “coefn” is the coefficient

related to the survival of the gene, and “expn” denotes the expression

level of the gene. Patients were categorized into low-risk and high-risk

groups based on the median value of the risk score among

endometrial cancer patients. Kaplan-Meier curve analysis, time-

dependent receiver operating characteristic (ROC) curves, and the

area under the curve (AUC) were used to evaluate the sensitivity and

specificity of the model for survival prediction (46).
2.5 Predictive nomogram establision

We incorporated clinical characteristics of endometrial cancer

patients, including age, stage, and grade, into the risk model for

both univariate and multivariate Cox regression analysis to

determine if the risk model is an independent variable.

Additionally, we utilized clinical characteristics and the risk

model to construct a nomogram. The Hosmer-Lemeshow test was

used to generate a curve supporting the consistency between

predicted results and actual outcomes, demonstrating the

predictive ability of the nomogram (47).
2.6 Functional analyses based on the risk
model

The DEGs were first identified between 2 groups with different

scores. GSEA, a method designed to assess the concerted behavior

of functionally related genes forming a set, was carried out on the

DEGs to reveal underlying pathways involved in tumor biology

behavior using the R “ClusterProfiler” package.
2.7 Response to immunotherapy and
chemotherapy in clusters

We utilized the maftools software package to process Mutation

Annotation Format (MAF) data of endometrial cancer patients, as

mutation burden and microsatellite instability are important

indicators related to tumor immunity.

Furthermore, we obtained the Immune Phenotype Score (IPS)

of endometrial cancer patient tumor samples from The Cancer

Immunome Atlas (TCIA) (https://tcia.at/home) to infer patient

response to immunotherapy by comparing these indicators

between two subgroups (48, 49). We obtained scores related to

immune dysfunction and exhaustion from the Cancer Immunome

Dy s f un c t i o n and Ex c l u s i o n (T IDE ) t o o l ( h t t p : / /

tide.dfci.harvard.edu) (50). Using the R package Easier, we

obtained scores predicting patient response to immunotherapy

and compared them between two subgroups, along with scores

from a series of previous studies (51). We downloaded datasets

from the GEO database containing immunotherapy efficacy and

survival data, computed model scores within this dataset, and

compared the scores with patient response and survival. Finally,

we obtained the activity intensity of different steps in immune
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activation in TCGA samples from the Tumor Immune Profiling

(TIP) website, estimating the relationship between scores and

different immune activation steps (52).
2.8 Anticancer drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) database

(https://www.cancerrxgene.org/) and The Cancer Therapeutics

Response Portal(CTRP) (http://portals.broadinstitute.org/ctrp/)

was accessed, and using these data to calculated the predicted half

maximal inhibitory concentration (IC50) values of commonly used

anticancer drugs. The IC50 was compared between the two

groups (53).
2.9 PARP inhibitor response prediction

According to the literature, genetic and epigenetic alterations of

ARID1A, ATM, ATR, BAP1, BARD1, BLM, BRIP1, CHEK1/2,

FANCA/B/C/D2/E/F/G, MRE11A, NBN, PALB2, RAD50, RAD51,

RAD51B, and WRN play a crucial role in the Homologous

Recombination (HR) mechanism. Clinical trials have suggested

that PARP inhibitors are more active in BRCA-mutated patients,

followed by HR-deficient (HRD) and HR-proficient (HRP)

subgroups. We then evaluated the mutation frequencies of HRD-

related genes between different groups.
2.10 Single-cell analysis

The raw single-cell expression matrix underwent quality control

filtering by removing cells with mitochondrial gene percentage > 20%

and total expressed gene counts < 300, UMI < 500, and UMI >

50,000. Batch effects between samples were eliminated using the R

package harmony. Dimensionality reduction was performed using

the “RunUMAP” function in the R package Seurat (version 4.1.0)

with parameters reduction = “harmony” and dims = 1:50. For the

remaining cells , global scaling normalization method

“LogNormalize” was applied, which normalizes feature expression

for each cell based on total expression, multiplying by a scale factor

(default is 10,000), and log-transforming the result. Principal

component analysis was conducted on the top 2000 variable genes.

Shared nearest neighbor modularity optimization clustering

algorithm was utilized with a resolution of 1.2, using the

“FindClusters” function to identify cell clusters. Non-linear

dimensionality reduction using Uniform Manifold Approximation

and Projection (UMAP) was employed for visualization and filtering

of clustered single-cell RNA sequencing data. Differential expression

genes were identified using the FindAllMarkers function in Seurat,

and Wilcoxon algorithm was applied to compare differential genes

between cell clusters. Marker genes were selected based on adjusted

p-value (Wilcoxon rank-sum test) < 0.05 and |logFC| > 0.25 (54, 55).

Gene set enrichment analysis: The clusterProfiler R package was

used to perform gene ontology (GO) and Kyoto Encyclopedia of
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Genes and Genomes (KEGG) enrichment analysis on the

differentially expressed genes between cell clusters (56).

We utilized SCENIC to infer the gene regulatory network (GRN)

of T cells. Using the human hg38 reference genome, we searched for

DNA motifs within a range of 10kb upstream and downstream of the

transcription start sites. This step aimed to define the scope of the GRN

establishment. These algorithms predict regulatory relationships

between genes based on gene motifs and gene expression data. The

resulting data were standardized (z-score) across cell clusters and

overlaid onto a diffusion map to reveal the GRN structure in

different cell types and clusters. The proportion of significantly

upregulated genes (or regulons) from a given set of genes was

evaluated using AUC scores (57).

CellChat utilizes network analysis and pattern recognition

methods to predict cell signaling transmission. In order to

identify potential interacting cell types, the CellChat method

was employed. The database was set to “ChatDB.human”, and

default parameters were used (FDR-adjusted p-value < 0.05).

The “computeCommunProb” function was executed to infer the

probability and strength of cell-cell communication. The

“mergeCellChat” function was used to combine CellChat objects

for each stage (58).

Initially, a Monocle object was created using the original UMI

count gene-cell matrix via the newCellDataSet function. The

lowerDetectionLimit was set to 0.1, while the expressionFamily

was configured to negative binomial size. Subsequently,

d imensional i ty reduct ion was carr ied out us ing the

reduceDimension function, employing the DDRTree method with

max_components set to 2. Following dimensionality reduction,

differential gene testing was conducted to identify genes

exhibiting significant expression differences either temporally or

across different cell states. Additionally, cytotrace was utilized to

assess the differentiation hierarchy among various subtypes of CD8

+T cells (59).
2.11 Cell culture

EC cell lines (HEC‐1A and Ishikawa) were obtained from the

China Center for Type Culture Collection (CCTCC). HEC‐1A and

Ishikawa cells were cultured with Dulbecco’s modified Eagle’s

medium (DMEM; Gibco) supplemented with 10% (v/v) fetal

bovine serum (FBS; Gibco), and 1% penicillin-streptomycin

(MRC, Jintan). Cells were cultured in a thermostatic incubator at

37°C and 5% CO2. Cells were harvested for further experiments

when they reached 70%–80% confluence.

Lipofectamine2000 (Invitrogen) was used to transfect the

Plasmids into cells. Lentivirus containing small hairpin RNA

(shRNA) targeting human ASB2 and control shRNA lentivirus

were purchased from Shanghai Genechem Co.Ltd. Cells were

cultured in 6-well cell culture plates (2 × 105 cells per

well).Plasmids were transfected into Ishikawa while shRNA were

transfected into HEC‐1A according to the manufacturer’s protocol.

The effect of transfection was assessed by qPCR analysis and

Western blotting.
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2.12 Cell viability assays

HEC‐1A and Ishikawa were seeded into 96-well microplates at a

density of 2000 cells per well. Additionally, 200 mL of PBS was used

around the edges of the 96-well plate to prevent edge effects. After

culturing the cells for 24, 48, and 72 hours, the CCK8 reagent

(Vazyme) was diluted in serum-free medium at a ratio of 1:10. Care

was taken to protect it from light. The mixture was then incubated

in a CO2 incubator for 2 hours, after which the absorbance at 450

nm was measured using an enzyme marker.
2.13 Wound healing assay

Cells were seeded into a 6-well plate at a density of 1×10^5 cells

per well and cultured to 90% confluence for the scratch assay. A

scratch was made in the middle of each well using a 200 ml pipette tip
guided by a ruler. Subsequently, each well was washed with 1 mL PBS

to remove detached cells and debris, and the initial scratch width was

photographed and recorded under a fluorescence inverted

microscope. Following this, cells were cultured in serum-free

medium, and images were captured with an Olympus microscope

after 24, 48, and 72 hours of incubation. The scratch width was

measured by drawing straight lines along the healing edge of the cells

using PS software, and the scratch healing rate was calculated. The

scratch healing rate is proportional to the cell migration ability.
2.14 Transwell assay

An 8µm pore size 24-well Transwell chamber (Corning) was

used, coated with Matrigel matrix (Corning). 1×10^5 EC cells were

seeded into the upper chamber in serum-free medium, while the

lower chamber contained medium with 10% FBS as a

chemoattractant. After 48 hours of incubation, cells in the lower

chamber were fixed in 4% paraformaldehyde and stained with 0.1%

crystal violet. Cells penetrating the lower chamber were randomly

photographed and counted under a microscope.
2.15 RNA Isolation and qPCR

Total RNA was extracted using the RNAsimple Total RNA Kit

(TIANGEN, Beijing, China) and reverse-transcribed into cDNA

using the HiScript SuperMix (Vazyme). Subsequently, RT-qPCR

was performed using the ChamQ Universal SYBR qPCR Master

Mix (Vazyme) on a CFX96™ instrument (Bio-Rad Laboratories,

Inc.). mRNA levels were calculated using the 2^−DCt method. The

primer sequences used were as follows:

ASB2-F 5′-GCGACCGCTCAGAGTTACTG-3′
ASB2-R 5′-TCTCGCCTGTGATGACTCAG-3′
CCL5-F 5′-GAGTATTTCTACACCAGTGGCAAG-3′
CCL5-R 5′-TCCCGAACCCATTTCTTCTCT-3′
CD3G-F 5′-GGGATGTATCAGTGTAAAGG-3′
CD3G-R 5′-CAGCAATGAAGTAGACCC-3′
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BATF-F 5′-AAAGCGAGCGACATGTCCCT-3′
BATF-R 5′-TTTTCTTTAAAGCATTTATT-3′
KIAA1755-F: 5′-ATGTCTCTCGCCGTCTCCAG-3′
KIAA1755-R: 5′-CGGATGCTGTTGCTATGGCC-3′
GAPDH-F: 5′-ACCCGCCCTATCTCAACTACC-3′
GAPDH -R: 5′-AGGACACCATAATGACAGCC-3′
2.16 Western blotting

Cells or tissues were lysed with RIPA lysis buffer (Servicebio) and

mixed with 5× loading buffer, followed by boiling for approximately 10

minutes in a water bath at 100°C. Prepared protein samples were

separated by 10% SDS-PAGE at constant voltage and transferred onto

PVDF membranes. After blocking with 5% skim milk (Servicebio) for

about 1 hour at room temperature, themembranes were incubatedwith

primary antibodies overnight at 4°C. Subsequently, themembraneswere

incubatedwithhorseradishperoxidase-conjugatedsecondaryantibodies

(ThermoFisherScientific,1:10,000)for1houratroomtemperature.After

repeatedwashingwithTBST,proteinbandsweredetectedusing theECL

chemiluminescence ultra-sensitive chromogenic reagent (Vazyme). The

primary antibodies used were those against ASB2 (PA5-29476,

Invitrogen, diluted 1:1500) and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH; 10494-1-AP, proteintech, diluted 1:20,000).
2.17 Statistical analysis

The Student’s t - test and F - test were used to determine the

significant differences and variances between groups respectively.

Pearson’s correlation analysis was used to conduct the correlation

analysis. The comparison of multiple and paired non - parametric

continuous variables was achieved by the Kruskal - Wallis test and the

Wilcoxon test respectively. The Kaplan -Meier (KM)method was used

toplot the survival curves.Thebootstrapcross - validationwasapplied to

evaluate the predictive power of various regression modeling strategies.

A calibration curvewas plotted in the bootstrap samples and then tested

in thesubjectsnot included in thebootstrapsamples.AP-value less than

0.05 was considered statistically significant. All statistical analyses were

performed using the statistical software R version 4.0.5.
3 Result

3.1 EC TME immune cells infiltration
analysis

TME is pivotal in the onset and progression of cancer. We

ana lyzed the charac te r i s t i c s o f the tumor immune

microenvironment in each sample of endometrial cancer using

various methodologies.

Employing the CIBERSORT algorithm and feature genes of 29

types of cells, we estimated the distribution of immune cells in each

sample. Kaplan-Meier survival analysis confirmed the anti-tumor

effect of CD8+ T cell infiltration, indicating that patients with
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higher levels of CD8+ T cell infiltration had significantly longer

OS and PFS (P < 0.05) (Figures 1A–D).

Interestingly, analysis across multiple GEO datasets showed that

CD8+ T cell infiltration did not significantly change in metastatic and

recurrent patients. However, in the GSE120490 dataset, metastatic

patients exhibited significantly higher levels of CD8+ T cells compared

to non-metastatic patients (Supplementary Figure 1).

Regarding the molecular subtypes of endometrial cancer, the density

plot of CD8+ T cells from TCGA data indicated significant infiltration

only in the POLE mutation group, while the other three subtypes

showed no significant differences in CD8+ T cell infiltration (Figure 1E).

Using ESTIMATE to assess stromal and immune scores, as well as

calculatetumorpurityforeachsample,weobservedsignificantdifferences

inimmunescores,stromalscores,andtumorpuritybetweensampleswith

high and low levels of CD8+T cell infiltration (Figure 1F).

We evaluated the enrichment scores of 29 descriptors of the

tumor microenvironment. Through heatmap analysis, a positive

correlation was found between CD8+ T cell infiltration levels and

other anti-tumor immune activities, such as antitumor cytokines,

co-stimulatory ligands, and co-stimulatory receptors. In contrast,

factors associated with tumor progression like angiogenesis, cancer-

associated fibroblasts, and the matrix showed no correlation or a

negative correlation with CD8+ T cell infiltration (Figure 1G).
3.2 Identification of CD8+ T cell activation-
related gene

Using enrichment scores that described 29 tumor

microenvironment features, subgroups at different hierarchical

levels were delineated through hierarchical clustering. These

subgroups were then analyzed against the average pathway

activity within each to distinguish between an immune activation

group and an immune suppression group. Differential expression

analysis between these groups led to the identification of 1,268

DEGs listed in the Supplementary Material.

Subsequently, through the ImmuCellAI website, we determined

the proportions of various T cell subtypes in endometrial cancer

patients from the TCGA database. Leveraging these DEGs, key

modules most correlated with CD8+ T cells in the TCGA cohort

were identified. During the construction of the co-expression

network, a soft thresholding power of 3 was selected, achieving a

scale-free topology fitting index of 0.9. This process culminated in

the formation of five modules through dynamic adaptive branch

pruning, with the blue module being the most significantly

correlated with CD8+ T cells (r=0.26, P<0.05) (Figure 2A).
3.3 NMF analysis of CD8+ T cell activation-
related gene features

The gene features related to CD8+ T cell activation, identified

earlier, were analyzed using Non-negative Matrix Factorization (NMF)

clustering to explore their relationships with the clinical characteristics of

endometrial cancer. At a clustering variable of (k = 2), the highest intra-
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group correlation was observed, suggesting that this represents the most

stable classification. This finding was further validated by t-SNE analysis,

which confirmed significant differences between the two groups.

Clinically, the differences between these two groups were

profound, with patients in Type 1 exhibiting significantly lower

overall survival and disease-free survival compared to those in Type

2. This indicates the existence of two distinct states of CD8+ T cell

activation-related genes: one that promotes activation and is

favorable for survival, and another that has the opposite effect

(Figure 2B, Supplementary Figure 2).
3.4 Establishment and external validation
of CD8+ T cell activation model

The LASSO Cox analysis is helpful for improving the prediction

accuracy of statistical models while reducing the risk of overfitting.

Therefore, we first applied univariate Cox proportional hazards
Frontiers in Immunology 07
regression to identify independent prognostic factors. Subsequently,

a LASSO Cox analysis with ten-fold cross-validation was carried out

to calculate the regression coefficients of the prognostic factors and

further determine the genes to be included in the model. Finally, a

multivariate Cox proportional hazards model was constructed using

the included genes, and the model was optimized by the stepwise

regression method. In addition to evaluating this model using a

separate external dataset, we also improved the reliability of the

prognostic model by repeated sampling within the group during the

process of model construction. The predictive prognostic model was

constructed, comprising CD8+ T cell activation-related genes—ASB2,

BATF, CD3G, KIAA1755, and CCL5—using lasso regression analysis.

The linear prediction model was established based on the weighted

regression coefficients of these five prognostic-related genes:

R i s k S c o r e = (− 1 . 5 9 8 9 ×ASB 2 ) + (− 2 . 7 8 2 2 ×BATF )

+(−0.5837×CD3G)+(−1.2417×KIAA1755)+(0.9590×CCL5).

In this model, CCL5 was the only gene showing a significant

positive correlation with the risk score, whereas ASB2, BATF,
FIGURE 1

EC TME immune cells infiltration analysis. (A–D) Kaplan-Meier survival analysis of patient survival based on CD8+ T cell infiltration. A two-sided log-
rank test is used to compare patient survival between the two groups. (A) The infiltration level of CD8+ T cells was calculated using the CIBERSORT
algorithm, and the survival data were represented by OS. (B) The infiltration level of CD8+ T cells was calculated using the CIBERSORT algorithm,
and the survival data were represented by PFS. (C) The infiltration level of CD8+ T cells was calculated using the ssGSEA algorithm, and the survival
data were represented by OS. (D) The infiltration level of CD8+ T cells was calculated using the ImmuCellAI algorithm, and the survival data were
represented by OS. (E) Density plot of CD8+ T cells between TCGA type. (F) Immune scores, stromal scores, and tumor purity between samples with
high and low levels of CD8+ T cell infiltration. (G) A heatmap was used to display the anti - tumor and pro - tumor immune characteristics of the
tumor microenvironment. The grouping was based on a comprehensive consideration of anti - tumor and pro - tumor factors.
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CD3G, and KIAA1755 exhibited significant negative correlations

with the risk coefficient.

To confirm the stability and reliability of our model, we used the

TCGA dataset as the internal training set and GSE21882 as the external

validation set. Patients were divided into low-risk and high-risk groups

based on the median value of the risk score. The predictive ability of the

modelwasvalidatedusingKaplan-Meiersurvivalanalysisacross theEEC

set, SECset, and the entireTCGAdataset (Figures 2C,D, Supplementary

Figure 2). Results showed significantly longer OS in the low-risk group

compared to the high-risk group. Time-related ROCanalysis confirmed

the consistent prognostic accuracy of the risk score, demonstrating the

model’s robust predictive performance (Figures 2E, F).
3.5 Validation of the CD8+ T cell activation
model as an independent prognostic
indicator and nomogram construction

In this study,548endometrial cancerpatientswithclinical indicators

such as age, tumor staging, and grading were analyzed. We conducted

univariate andmultivariateCoxregressionanalyses toassesswhether the

CD8+ T cell activationmodel could serve as an independent prognostic

factor. The hazard ratio (HR) was 1.289 with a 95% confidence interval
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(CI) of 1.181-1.407 in the univariate Cox regression analysis, and anHR

of 1.217with a 95%CI of 1.112-1.331 in themultivariate Cox regression

analysis, bothwithp-values<0.001.These results indicate that theCD8+

T cell activation model is independent of clinical features such as age,

tumor staging, and grading, and qualifies as an independent prognostic

indicator (Figures 3A,B).Wealso evaluated the independenceof the risk

model using GEO dataset analyses, which similarly demonstrated that

the risk coefficient is independent of pathological staging and tumor

grading (Supplementary Figure 3).

A nomogram was successfully constructed that incorporates risk

scores and clinical features, including age, tumor grading, and staging

(Figure 3C). Calibration curves for 3-year and 5-year OS showed high

consistency between the predicted mortality rates and actual mortality

rates, underscoring the nomogram’s excellent predictive

ability (Figure 3D).
3.6 Multi-omics features of the CD8+ T
cell activation model

Using the TCGA database, we visualized and analyzed somatic

mutation data for high-risk and low-risk groups using the maftools
FIGURE 2

Identification and establishment of CD8+ T Cell Activation Model. (A) WGCNA showed blue module being the most significantly correlated with CD8
+ T cells. (B) Consensus matrix when k = 2. The grid where rows and columns intersect represents an independent sample. Consistency is
represented by the color of the matrix, from dark blue representing 1 to white representing 0. (C, D) Kaplan-Meier survival analysis. (C) entire TCGA
set. (D) GSE21882 set. (E) Time-related ROC analysis of TCGA. (F) Time-related ROC analysis of GSE21882.
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package. The visualization displays the top 20 driver genes with the

highest mutation frequencies in high and low subgroups. We identified

five genes showing discrepancies between the two groups, with

differences in mutation probabilities for the same genes, indicating

significant divergence in tumormechanisms between the subtypes. The

three genes with the highest mutation frequencies in the high-risk (HR)

group were PTEN (58%), TP53 (44%), and PIK3CA (47%). In the low-

risk (LR) group, the most frequently mutated genes were PTEN (72%),

ARID1A (52%), and PIK3CA (52%). This also explains the

concentrated appearance of SEC in the HR group (Figures 4A, B).

Further analysis of the mutations in genes included in our model

revealed that, except for KIAA1755, the mutation probabilities of other

genes were relatively low, suggesting their differential expression might

primarily occur at transcriptional and post-transcriptional stages. Co-

linearity analysis confirmed positive correlations between mutations in

model genes and mutations in PTEN, ARID1A, and PIK3CA, but these

were not significantly associated with TP53 mutations. These findings

indicate that model genes are relatively stable in endometrial cancers

driven by TP53 mutations (Figure 4C).

Using the GISTIC 2.0 data from UCEC, we demonstrated the

changes in gene mutations in the CD8+T cell activation model.

KIAA1755 and ASB2 are the two most frequently mutated genes,
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but their mutation rates are only 8% and 4%, respectively. Similar to

mutations, copy number increases or decreases are also rare,

indicating that the chromosomes of these genes are relatively

stable (Figures 4D, E).

ER, PR, PAX8, and P16 expression are commonly used in the

pathological examination of endometrial cancer to guide treatment

selection. We examined whether the combined use of the CD8+ T

cell activation model with the expression of these proteins could

better predict patient survival. Proteomics studies confirmed that all

three proteins were associated with prognosis. Consequently, we

employed LASSO Cox analysis to construct a protein prediction

model using the TCGA database, combining it with the CD8+ T cell

activation model. We found that survival outcomes for the high-risk

group in both the protein model and the RNA high-risk score group

were significantly worse than the other three groups, while the

survival of the low-risk group in both models was the best, with no

significant differences observed between the other two groups. This

indicates that the combined use of both models can more effectively

predict patient prognosis (Figures 4F, G).

Lastly, based on methylation data from TCGA, we analyzed the

differences in methylated sites between the high and low CD8+ T

cell groups, as well as between the high and low-risk groups of the
FIGURE 3

Validation of the CD8+ T cell activation model as an independent prognostic indicator and nomogram construction. (A) univariate Cox regression
analyses of CD8+ T cell activation model. (B) multivariate Cox regression analyses of CD8+ T cell activation model. (C) A nomogram shows the
score correspondence table. The predictive factors include age, disease stage, tumor grade, and risk score. (D) Calibration curves for 1-year,3-year
and 5-year overall survival.
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CD8+ T cell activation model. The results showed that differences

in methylation were more significant between the two groups of the

CD8+ T cell activation model, indicating that the model can better

reflect the heterogeneity among endometrial cancer patients and

distinguish the origins of transcriptional pre-regulation that may

influence differences in immune activity (Figures 4H, I).
3.7 Function enrichment analysis of the
CD8+ T cell activation model

To further delineate the functional disparities between the two

subgroups of endometrial cancer patients, we employed Gene Set

Variation Analysis (GSVA) to identify genes that were upregulated

and downregulated between the groups. This analysis was pivotal in
Frontiers in Immunology 10
uncovering the underlying biological processes differentiating

the subgroups.

Following GSVA, we conducted immune pathway analysis to

gain insights into the affected biochemical pathways. The results

indicated that the model genes are strongly linked to several critical

signaling pathways, including cell adhesion molecules, chemokine

signaling pathways, B cell receptor signaling pathways, and T cell

receptor signaling pathways (Figure 5A). These pathways are

integral to the modulation of immune responses and cellular

interactions within the tumor microenvironment, highlighting

their potential role in tumor progression and patient prognosis.

Further analysis revealed distinct pathway enrichments between

the two risk groups. Samples from the high-risk group showed

significant enrichment in pathways involved in alpha-linolenic acid

metabolism and the cell cycle. These pathways are often associated
FIGURE 4

Multi-omics features of the CD8+ T cell activation model. (A, B) Genomic changes associated with CD8+ T cell activation model in EC. (A) Waterfall
Plot displays the top 20 driver genes with the highest mutation frequencies in high groups. (B) Waterfall Plot displays the top 20 driver genes with
the highest mutation frequencies in low groups. (C) Heatmap shows the collinearity analysis of model gene mutations with PTEN, ARID1A, and
PIK3CA. Green represents the co - occurrence of mutations, and dark yellow represents mutual exclusivity. (D) Bar chart shows the changes in gene
copy numbers in the CD8+ T cell activation model. (E) Waterfall Plot displays the changes in mutations of genes from the CD8+ T cell activation
model. (F) Kaplan-Meier analysis of patient survival based on protein prediction model, the levels of ERALPHA, PAX8, P16INK4A, and PR were
obtained from the TCGA database. (G) Kaplan-Meier analysis of patient survival for combining protein model and the CD8+ T cell activation model.
(H) Volcano plot showed differences in methylation between the high and low CD8+ T cell groups. (I) Volcano plot showed differences in
methylation between the high and low-risk groups of the CD8+ T cell activation mode. *, P < 0.01, proving that the correlation between the two
mutations is reliable.
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with rapid tumor growth and aggressive cancer behavior. In

contrast, pathways related to spliceosomes and RNA degradation

were more actively engaged in the low-risk group (Figure 5B).
3.8 Predicting and validating the efficacy of
immunotherapy

Immune checkpoint blockade (ICB) therapy, a critical category of

immunotherapy, operates by inhibiting signals that suppress T-cell

activation, thereby facilitating tumor-reactive T-cells to effectively

combat tumors (60).In-depth analyses were performed to explore

differences in the immune microenvironment among subtypes of the

CD8+ T-cell activation model. We found that both TMB and

Microsatellite Instability (MSI) were elevated in the high-risk group

compared to the low-risk group, suggesting a greater likelihood of

response to immunotherapy in the high-risk group (Figures 6A, B).

Using the TCIA, we calculated IPS to gauge the responsiveness

of endometrial cancer patients to immunotherapy. Despite similar

levels of PD-L1 and CTLA4 positivity, the low-risk group had

higher IPS, indicating potential sensitivity to immune checkpoint

therapy. And another scoring method TIDE also proves that the

low-risk group has a higher probability of responding (Figure 6C,

Supplementary Figure 4).

To further validate the utility of risk scoring in predicting

immunotherapy outcomes, three patient cohorts undergoing

immunotherapy were analyzed. Consistently, the high-risk group

showed lower survival rates, while the low-risk group had higher

probabilities of clinical remission and complete remission,
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underscoring a correlation between lower risk scores and favorable

responses to immunotherapy (Figures 6D–F, Supplementary Figure 4).

In addition, we compared the immunological activities among

different groups using the TIP score. The low-risk group showed

increased activities related to the recruitment of NK cells and CD8+

T cells, as well as enhanced functions of the chemokine system,

indicating a greater potential in mobilizing tumor-infiltrating

immune cells. The evaluation of CD8+ T cell infiltration among

different groups revealed a significant increase in CD8+ T cell

infiltration in the low-risk group, strongly confirming the enhanced

recruitment (Figure 6G, Supplementary Figure 4). However, further

studies are needed to assess the possible differences in tissue-

resident immune cells among different groups.

The expression analysis of immune checkpoints and major

histocompatibility complex (MHC) class I molecules revealed

significant differences: Although the high-risk group generally had

higher expression levels of various immune checkpoints, the

expression of MHC class I molecules was lower, suggesting a

changed immune landscape. In contrast, the low-risk group had

higher expression levels of identified immune checkpoint targets,

such as PDCD1, (TIGIT), HAVCR2, ICOS, and CTLA4, implying

that there might be both immune activation and immune

exhaustion in this group (Figures 6H, I). Scoring the T cell

cytotoxicity and IFN-g in the high-risk and low-risk groups, the

results showed that the scores in the low-risk group increased,

supporting the enhanced anti-tumor effect and the occurrence of

immune activation in the low-risk group (Supplementary Figure 5).

By deconvoluting the TCGA data according to the annotated single-

cell data of EC, it was found that the tissue-resident memory (TRM)
FIGURE 5

Function enrichment analysis of the CD8+ T cell activation model. (A) GSVA of immune pathway analysis between HR and LR. (B) GSEA analysis
between HR and LR.
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cells in the low-risk group increased significantly (Supplementary

Figure 5). Meanwhile, within the single-cell data, the TRM cells had

the lowest risk scores. Considering that TRM cells mainly play an

anti-tumor role in EC (61, 62), this may partly explain why the low-

risk score group has a better prognosis.
3.9 Evaluation of the CD8+ T cell
activation model for chemotherapy
sensitivity and DNA repair pathway
mutations

Chemotherapy remains a pivotal treatment for endometrial

cancer. To ascertain the clinical utility of the CD8+ T cell

activation model in guiding chemotherapy, we leveraged data

from GDSC and CTRP. Using the Oncopredict algorithm, we

calculated the half-maximal inhibitory concentration (IC50) of
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common chemotherapy drugs for each patient sample, which

helped predict their sensitivity to these drugs.

The analyses revealed that patients in the low-risk group

generally exhibited greater sensitivity to most common

chemotherapy drugs, with the notable exception of docetaxel,

compared to those in the high-risk group (Figures 7A–F).

Further supporting personalized treatment strategies, research

indicates that tumors with BRCA1/2 mutations or those

characterized by homologous recombination deficiency may

benefit more from treatment with PARP inhibitors (63).

In our study, we extensively analyzed the activation and

mutation status of the homologous recombination (HR) and

mismatch repair (MMR) pathways, crucial for DNA repair

mechanisms, across various risk groups in endometrial cancer.

We found significant activation of both HR and MMR pathways

in the high-risk group (Figure 7G). Additionally, we detected

frequent mutations in genes linked to HR repair, such as
FIGURE 6

Predicting and validating the efficacy of immunotherapy. (A) Box plot of TMB between high-risk group and low-risk group. (B) Bar plot of MSI
between high-risk group and low-risk group. (C) Box plot of TIDE score between high-risk group and low-risk group. (D–F) Kaplan-Meier analysis of
patient survival based on CD8+ T cell activation model from three patient cohorts undergoing immunotherapy. (D) GSE78200. (E) imv210. (F)
PRJEB23709. (G) Heatmap shows the differences in TIP scores between the high and low groups. The TIP score represents a series of cell
recruitment steps. (H) Heatmap displays the differences in the expression of immune checkpoints between the high and low groups. (I) Box plot
illustrates the differences in the expression of MHC class I molecules between the high and low groups. ***, P < 0.001; ****, P < 0.0001, vs High
risk group.
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ARAD1A, ATR, and ATM, in both risk groups. Notably, the gene

FANCD2 showed a higher mutation frequency in the high-risk

group, while BRIP1 was more commonly mutated in the low-risk

group (Figures 7H, I). Despite these differences, the overall

mutation spectra between the two groups remained quite similar.

Interestingly, the low-risk group, characterized by a greater number

of mutations and less active homologous recombination pathways,

appears more likely to benefit from PARP inhibitors clinically.

However, it’s important to consider that drugs targeting various

pathways may still provide effective treatment options for both

groups. The varied response to different therapeutic agents

underscores the complexity of endometrial cancer and highlights

the necessity of a personalized approach in the treatment regimen.
3.10 scRNA-seq analysis of endometrial
cancer reveals CD8+ T cell subtypes and
their functional states

In our study, we analyzed 10x scRNA-seq data from five

endometrial cancer samples retrieved from the GSE173682
Frontiers in Immunology 13
dataset. We initially focused on the top 2000 highly variable

genes, which were visualized in the analysis. Dimensionality

reduction through UMAP analysis enabled the identification of

31 distinct cell subtypes within these samples.

Further annotation and visual clustering of these

dimensionality-reduced cell types using known cell subtype

molecular markers allowed us to discern 8 major cell types,

including myeloid cells, endothelial cells, smooth muscle cells,

epithelial cells, B cells, MAST cells, stromal cells, as well as T and

NK cells (Figures 8A, B).

For T lymphocytes, detailed clustering revealed subsets such as CD8

+ and CD4+ T cells. We further characterized the states of these T cells:
- CD8+ T cells were subdivided into:

- CD8+TEM (T effector memory): Expressing GZMA, GZMB,

GZMH, GZMK, and NKG7.

- CD8+TRM (T resident memory): Marked by ITGAE, CCL4,

and XCL1.

- CD8+TCM (T central memory): Characterized by CD28

and IL7R.
FIGURE 7

Evaluation of the CD8+ T cell activation model for chemotherapy sensitivity and DNA repair pathway mutations. (A–F) IC50 of common
chemotherapy drugs for each patient sample, using box plot compare the sensitivity between two groups. (A) Cisplatin. (B) Docetaxel. (C)
Doxorubicin. (D) Gemcitabine. (E) Paclitaxel. (F) Rapamycin. (G) The bar plot demonstrates the KEGG pathway enrichment of HR and mismatch
repair pathways between HR and LR. (H, I) Genomic changes associated with CD8+ T cell activation model in EC. (H) mutations in genes associated
with HR repair in the high-risk group. (I) mutations in genes associated with HR repair in the low-risk group. *, P < 0.05; ****, P < 0.0001, vs High
risk group.
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Fron
- CD8+Tex (T exhausted): Identified by expression of CTLA4,

PDCD1, and LAG3.

- MAIT (Mucosal-associated invariant T): Defined by ZBTB16

and KLRB1.

- CD4+ T cells were categorized into:

- CD4+TNaïve: Positive for TCF7, IL7R, and CCR7.

- CD4+TEM: Expressing CTLA4, PDCD1, and HAVCR2.

- CD4+Treg (T regulatory): Defined by FOXP3 and

TNFRSF4 (Figure 9C).
Additionally, we inferred cell-cell communication networks,

identifying that the MHC-I signaling pathway played a crucial

role, particularly in relation to T cell interactions (Figure 8D).

The presence of MHC-I is vital for antigen presentation to T

lymphocytes, with HLA-B and HLA-C showing strong activity.

Notably, the activity of these molecules was enhanced in T cells
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corresponding to lower CD8+ T cell activation model scores,

suggesting a direct influence of these scores on the tumor-killing

function of CD8+ T cells.

Transcription factor activity was analyzed using SCENIC in

different CD8+ T cell subgroups:

TEM and Tex subgroups showed consistent activity in certain

transcription factors, with REST, FOSB, RAD21, UBTF, and MXI1

activated in the TEM subgroup, and CEBPB, MAFF, CREM, IRF7,

and KLF2 in the Tex subgroup. Heterogeneity within the TRM

subgroup suggested diverse origins from different precursor cells

post-activation. Interestingly, TCM and MAIT subgroups displayed

similar activation patterns, hinting at a deeper relationship between

these cells (Figure 8E).

Finally, pseudo-temporal trajectories calculated using Monocle2

demonstrated progression of CD8+ T cells from TEM to both TRM

and Tex subtypes, indicating that effector cells do not solely progress

towards exhaustion but maintain substantial anti-tumor effects,
FIGURE 8

scRNA-seq analysis of endometrial cancer reveals CD8+ T cell subtypes and their functional states. (A) Tsne plot of cells from GSE173682 including
five primary EC cases, colored by eight major cell types. (B) Heatmap of the top marker genes in each major cell types. (C) Tsne plot of T cells from
GSE173682 including five primary EC cases, colored by nine major cell types. (D) Cellchat shows the signal intensity of MHC-I related molecules
between tumor cells and tissue-resident memory T cells (TRM). Tumor cells and TRM calculate the risk coefficients according to the risk model. (E)
Scenic calculates the activity of transcription factors in different CD8+ T cell subsets. Different colors represent different CD8+ T cell subsets. (F)
Monocle simulates the developmental trajectory of CD8+ T cells. Different colors represent different CD8+ T cell subsets. (G) Cytotrace calculates
the cellular stemness of CD8+ T cells. Different colors represent different CD8+ T cell subsets.
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aligning with contemporary research insights. This comprehensive

analysis underscores the complexity of immune responses within

endometrial cancer and highlights the importance of detailed cellular

profiling in understanding tumor-immune dynamics (64).

Using Cytotrace, we calculated the stemness across different

cellular subtypes within the CD8+ T cell population in endometrial

cancer. The T central memory (TCM) subtype demonstrated lower

stemness compared to other groups, indicative of its limited

proliferation capacity due to its terminally differentiated state. This

aspect was further validated by Monocle2 trajectory analysis, which

confirmed the progression of CD8+ T cells from T effector memory

(TEM) to both T resident memory (TRM) and T exhausted (Tex)

subtypes in early-stage endometrial cancer (Figures 8F, G).

In terms of gene expression: BATF, CD3G, KIAA1755, and

CCL5 are predominantly expressed in activated T cell subtypes,

suggesting their crucial roles in T cell activation and function.

ASB2, on the other hand, does not show significant differences

in expression among different immune cells, yet interestingly, its
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expression appears elevated in tumor cells from patients with a

higher proportion of activated T cells.
3.11 The expression of model genes in
endometrial cancer cells and patient
tissues

This study employed bioinformatics methods to analyze the

expression of model genes in cancer (UCEC). The results indicate

that apart from BATF, which is highly expressed in UCEC, the

expression levels of ASB2 and KIAA1755 in tumors are relatively low,

while the remaining genes did not show significant differences

(Figure 9A). To validate these bioinformatics findings, we further

examined the mRNA levels of these genes in endometrial cancer

tissues and adjacent non-cancerous tissues using real-time

quantitative PCR (RT-qPCR). The results were consistent with the

bioinformatics analysis, confirming that the mRNA levels of BATF
frontiersin.or
FIGURE 9

The expression of model genes in endometrial cancer cells and patient tissues. (A) Expression differences of the model gene between tumor and
normal tissues in the TCGA database (***, P < 0.001 vs. normal). (B) RT-qPCR validation of model gene expression differences between tumor
tissues and adjacent normal tissues in patients(***, P < 0.001 vs. normal). (C) RT-qPCR and WB validation of ASB2 expression in endometrial cancer
cell lines Ishikawa and HEC-1A (***, P < 0.001 vs. HEC-1A). (D) WB validation of ASB2 expression in tumor and adjacent normal tissues in patients
(***, P < 0.001 vs. normal). NS: nonsense.
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are significantly higher in the cancer tissues compared to the adjacent

tissues, while the expressions of CCL5, ASB2, and KIAA1755 are

lower, and CD3G did not show significant differences (Figure 9B).

Additionally, we measured the expression of ASB2 in the EC cell lines

Ishikawa and HEC-1A using RT-qPCR. The results demonstrated

that ASB2 expression is significantly higher in the HEC-1A cell line

compared to Ishikawa. Protein testing in cell lines also validated the

RT-qPCR results, with higher ASB2 protein expression in the HEC-

1A cell line compared to Ishikawa (Figure 9C).

Furthermore, we studied the protein level expression of ASB2,

finding that the protein content of ASB2 is lower in cancer tissues

compared to adjacent non-cancerous tissues (Figure 9D).
3.12 Knocking down ASB2 promoted
cancer cells proliferation, migration, and
EMT

Based on the findings that ASB2 is underexpressed in EC tissues

and cells, we hypothesized that the reduction of ASB2 might play a

significant role in the progression of EC. Considering that ASB2 is

expressed at the highest level in HEC-1A cells and at a lower level in

Ishikawa cells, our study chose to knock down the ASB2 in HEC-1A

cells and to overexpress it in Ishikawa cells.

Using liposome-based transfection and Lentivirus infection, we

created HEC-1A cell lines with knocked-down ASB2 and Ishikawa

cell lines with overexpressed ASB2. The efficacy of the knockdown

and overexpression was validated through RT-qPCR and

WB (Figure 10A).

A CCK-8 assay demonstrated that silencing ASB2 significantly

reduced the proliferative ability of HEC-1A cells, while the

overexpression construct showed the opposite effect, indicating

that ASB2 expression can significantly inhibit cancer cell

proliferation. We conducted scratch healing and Transwell

invasion assays related to the cell migration phenotype. Results

from the scratch healing assays showed that cells in the

overexpression group had lower healing and migration

capabilities compared to the control group, while the knockdown

group significantly enhanced cell migration and invasion

(Figures 10B–E).
4 Discussion

The tumor microenvironment is a complex system composed of

cancer-associated fibroblasts, endothelial cells, various immune cells,

extracellular matrix, and cytokines. It has a significant impact on

tumor progression, leading to the emergence of drug resistance and

metastasis. Immunotherapy targeting immune escape caused by the

tumor microenvironment, such as immune checkpoint blockade

therapy, is one of the new strategies for treating endometrial cancer.

Numerous clinical trials are currently underway to investigate the

benefits of various immunotherapies in endometrial cancer, aiming to

address the challenges posed by the tumor microenvironment and

enhance treatment outcomes (65). Traditional tumor staging does not
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reflect the changes in the tumor microenvironment and immunity

that are crucial for assessing the efficacy of immunotherapy. The

demand for predicting the sensitivity to immunotherapy in EC

necessitates the exploration of updated molecular markers (66). As

one of the primary factors contributing to anti-tumor activity within

the tumor microenvironment, CD8+ T cells have come into focus.

CD8+ T cells exert direct cytotoxic effects on cell surfaces through

“ligand-receptor” interactions, and they participate in cellular

immunity against tumor cells by producing cytokines, tumor

necrosis factor, and interferon-alpha. However, continuous

exposure of T cells to antigens and/or inflammatory signals within

cancer can lead to T cell exhaustion, wherein T cells lose their ability

to eliminate tumors (67, 68). The interaction between PD-1/PD-L1

can exert a potent inhibitory effect on the function of CD8+ T cells,

including their cytotoxicity capabilities (69). In endometrial cancer,

PD-1 expression is observed in 61% of cases among TILs, and PD-L1

expression is detected in 80% of cases. Additionally, 100% of

metastatic endometrial cancer cases express PD1 (70). It appears

that the phenomenon of T cell exhaustion due to the action of the PD-

1/PD-L1 axis is quite common in patients with endometrial cancer.

Additionally, according to previous research, there is a decrease in the

proportion of cytotoxic CD8+ T cells in endometrial cancer compared

to normal endometrial tissue (71). This suggests that, compared to a

larger number of CD8+ T cells, maintaining an activated immune

state of CD8+ T cells may play a more significant role in preventing

tumor progression. Therefore, we performed ssGSEA scoring on 29

immune pathways in the tumor microenvironment based on the

obtained responses (44). Subsequently, through unsupervised

clustering, we divided them into two groups: strong and weak

immune activity, and compared the differential genes between the

two groups to identify the differential immune activation genes in EC.

Next, we conducted WGCNA to identify key gene clusters closely

associated with EC CD8+ T cell infiltration. Subsequently, using Lasso

Cox regression, we selected 5 immune-related prognostic genes. These

scores not only have good prognostic predictive value with AUC > 0.6,

but also stratify into two subgroups: a high-risk group with poorer

prognosis associated with hypertension and more pregnancies, and a

low-risk group with better prognosis, younger age, and lower clinical

stage and grade. Regarding molecular subtypes of endometrial cancer,

patients in the low-risk group are mainly composed of CN-L and

MSI types.

EC, being a hypermutated cancer, has a higher probability of

MSI, which makes it highly promising for the application of ICIs

(72, 73). We aim to validate the predictive system’s value in

immunotherapy by comparing the scores with features strongly

associated with ICI responsiveness, including TMB, PD-L1/PD-1

expression levels, and leukocyte infiltration (74). In endometrial

cancer, the POLEmut and MMRd subtypes exhibit higher PD-L1

expression levels (75). This suggests that these subtypes may be

particularly responsive to immunotherapy, further emphasizing the

potential utility of immune checkpoint inhibitors in the treatment

of endometrial cancer.

The elevated expression of PDCD1 in the high-risk group in our

study further validates its predictive value. Furthermore, in endometrial

cancer, other immune checkpoint molecules should also receive more
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attention. CTLA-4 blockade has been shown to improve prognosis in

endometrial cancer patients (76). Additionally, molecules such as

VISTA, TIM-3, and LAG3 are expressed in endometrial cancer and

may serve as markers for T cell exhaustion (77–79). These molecules

also exhibit differential expression, with higher expression observed in

the low-risk group. As another predictive biomarker for

immunotherapy, TMB is also a positive prognostic factor, negatively

correlated with the score (80). Additionally, MSI has been utilized for

immunotherapy prediction (81). Considering that MSI tumors often

have higher levels of CD3+ and CD8+ T cells (82), the two groups

based on differential activation of CD8+ T cells also exhibit differences

inMSI status. Tumor neoantigens more accurately predict outcomes in

melanoma patients treated with first-line anti-PD-1 or anti-CTLA-4

therapy compared to other biomarkers such as PD-L1 levels and

mutational burden (50). We observed different mutational

landscapes in the low-risk group, which may generate more tumor
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neoantigens compared to the high-risk group, thereby activating

cytotoxic CD8+ T cells. MHC class I molecules presenting tumor

antigens are necessary for the anti-tumor function of CD8+ T cells (83,

84). However, loss of MHC class I molecules can occur in up to 42% of

endometrial cancer patients (85), potentially leading to a further

decrease in the proportion of cytotoxic CD8+ T cells (86). Therefore,

this study also explored the relationship between MHC class I

molecules and predictive models and stratification. The results

revealed that MHC class I molecules are less active in the high-risk

group, potentially contributing to the decreased cytotoxicity of CD8+

T cells.

Based on existing research (74), an analysis of the composition of

immune subtypes in the two types revealed that LR is primarily

composed of wound healing and IFN-g dominant subtypes, while

HR includes wound healing, IFN-g dominant, lymphocyte depleted,

and inflammatory subtypes. Interestingly, within the LR immune
FIGURE 10

Knocking down ASB2 promoted cancer cells proliferation, migration, and EMT. (A) WB validation of ASB2 knockdown in HEC-1A cell line and ASB2
overexpression in Ishikawa cell line (***P < 0.001 shRNA vs. control, ***P < 0.001 shRNA vs. vector, ***P < 0.001 ASB2 vs. control, ***P < 0.001 ASB2
vs. vector). (B) RT-qPCR validation of ASB2 knockdown in HEC-1A cell line and ASB2 overexpression in Ishikawa cell line (***P < 0.001 shRNA vs.
control, ***P < 0.001 shRNA vs. vector, ***P < 0.001 ASB2 vs. control, ***P < 0.001 ASB2 vs. vector). (C) CCK8 assay shows that ASB2 knockdown in
HEC-1A cell line enhances proliferation, while ASB2 overexpression in Ishikawa cell line reduces proliferation (***P < 0.001 HEC-ASB2 vs. HEC, ***P
< 0.001 ISK-KO vs. ISK). (D) Wound healing assay shows that ASB2 knockdown in HEC-1A cell line enhances migration, while ASB2 overexpression in
Ishikawa cell line reduces migration (Scale bar: 200 mm; ***P < 0.001 HEC-ASB2 vs. HEC, ***P < 0.001 ISK-KO vs. ISK). (E) Transwell assay shows
that ASB2 knockdown in HEC-1A cell line enhances invasion, while ASB2 overexpression in Ishikawa cell line reduces invasion (Scale bar: 100 mm;
***P < 0.001 HEC-ASB2 vs. HEC, ***P < 0.001 ISK-KO vs. ISK).
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response-active subtypes, particularly the inflammatory subtype, the

majority of deceased endometrial cancer patients were concentrated.

This contradicts the viewpoint in some literature that the inflammatory

subtype achieving immune balance has a better prognosis. To further

validate the potential of risk scoring in predicting the outcomes of

immunotherapy, we selected three patient cohorts undergoing

immunotherapy. The results across the three datasets were

consistent, indicating that patients in the high-risk scoring group had

lower survival rates and significant differences, while those in the low-

risk group had higher probabilities of clinical remission and complete

remission. This suggests that patients who respond to immunotherapy

tend to have lower risk scores. This difference reflects the advantage of

the model proposed in this study compared with the traditional pan-

cancer model, as it can better reflect the anti-tumor ability of CD8 T

cells in EC, rather than simply focusing on the situation of infiltration.

Although macroscopically, the high-risk group has lower expression of

immune checkpoint molecules, this is not reflected in the Tex cells. The

high-risk group has a proportion of Tex cells similar to that of the low-

risk group. In EC, lower infiltration of CD8+ T cells implies a higher

possibility of non-response to immunotherapy (87).

This difference reflects the advantage of the model proposed in

this study compared with the traditional pan-cancer model, as it can

better reflect the anti-tumor ability of CD8 T cells in EC, rather than

simply focusing on the situation of infiltration. Although

macroscopically, the high-risk group has lower expression of

immune checkpoint molecules, this is not reflected in the Tex

cells. The high-risk group has a proportion of Tex cells similar to

that of the low-risk group. In EC, lower infiltration of CD8+ T cells

implies a higher possibility of non-response to immunotherapy.

Although it is not possible to conclude that high-risk patients are

less suitable for immunotherapy without using data from

endometrial cancer patient cohorts, the differences in survival

outcomes remind us that high-risk patients may have unique

immune response mechanisms, and traditional immunotherapy

might fail during disease progression.

ER (estrogen receptor) and PR (progesterone receptor) also play

a role in the tumor immune microenvironment, which may be why

combining proteomics and transcriptomics can improve prediction

accuracy. Elevated levels of E2 (estradiol) in patients with

endometrial cancer may directly impact CD8+ T cells and

suppress their cytotoxic abilities (88). However, at the same time,

the expression of ER and PR in epithelial cells brings these cells

closer to CD8+ T cells, implying that they are more likely to be

influenced by the anti-tumor effects of CD8+ T cells (89, 90). This

suggests that common pathological markers may have broader

utility in the future, but their regulatory role in the immune

response of endometrial cancer remains to be further elucidated.

Chemotherapy-induced apoptosis may activate CD8+ T

lymphocytes through various pathways, including depleting immune

response inhibitory cells and inducing the emergence of tumor-specific

CD8+ T lymphocytes (91–94). This has also been confirmed in

gynecologic tumors, where CD8+ T cell infiltration remains stable

even after receiving neoadjuvant platinum-based chemotherapy in

ovarian cancer (95, 96). Although there is currently a lack of

evidence specifically for EC, for those considered to have an
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immunogenic or “hot” phenotype of EC, there is a relatively greater

likelihood of increased anti-tumor response following chemotherapy.

Consequently, we also investigated the commonly used chemotherapy

regimens in EC patients to discuss the possibility of combining

chemotherapy with immunotherapy. Through the GDSC database,

we validated the commonly used chemotherapy regimens in EC

patients. The results revealed that low-risk group patients were more

sensitive to paclitaxel, docetaxel, cisplatin, doxorubicin, gemcitabine,

and rapamycin. This suggests a potential guiding role of this

classification in the chemotherapy and immunotherapy of patients.

Chemotherapeutic drugs used in endometrial cancer often achieve

efficacy by increasing DNA damage in cancer cells. Comparisons

between groups indicate that in high-risk patients, homologous

recombination and mismatch repair processes are more active,

suggesting that we can adopt corresponding strategies targeting

this pathway.

Analysis of the dynamic immune microenvironment changes

during the tumorigenic process of EEC showed tendencies of

decreased proportion of cytotoxic and naive CD8+ lymphocyte

population and increased proportion of CD4 Treg population,

indicating immune escape during endometrial tumorigenesis (71).

Our study observed that CD8+ T cells, which continue to exert their

effects in early-stage endometrial cancer patients, still constitute the

majority. Simply attributing this to a highly immunosuppressive

microenvironment seems too hasty; further discussion is warranted

on the transcriptional activation and evolutionary trends of CD8+ T

cells. This study is the first to explore the prognostic significance and

immune activation roles of BATF, CD3G, KIAA1755 and CCL5 in

endometrial cancer. Although previous studies have found that the

expression level of ASB2 in EC is lower than that in normal tissues,

which implies that upregulating the expression of ASB2 is a potential

therapeutic strategy for endometrial cancer (97). Through experiments,

it discussed for the first time the expression and anti-cancer effects of

ASB2 in endometrial cancer. Previous research has concentrated on the

role of ASB2 in immune cells in forming and maintaining cell

scaffolding and immature morphology but lacked studies on its

potential role in tumors. As the expression of ASB2 significantly

decreases during the progression from normal tissue to endometrial

cancer, it is difficult to attribute the drastic decrease solely to the

consumption of immune cells. The study preliminarily confirmed the

anti-cancer effect of ASB2 in endometrial cancer cell lines through

experiments and suggested its correlation with being a protective

prognostic factor. Additionally, although some studies have indicated

a negative correlation between the presence of CD8+ T cells and clinical

pathological features such as histological grade, muscular layer

infiltration, and lymph node metastasis (18, 22). However, in this

study, the infiltration status of CD8+ T cells obtained through

transcriptomic data using methods such as CIBERSORT showed no

significant relationship with recurrence, metastasis, etc. On the other

hand, ASB2, as identified in the corresponding transcriptomic data,

could play a role in distinguishing and indicating the occurrence of

recurrence and metastasis. This suggests that in transcriptomic data,

ASB2 can replace complex methods, making transcriptomic data reflect

potential prognosis of patients more simply and clearly. Multivariable

Cox regression analysis demonstrated that this model is an independent
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risk factor for overall survival (OS), and ROC curves also showed that

this model outperforms traditional methods such as clinical stage and

grade in predicting risk. Additionally, the forest plots based on risk

coefficients for predicting 3-year and 5-year OS closely matched the

observed values, indicating the great potential of this new predictive

system in guiding risk stratification and clinical decisions.

However, this study has some limitations. Firstly, the model was

constructed using only TCGA UCEC dataset, validated using a single

independent GEO dataset and a small-scale clinical sample, without

validation from larger datasets. The stability of the predictive model

and forest plots also requires confirmation through large-scale clinical

trials. Moreover, there are similar issues in predicting immunotherapy

sensitivity, as validation was only performed using data from other

tumors, with limited reference value for endometrial cancer. Therefore,

we plan to further collect clinical specimens and conduct more basic

experiments to elucidate their specific roles, while simultaneously

paying attention to the emergence of possible new external data for

model validation.
5 Conclusion

In summary, our study provides potential predictive tools for

endometrial cancer patients and contributes to further exploring the

mechanisms of interaction between CD8+ T cell activation genes in

endometrial cancer. Endometrial cancer can be divided into two distinct

groups based on the activation status of CD8+ T cells, which have

markedly different prognoses and tumor microenvironments. This

suggests the potential of CD8+ T cell activation in personalized

therapy. Thus, CD8+ T cell activation can serve as an important basis

for prognosis prediction and treatment decisions in endometrial cancer.
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Prognostic significance of CD3+ tumor-infiltrating lymphocytes in patients with
endometrial carcinoma. Anticancer Res. (2014) 34:5555–61.

24. Fusco MJ, West HJ, Walko CM. Tumor mutation burden and cancer treatment.
JAMA Oncol. (2021) 7:316–6. doi: 10.1001/jamaoncol.2020.6371

25. van der Woude H, Hally KE, Currie MJ, Gasser O, Henry CE. Importance of the
endometrial immune environment in endometrial cancer and associated therapies.
Front Oncol. (2022) 12:975201. doi: 10.3389/fonc.2022.975201

26. Patel MV, Shen Z, Rodriguez-Garcia M. Endometrial cancer suppresses CD8+ T
cell-mediated cytotoxicity in postmenopausal women. Front Immunol. (2021)
12:657326. doi: 10.3389/fimmu.2021.657326

27. Sheikh MA, Althouse AD, Freese KE, Soisson S, Edwards RP, Welburn S, et al.
USA endometrial cancer projections to 2030: should we be concerned? Future Oncol.
(2014) 10:2561–8. doi: 10.2217/fon.14.192

28. Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MA,
et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human
cancers. Nat Med. (2019) 25:89–94. doi: 10.1038/s41591-018-0266-5

29. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, et al. Defining
CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. (2016)
537:417–21. doi: 10.1038/nature19330

30. Finotello F, Trajanoski Z. Quantifying tumor-infiltrating immune cells from
transcriptomics data. Cancer Immunology Immunotherapy. (2018) 67:1031–40.
doi: 10.1007/s00262-018-2150-z

31. Jackson HW, Fischer JR, Zanotelli VR, Ali HR, Mechera R, Soysal SD, et al. The
single-cell pathology landscape of breast cancer. Nature. (2020) 578:615–20.
doi: 10.1038/s41586-019-1876-x
Frontiers in Immunology 20
32. Xiao X, Guo Q, Cui C, Lin Y, Zhang L, Ding X, et al. Multiplexed imaging mass
cytometry reveals distinct tumor-immune microenvironments linked to
immunotherapy responses in melanoma. Commun Med. (2022) 2:131. doi: 10.1038/
s43856-022-00197-2

33. Launonen I-M, Lyytikäinen N, Casado J, Anttila EA, Szabó A, Haltia U-M, et al.
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Glossary

UCEC Uterine Corpus Endometrial Carcinoma
Frontiers in Immunol
EC Endometrial Cancer
EEC Endometrioid Endometrial Cancer
USC Uterine Serous Carcinoma
TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
PRJEB Project European Nucleotide Archive (ENA) Browser
GSEA Gene Set Enrichment Analysis
IMvigor (Refers to a clinical study, not an abbreviation)
RNA-seq RNA Sequencing
scRNA-seq Single-cell RNA Sequencing
NMF Non-negative Matrix Factorization
t-SNE t-distributed Stochastic Neighbor Embedding
UMAP Uniform Manifold Approximation and Projection
WGCNA Weighted Gene Co-expression Network Analysis
LASSO Least Absolute Shrinkage and Selection Operator
ROC Receiver Operating Characteristic
AUC Area Under the Curve
HR Hazard Ratio
CI Confidence Interval
DEG Differentially Expressed Gene
logFC Log Fold Change
CIBERSORT (A method, not an abbreviation)
ESTIMATE Estimation of Stromal and Immune cells in Malignant Tumor

tissues using Expression data
ssGSEA Single-sample Gene Set Enrichment Analysis
KM Kaplan-Meier
OS Overall Survival
DFS Disease-Free Survival
TME Tumor Microenvironment
MHC Major Histocompatibility Complex
NK Natural Killer
PD-1/PD-L1 Programmed Death-1/Programmed Death-Ligand 1
ogy 22
MSI Microsatellite Instability
TMB Tumor Mutational Burden
TIDE Tumor Immune Dysfunction and Exclusion
IC50 Half Maximal Inhibitory Concentration
GDSC Genomics of Drug Sensitivity in Cancer
CTRP Cancer Therapeutics Response Portal
PARP Poly ADP Ribose Polymerase
HRD/HRP Homologous Recombination Deficient/Proficient
UMI Unique Molecular Identifier
TCIA The Cancer Imaging Archive
IPS Immune Phenotype Scores
TIP Tumor Immune Phenotype
ICB Immune Checkpoint Blockade
MAIT Mucosal-Associated Invariant T cells
EMT Epithelial-Mesenchymal Transition
RT-qPCR Real-Time Quantitative Polymerase Chain Reaction
WB Western Blot
CCK-8 Cell Counting Kit-8
ICIs Immune Checkpoint Inhibitors
TILs Tumor-Infiltrating Lymphocytes
CN-L Copy Number Low
POLEmut Polymerase Epsilon Mutant
MMRd Mismatch Repair Deficient
CTLA-4 Cytotoxic T-Lymphocyte-Associated Protein 4
VISTA V-domain Ig Suppressor of T cell Activation
TIM-3 T cell Immunoglobulin and Mucin-domain containing-3
LAG3 Lymphocyte Activation Gene-3
IFN-g Interferon Gamma
ER Estrogen Receptor
PR Progesterone Receptor
E2 Estradiol
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