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Background: Esophageal squamous cell carcinoma (ESCC) treatment often

involves neoadjuvant therapy combining chemotherapy and immune

checkpoint inhibitors. However, the effectiveness of these treatments is limited

by immune infiltration in the tumor microenvironment.

Methods: We analyzed single-cell transcriptomic data from 22 patients with

resectable ESCC, collected before and after neoadjuvant therapy. Differences in

gene expression between patients achieving a complete pathological response (pCR)

and those who did not were assessed. We further validated our findings using

RNAseq data from The Cancer Genome Atlas (TCGA), and conducted quantitative

qRT-PCR and Western blot analyses on tumor tissues from a clinical cohort.

Results: Significant differences in gene expression related to T cell activation,

natural killer cell activity, and cytokine signaling were observed between pCR and

non-pCR patients. Notable genes included CXCL10, CXCL11, ME1, MT1X, FAT1,

OAS2, and MT2A. TCGA data confirmed a correlation between high gene

expression and increased tumor mutational burden as well as improved survival

rates, particularly for CXCL10. qRT-PCR revealed significant upregulation of

CXCL10, CXCL11, ME1, MT1X, FAT1, OAS2, and MT2A in tumor tissues compared

to normal tissues. Western blot analysis showed increased protein levels of

CXCL10, CXCL11, OAS2, MT1E, and MT1X, while FAT1 was downregulated.

Conclusion: Our study highlights the critical role of immune infiltration and

associated molecular pathways in the efficacy of neoadjuvant immunotherapy

for ESCC. Specific genes, such as CXCL10, are promising as predictive markers

for treatment response and survival.
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1 Introduction

Esophageal squamous cell carcinoma (ESCC) represents the

predominant histologic type globally, particularly prevalent in

developing countries. Despite incremental advances in diagnostics

and therapeutics, ESCC presents a grim 5-year survival rate ranging

from 12-20% (1). The standard treatment for locally advanced

ESCC involves neoadjuvant chemoradiotherapy combined with

surgery, following the success of the CROSS trial (2). However,

this approach can heighten toxicity levels, leading to severe side

effects such as pneumonia and myocardial injury (3).

In recent years, the integration of immune checkpoint inhibitors

(ICIs), targeting programmed cell death 1 (PD-1) and its ligand PD-

L1, has emerged as a promising neoadjuvant treatment strategy for

early-stage solid tumors, including breast cancer, lung cancer, and

ESCC (4, 5). Clinical trials such as KEYNOTE 590 and CheckMate

649 have shown promising antitumor activity and safety of

immunotherapies with or without chemotherapy in advanced

ESCC patients (6, 7). These results provide a strong rationale for

utilizing ICIs in the preoperative treatment setting for ESCC.

Our study aims to investigate the impact of immune infiltration-

related genes on the efficacy of neoadjuvant immunotherapy for

esophageal cancer. Through the SCALE-1 exploratory study (8), we

conducted an in-depth analysis of biomarkers associated with PD-1

treatment response. We found distinct gene expression profiles between

patients achieving pathological complete response (pCR) and those

without pCR, indicating the potential role of immune-related genes in

treatment outcomes. Notably, genes involved in T cell activation, natural

killer cell activity, cytokine and chemokine signaling, and IFN-g response
pathways showed significant differential expression, suggesting their

importance in modulating the tumor microenvironment.

Furthermore, integrating our findings with data from The

Cancer Genome Atlas (TCGA) provided additional insights into

the molecular landscape of esophageal cancer. Consistent

upregulation of identified genes in esophageal cancer samples,

along with their association with higher tumor mutational burden

(9) and survival rates, supports their consideration as potential

predictive markers for immunotherapy response.

In summary, our study highlights the critical role of immune

infiltration intensity and its molecular determinant — CXCL10 in

shaping the efficacy of neoadjuvant immunotherapy for esophageal

cancer. These findings deepen our understanding of tumor-

immune interactions and offer implications for personalized

treatment strategies in this challenging malignancy.
2 Materials and methods

2.1 The origin of single-cell RNA
sequencing data

The data for our article were derived from the single-cell data of

the previous study (10) and subjected to conventional cell

annotation analysis based on the methods outlined in the

previous article.
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2.2 scRNA-seq data processing

Based on scRNA-seq data and H&E pathological examination

results from esophageal squamous cell carcinoma (ESCC) patients

undergoing neoadjuvant chemoimmunotherapy, we categorized pre-

treatment (T_B) and post-treatment (T_A) ESCC tumors into three

distinct groups: pathological complete response (pCR_T_B,

pCR_T_A), major pathological response (MPR_T_B, MPR_T_A),

and incomplete pathological response (IPR_T_B, IPR_T_A) groups.

Combined with the previous comprehensive analysis of the tumor

immune microenvironment (TIME) (using the data in Appendix

Table A1 of the SCALE-1 trial, which lists 289 immune-related genes),

we used the R package “Seurat” (11) to perform differential expression

analysis and obtained 9 genes (CXCL10, CXCL11, MAGEA1, OAS2,

CD209, CD27, CD79A, KLRB1, and TNFRSF17) (12–18).
2.3 Analyzing the expression of key 9
genes based on ESCA sample data from
TCGA

We obtained 182 esophageal carcinoma (ESCA) samples and 13

normal samples f rom the TCGA database (ht tps : / /

portal.gdc.cancer.gov/). Comparing normal samples to ESCA

samples, we analyzed the mRNA expression levels of CXCL10,

CXCL11,MAGEA1, OAS2, CD209, CD79A, KLRB1, and TNFRSF17

in ESCA cases using the R package “DESeq2” (19).
2.4 Analysis of tumor mutation burden
about those key 9 genes

Mutation data of ESCA cases were retrieved from the TCGA

database, and tumor mutational burden (TMB) was calculated using

the R package “maftools” (20). Pearson correlation analysis (21) was

employed to examine the relationship among CXCL10, CXCL11,

MAGEA1, OAS2, CD209, CD27, CD79A, KLRB1, and TNFRSF17.
2.5 Survival curve analysis

In this study, 182 ESCA cases were stratified into high-expression

and low-expression groups based on the median values of CXCL10,

CXCL11, MAGEA1, OAS2, CD209, CD27, CD79A, KLRB1, and

TNFRSF17 mRNA expression. Kaplan-Meier survival curves (22)

were generated using the R package “survminer”.
2.6 Analysis of half maximal inhibitory
concentration (IC50)

The Cyclopamine sensitivity (23) of CXCL10 in the high-

expression and low-expression groups was analyzed using the

GEPIA2 (24) web tool (http://gepia2.cancer-pku.cn/#index), and

relevant sensitivity bar graphs were generated.
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FIGURE 1

Nine genes expression in ESCA subtype cells before/after neoadjuvant chemoimmunotherapy. CD27, CD79A, FAT1, KLRB1, CD209, CXCL10, OAS2,
TNFRSF1 showed significant differential expression across the subtypes in the above barplot. Specifically, in all differential analyses, CD79A exhibited
changes in the B_cells subtype. CD209 displayed alterations in both the MP and Mural_cells subtypes. CD27, CD79A, and TNFRSF1 showed changes
in the Plasma_cells subtype, while CD27 and KLRB1 exhibited alterations in the T_cells subtype.
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2.7 Real-time quantitative PCR and
western blot of nine genes

Total RNA was extracted from culture cells using TRI pure

based on the manufacturer’s instructions. The OD value of total

RNA was detected and used for subsequent RT-PCR quantification.

Then, a Prime Script TM reagent Kit with gDNA Eraser was used to

reverse-transcribe 1 µg of total RNA in a 20 µL volume into cDNA.

Quantitative real-time PCR was performed using the Quantitative

Real-time PCR Kit. All primers were designed and synthesized by

Shanghai Integrated Biotech Solutions Co., Ltd. (Shanghai, China)

Supplementary Table S1. The results were normalized using

GAPDH as an internal control. Western blot analysis was

conducted as previously described. 6 Samples were probed with
Frontiers in Immunology 04
anti-genes (9) (Abcam, Cambridge, UK), or anti-actin (Sigma-

Aldrich). Densitometric analysis was carried out using Image J

software (Version 1.44o; NIH).
2.8 Statistical analysis

Statistical analyses were performed using R software (version

4.1.2, https://www.r-project.org/). To compare continuous variables

between two groups, an independent Student’s t-test was used for

normally distributed data, while the Mann–Whitney U-test was

applied for non-normally distributed data. All p-values were

calculated using a two-tailed approach, with significance defined

as P < 0.05.
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FIGURE 3

Nine genes expression in ESCA before/after neoadjuvant chemoimmunotherapy based on TGCA database.
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The tumor mutational burden of those nine genes in ESCA based on TGCA database.
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3 Results

3.1 The expression of nine key genes in
ESCA before/after neoadjuvant
chemoimmunotherapy

Using previously collected single-cell RNA sequencing (scRNA-

seq) data from ESCA diseased tissues, we investigated the

expression levels of CXCL10, CXCL11, MAGEA1, OAS2, CD209,

CD79A, KLRB1, and TNFRSF17 in various groups before and after

treatment. Our study revealed that expression of OAS2
Frontiers in Immunology 06
(Supplementary Figure 1c) was significantly increased in the

IPR_T_B group.
3.2 Expression of nine genes in various
subtypes of different samples

Based on early cell subtype annotation, we conducted

differential analysis on the same single-cell subtypes across

different samples, primarily observing changes in the expression

of the nine genes mentioned above. We identified significant
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The survival curve of those nine genes in ESCA based on TGCA database.
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differential expression in seven genes: CD27, CD79A, KLRB1,

CD209, CXCL10, OAS2, and TNFRSF1. Notably, CD79A showed

consistent changes across all differential analyses in the B_cells

subtype (Figure 1). Similarly, CD209 displayed changes in both the

MP and Mural_cells subtypes. In the Plasma_cells subtype, CD27,

CD79A, and TNFRSF1 demonstrated consistent changes. Lastly, in

the T_cells subtype, CD27 and KLRB1 showed consistent

alterations (Figure 2).

The expression of CXCL10 showed significant differences in the

MP subtype of PCR_T_B, MPR_T_B, and IPR_T_B samples, with a

notable increase in IPR_T_B and extremely low expression in

MPR_T_B. This pattern was similarly observed in the MP

subtype of PCR_T_B and non_PCR_T_B samples. However,

CXCL10 exhibited a significant increase in expression in the

pCR_T_B subtype and extremely low expression in the

non_pCR_T_B subtype (Supplementary Figures 2a, b).

We further investigated the expression differences of these

genes in the T cell subtypes of different samples through group

differential analysis. The results revealed that CD27, KLRB1, OAS2,

and FAT1 exhibited relatively significant changes across various T

cell subtypes, with distinct genes showing significant changes in

different subtypes. Specifically, CD27 and KLRB1 showed significant

differences in CD4_Naive_T and ProlifT subtypes, while CD27,

KLRB1, and OAS2 exhibited significant differences in the

CD8_exhausted_T subtype. Additionally, apart from Treg, KLRB1
0.034
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FIGURE 6

The cyclopamine sensitivity of the CXCL19 gene in ESCA based on
TGCA database.
FIGURE 7

Comparative qRT-PCR analysis of gene expression levels in tumor tissues versus normal tissues. Asterisks indicating levels of significance: ***p <
0.001, **p < 0.01, *p < 0.05.
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was identified as a significant differentially expressed gene in the

remaining subtypes (Figure 3).
3.3 Analysis of nine genes expression in
ESCA via the TCGA Database

We analyzed ESCA data from the TCGA database to investigate

the differential expression of nine genes. Our findings revealed an

overall increase in the expression of CXCL10, CXCL11, MAGEA1,

OAS2, CD209, CD27, CD79A, KLRB1, and TNFRSF17 in ESCA

patients compared to the normal group (Figure 3). Specifically,

CXCL10, CXCL11, and OAS2 exhibited significant elevation, while

the expression of other genes showed a slight increase. Additionally,

our analysis unveiled that, except for the CXCL10 gene, there was no

significant correlation between the expression of these genes and the

tumor mutational burden (TMB) (Figure 4).
3.4 The association between the expression
of nine genes and prognosis in ESCA

We conducted survival curve analysis for CXCL10, CXCL11,

MAGEA1, OAS2, CD209, CD27, CD79A, KLRB1, and TNFRSF17 in

a sample of 182 ESCA cases from the TCGA database. Our findings

indicated that the group with high CXCL10 expression exhibited a

significantly lower survival probability and relatively poorer

prognosis compared to the group with low CXCL10 expression

(HR = 1.5, p(HR) = 0.073) (25, 26) (Figure 5).
3.5 Analysis of half maximal inhibitory
concentration (IC50) on CXCL10 gene

Subsequently, we aimed to investigate the sensitivity of patients

stratified by high or low expression of the CXCL10 gene to specific

therapeutic drugs, thus performing an analysis of the half maximal

inhibitory concentration (IC50). We found that the disease group

with low CXCL10 expression exhibited higher sensitivity to

Cyclopamine (Figure 6).
3.6 GeneQuantitative PCR and WB to
detect the expression of 9 genes

In order to further validate the expression of these nine genes in

esophageal cancer, we conducted a study involving clinical cases where

we assessed the transcriptome and protein levels of these genes. Our

qRT-PCR analysis revealed significant differences in 8 genes between

tumor tissues and normal tissues (Figure 7), including CXCL10,

CXCL11, ME1E, MT1X, FAT1, OAS2, MT2A and CD209. These

findings were consistent across different samples, showing a notable

increase in expression levels in tumor tissues compared to normal

tissues, except for CD209 which displayed higher expression in normal

tissues. This trend was similarly observed at the protein level, as
Frontiers in Immunology 08
Western blot results indicated significant upregulation of CXCL10,

CXCL11, OAS2, MTIE, and MTIX in tumor tissues, although FAT1

exhibited an opposite trend compared to the qPCR results (Figure 8).

Notably, CD209 expression mirrored the qPCR results, showing higher

levels in normal tissues.
4 Discussion

Based on our findings, we propose that CXCL10 could serve as a

potential prognostic marker to guide therapeutic interventions for

esophageal cancer. Neoadjuvant therapy, comprising chemotherapy

and immune checkpoint inhibitors, represents a promising approach

for treating esophageal cancer, particularly squamous cell carcinoma.

However, the efficacy of this treatment modality is often compromised

by immune infiltration in the tumor microenvironment.
FIGURE 8

The expression of nine proteins by western blot in normal and
tumor tissues. Western blot analysis revealed a significant
upregulation of CXCL10, CXCL11, OAS2, MTIE, and MTIX proteins in
tumor tissues, which is consistent with the qPCR data. In contrast,
FAT1 exhibited a downregulation in tumor tissues, presenting an
opposite trend to the qPCR results. The expression of CD209,
mirrored the qPCR results, with higher levels observed in
normal tissues.
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Our study utilized single-cell transcriptomic analysis of resectable

esophageal cancer patients before and after neoadjuvant therapy,

revealing significant differences in gene expression between those

achieving a complete pathological response (pCR) (27) and those

who did not. Notably, genes associated with T cell activation, natural

killer cell activity, and cytokine signaling exhibited (28–31) substantial

alterations, suggesting their potential as predictive markers for

treatment response.

Further analysis of RNAseq data from The Cancer Genome Atlas

(TCGA) corroborated our findings, indicating a correlation between

high gene expression levels, particularly CXCL10, with greater tumor

mutational burden and improved survival rates. This underscores the

importance of considering immune-related gene expression profiles

in determining patient prognosis and treatment outcomes.

Moreover, our investigation into the sensitivity of patients with

varying CXCL10 expression levels to specific therapeutic drugs revealed

that those with low CXCL10 expression exhibited increased sensitivity

to Cyclopamine. This highlights the potential utility of CXCL10

expression as a biomarker for predicting treatment response and

guiding personalized therapeutic strategies in esophageal cancer.

In conclusion, our study contributes to a deeper understanding

of tumor-immune interactions and offers valuable insights for

optimizing treatment strategies in esophageal cancer. By

identifying CXCL10 as a potential prognostic marker and

elucidating its role in therapeutic sensitivity, we pave the way for

the development of more tailored and effective treatment

approaches for this challenging malignancy.
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SUPPLEMENTARY FIGURE 1

(a) Nine genes expression in ESCA samples containing PCR_T_A, MPR_T_A,
and IPR_T_A. (b) Nine genes expression in ESCA samples containing

pCR_T_A, and non_pCR_T_A. (c) Nine genes expression in ESCA samples
containing PCR_T_B, MPR_T_B, and IPR_T_B. (d) Nine genes expression in

ESCA samples containing pCR_T_B, and non_pCR_T_B.

SUPPLEMENTARY FIGURE 2

(a) Three genes expression in ESCA subtype cells before/after neoadjuvant
chemoimmunotherapy. (b) One gene expression in ESCA subtype cells

before/after neoadjuvant chemoimmunotherapy.
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