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Introduction: Rheumatoid arthritis (RA) is an autoimmune disorder characterized

by significant disability and teratogenic effects, for which there are few effective

curative therapies. Exosomes derived from mesenchymal stem cells (MSCs)

exhibit anti-inflammatory and tissue regenerative properties. This study aimed

to investigate the therapeutic potential of exosomes derived from human

classical interscapular brown adipocytes (hcBAC-exos) in alleviating symptoms

of RA in a mouse model.

Methods: We established a mouse model of collagen-induced arthritis (CIA) to

evaluate the efficacy of hcBAC-exos. Specifically, we assessed the degree of RA

remission by applying vitamin E emulsion, as well as a mixture of vitamin E

emulsion and hcBAC-exos, to the foot paws of CIA mice. Additionally, the effects

of hcBAC-exos on pro-inflammatory cytokines in macrophages (RAW264.7 cells)

were investigated at the cellular level. The active components of hcBAC-exos

were analyzed via lipidomics, and the mechanism of their ability to inhibit

inflammation was explored.

Results: Administration of hcBAC-exos significantly reduced the expression of

pro-inflammatory cytokines in macrophages. In the CIA mouse model,

transdermal application of hcBAC-exos led to notable decreases in ankle

swelling and the serum levels of IL-1b and TNFa (P < 0.5). Mechanistically,

lipidomic analysis showed that Docosahexaenoic acid (C22:6) is highly

enriched in hcBAC-exos. Furthermore, we found that C22:6 specifically inhibits

IL-1b expression by binding to the amino acids Y183, S210, E265, S182, and R223

of TLR4, mutating these amino acids results in the loss of C22:6 binding activity

to TLR4.
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Discussion: Our findings suggest that the hcBAC-exos-C22:6-TLR4-IL-1b
signaling pathway plays a crucial role in the context of RA, indicating the

potential clinical applications of hcBAC-exos in the treatment of inflammatory

conditions such as rheumatoid arthritis.
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1 Introduction

RA is an autoimmune disease characterized by chronic,

symmetrical inflammation of the joints (1). The global prevalence

of RA ranges from approximately 0.3% to 1%, with the prevalence

in women being 3 to 5 times higher than that in men, significantly

affecting the quality of life and health status of patients (2). RA is

characterized by pathological changes in the joint lining, including

infiltration of B cells, macrophages, and CD4+ helper T cells into the

synovial stroma, which leads to synovial proliferation and

subsequent joint swelling and pain (3). Moreover, the

overproduction of inflammatory molecules such as tumor

necrosis factor (TNF), prostaglandin E2 (PGE2), interleukin (IL-

1), and various other cytokines contributes to the persistence of

inflammation. In particular, TNF and IL-1 play important roles in

the inflammatory process in RA joints (4). Currently, commonly

used therapeutic agents for RA include nonsteroidal anti-

inflammatory drugs (NSAIDs), steroids, disease-modifying

antirheumatic drugs (DMARDs), and biologics (5). While these

medications can alleviate the symptoms of RA and slow disease

progression, their use is often limited by concerns regarding safety,

tolerability, treatment response rates, and cost (6, 7). Consequently,

existing treatments for RA fail to adequately address the long-term

medication needs of most patients, highlighting the necessity for the

development of new therapeutic agents.

Exosomes are vesicles with diameters of 30–150 nm that are

secreted by cells under pathophysiological conditions. They play an

important role in intercellular communication by influencing the

function of recipient cells through the delivery of proteins, lipids,

DNA, RNA and other biomolecules (8). In recent years, MSC-derived

exosomes have garnered significant attention in the study of RA.

Subcutaneous adipose tissue MSC-derived exosomes attenuated

symptoms in a mouse model of CIA, and this effect was mediated

by IL-1RA in the exosomes (9) On the basis of the ability of exosomes

to transmit information to recipient cells, Chen et al. were the first to

report that exosomes derived from bone marrowMSCs transfer miR-

150-5p to the joint cavity, reversing the migration and invasion of RA

fibroblast-like synoviocytes (RA-FLSs) induced by pro-inflammatory

factors such as IL-1b, TGF-b, and TNFa by inhibiting the expression

of the target genes MMP14 and VEGF, thereby alleviating RA (10).

MSCs can be sourced from various tissues, including the umbilical

cord, bone marrow and adipose tissue (11). Given that adipose tissue
02
is the largest endocrine organ in the human body, the exploration of

adipose tissue-derived exosomes in the context of RA is of significant

interest. Mammalian adipose tissue can be categorized into two types,

white adipose tissue (WAT) and brown adipose tissue (BAT). BAT is

different fromWAT in terms of its origin, morphology, function, and

secretory factors (12), which leads to varying effects of exosomes from

differentMSC sources in disease treatment (13–15). Historically, BAT

has been recognized for its role in regulating adaptive thermogenesis;

however, recent clinical interest has intensified regarding BAT

activation as a potential strategy for treating metabolic disorders

such as obesity and diabetes (16, 17). Additionally, studies have

indicated that BAT transplantation can significantly reduce

inflammatory cell infiltration in skin cells affected by localized

scleroderma (LoS) (18). Furthermore, a potential association

between BAT and RA has been identified, with metformin shown

to inhibit CIA progression and improve metabolic dysfunction in

obese mice by promoting BAT differentiation (19). Therefore,

exosomes derived from BAT may also contribute to the

suppression of pro-inflammatory factor expression in RA.

Given the current understanding of RA and the potential role of

hcBAC-exos, we focused on their effects on the expression of

inflammatory cytokines in macrophages. To identify the active

components within hcBAC-exos, metabolomic analysis of the

transdermal substances revealed the candidate fatty acid C22:6. In

vivo studies involved the application of hcBAC-exos and C22:6 to

the feet and paws of CIA mice to investigate their effects on RA. By

elucidating the mechanisms of action of hcBAC-exos and C22:6 in

immune regulation, we aimed to provide significant theoretical and

practical insights for the development of novel therapeutic

strategies for RA.
2 Materials and methods

2.1 Cell culture

Human classical interscapular brown adipose tissue was obtained

from the interscapular of a spontaneously aborted fetus at Beijing

Obstetrics and Gynecology Hospital. The classical interscapular

brown adipocytes were isolated as previously described (20, 21).

These human classical interscapular brown adipocytes were cultured

and expanded in Dulbecco’s modified Eagle’s medium (DMEM)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1543288
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2025.1543288
supplemented with 20% fetal bovine serum (FBS), penicillin (100 U/

mL), streptomycin (100 mg/mL) and HEPES (20 mM). These cells

were used for experiments between passages 5 and 15. RAW264.7

macrophage cell lines and 293FT cell lines were cultured in DMEM

supplemented with 10% FBS, penicillin (100 U/mL), and

streptomycin (100 mg/mL). All the cells were maintained at 37°C in

a 5% CO2 environment. The cell lines present in this study were

obtained from The American Type Culture Collection.

The study was conducted in accordance with the Declaration of

Helsinki, and was approved by the ethics committee of Beijing

Obstetrics and Gynecology Hospital, Capital Medical University

(protocol code 2023‐KY‐005‐01).
2.2 HcBAC-exos isolation and identification

Upon reaching 80% confluency, hcBCA were washed twice with

PBS, and the medium was replaced with serum-free medium. After

36 h, the conditioned medium from hcBCA was collected for

exosome isolation. The TransExo™ Cell Media Exosome Kit

(TransGen Biotech, FE401) was used to isolate hcBAC-exos.

Briefly, the cell supernatant was collected and centrifuged at 3000

× g for 30 min at 4°C to remove residual cells and debris. The

supernatant was then mixed with EPS-C at the appropriate ratio

and allowed to stand at 4°C overnight. The following day, the

mixture was centrifuged at 10,000 × g for 30 min at 4°C to

precipitate hcBAC-exos. Then PBS was added and the mixture

was gently pipetted to collect the hcBAC-exos. The hcBAC-exos

were quantified using a BCA protein assay kit and stored at -80°C.

The morphology of hcBAC-exos was observed via transmission

electron microscopy (USA, FEI). Western blot analysis was

conducted to identify the positive proteins (TSG101, CD63 and

CD81) of hcBAC-exos. The hcBAC-exos were thoroughly mixed

with vitamin E emulsion and applied to the ankle joints of the mice.
2.3 Cell uptake analysis in vitro

The hcBAC-exos were coincubated with DID dye (Invitrogen,

V22887) at 37°C for 30 min. Subsequently, the hcBAC-exos were

re-extracted to remove excess dye, resulting in red-labeled

exosomes (hcBAC-exos-DID). RAW264.7 cells were inoculated in

confocal dishes, and hcBAC-exos-DID was added to the cells for

coculturing for 3 and 12 h, respectively. The cells were then fixed

with 4% paraformaldehyde for 30 min and washed three times with

PBS, after which the nuclei were stained with DAPI working

solution. Finally, the uptake of hcBAC-exos-DID by the cells was

observed via confocal microscopy.
2.4 Plasmid construction and lentiviral
packaging

The shRNA oligonucleotide sequences were designed and

synthesized via the DSIR website. The synthesized forward and
Frontiers in Immunology 03
reverse oligonucleotides were annealed to form oligonucleotide

duplexes, which were subsequently ligated into the PLKO.1 vector

(PLKO.1-shRNA) for lentiviral packaging. Lentivirus can achieve

stable transfection. In brief, the core plasmid PLKO.1-shRNA, the

packaging plasmid psPAX2, and the envelope plasmid pMD2.G

were mixed at a ratio of 4:3:2 in DMEM and co-incubated with

three volumes of PEI for 20 min at room temperature. The resulting

mixture was added to a cell culture dish containing 70-90%

confluent 293FT cells and incubated for 6 h. The mixture was

then replaced with fresh basal medium. After 48 h, the cell culture

supernatant, which contained the packaged lentiviral particles, was

collected. This medium was then added to the target cells to

establish a stable cell line.
2.5 Mice

Male DBA/1 mice (7–8 weeks old) were obtained from Vital

River Laboratory Animal Technology Co., Ltd. All the mice were

housed in our SPF laboratory animal facility at the Institute of

Zoology, Chinese Academy of Sciences, at a room temperature of

24 °C with a 12 h light/dark cycle. Five mice were housed in each cage

with sufficient water and food.

All the animal studies were approved by the Institutional

Animal Care and Use Committee of the Institute of Zoology,

Chinese Academy of Sciences (protocol code IOZ-IACUC-

2023-030).
2.6 Induction of collagen-induced arthritis

A collagen-induced arthritis (CIA) mouse model was utilized in

this study (22). In brief, complete freund’s adjuvant (CFA) (4 mg/

mL) and bovine type II collagen (2 mg/mL) were emulsified at a 1:1

ratio via a homogenizer. On days 0 and 21, 100 ml of emulsified CFA

and bovine type II collagen were injected into the tail root of each

mouse. Following the second immunization on day 21, hcBAC-

exos/C22:6 was administered simultaneously to the ankle joints of

the mice. The thickness of the ankle joints in the hind limbs of the

mice was measured weekly via a vernier caliper. The clinical

arthritis score, assessed on a scale from 0 to3 (0 = normal, 1 =

slight swelling and/or erythema, 2 = pronounced swelling, 3 =

ankylosis), was calculated as the mean of the scores from the two

hind paws for statistics analysis (10, 22). After three weeks, the mice

were placed in a chamber containing 3%–4% isoflurane, fully

anesthetized within 2–3 minutes, and subsequently euthanized via

cardiac puncture bloodletting. The right ankle joints were fixed in

4% neutral buffered formalin for pathological examination.
2.7 Quantitative RT-PCR analysis

Total RNA was isolated from cells using TRIzol Reagent

(Thermo Fisher Scientific, 15596018CN) and reverse-transcribed

with the HiScript III 1st Strand cDNA Synthesis Kit (+gDNA wiper)
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(Vazyme, R302-01). The expression of mRNA was detected with

AceQ Universal SYBR qPCR Master Mix (Vazyme, Q511-02-AA).

The list of primers is provided in Supplementary Table S1 of the

Supporting Information.
2.8 Western blot

Total protein was extracted via RIPA lysis buffer containing

phosphatase and protease inhibitors. The protein concentration was

determined using the bicinchoninic acid (BCA) method. Proteins of

various molecular weights were subsequently separated via 12%

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and transferred to PVDF membranes. The membranes

containing the proteins were incubated overnight at 4°C with the

following antibodies: anti-phospho-SAPK/JNK (CST, 4668S), anti-

SAPK/JNK (CST, 9252T), anti-IL-6 (Abcam, ab259341), anti-

TNFa (Abcam, ab215188), anti-pro-IL-1b (R&D, AF-401-SP),

anti-cleaved-IL-1b (CST, 63124), anti-COX2(Abmart, T58852),

anti-HSP90(CST, 4874S), anti-CD63(Abmart, M051014), anti-

CD81(Abmart, T55724), and anti-TSG101(Abmart, T55985).

Next, the PVDF membranes were incubated for 1 h at room

temperature with primary and HRP-conjugated secondary

antibodies, and the expression levels of each protein were

detected using the Enhanced ECL Chemiluminescence Detection

Kit (Vazyme, China).
2.9 Histology analysis

The right ankle joints of the mice were fixed in 4%

paraformaldehyde (PFA) overnight, washed three times with

phosphate-buffered saline (PBS) and distilled water for 20 min

each, and subsequently transferred to an EDTA decalcification

solution for a period of 10–30 days. After dehydration, the ankle

joints were embedded in paraffin, sectioned into 4-5 mm slices, and

stained with Hematoxylin-eosin staining (H&E) and Safranin O-

Fast Green staining (SO/FG). The extent of synovitis and pannus

formation was assessed using a graded scale as follows: Grade 0

indicates no symptoms of inflammation; Grade 1 indicates mild

inflammation characterized by hyperplasia of the synovial lining;

Grade 2 indicates moderate infiltration with noticeable synovial

hyperplasia; Grade 3 indicates marked infiltration accompanied by

significant synovial hyperplasia; and Grade 4 indicates severe

inflammatory cell infiltration and synovial hyperplasia (23).
2.10 Protein production and purification

The sequence encoding the extracellular domain of TLR4

(TLR4-ECD) was cloned and inserted into the pMAL-c5X vector,

and the resulting recombinant plasmid was transformed into BL21

(DE3) competent cells. The bacteria were cultured at 37°C until the

optical density at 600 nm (OD600) reached 0.6-0.8. Isopropyl b-D-
1-thiogalactopyranoside (IPTG) was added to a final concentration
Frontiers in Immunology 04
of 0.8 mM to induce protein expression at 28°C. The bacteria were

harvested by centrifugation, resuspended in PBS, and lysed by

ultrasonic disruption, and the TLR4-ECD protein was purified

using HisTrap FF affinity chromatography.
2.11 Molecular docking of TLR4 with C22:6

The atomic coordinates of the extracellular domain of TLR4

(PDB: 2Z64) were obtained from the Protein Data Bank, while the

atomic coordinates for C22:6 were sourced from PubChem (CID

445580). The AutoDock Vina program was employed to generate

the TLR4-ECD and C22:6, selecting the complex with the

lowest energy.
2.12 Determination of the Kd value
between TLR4 and C22:6

To assess the interaction between TLR4 and C22:6, the

dissociation constant (Kd) values were measured using the MST-

Nanotemper instrument (Nanotemper, Germany). The principle of

the MST-Nanotemper instrument involves generating a

microscopic temperature gradient field by heating the sample

with an infrared laser, allowing for the assessment of C22:6

-protein binding behavior through the detection of covalently

bound fluorescent dyes and the quantification of molecular

motions. First, 100 mL of 10 mM TLR4-ECD protein was labeled

with a fluorescent dye, followed by sequential dilution of C22:6 in

16 concentration gradients, including 50000 nM, 25000 nM, 12500

nM, 6250 nM, 3125 nM, 1562.5 nM, 781.25 nM, 390.625 nM,

195.3125 nM, 97.65625 nM, 48.828125 nM, 24.4140625 nM,

12.20703125 nM, 6.103515625 nM, 3.0517578125 nM, and

1.52587890625 nM. The protein and C22:6 were then thoroughly

mixed at a 1:1 ratio for on-board detection.
2.13 Enzyme-linked immunosorbent assay

The levels of IL-1b and TNFa in mouse serum and cellular

supernatants were quantified using mouse ELISA kits (CUSABIO,

Wuhan) in accordance with the manufacturer’s instructions.
2.14 HPLC-MS/MS quantitative Lipidomics

Short-chain fatty acids (SCFAs) were extracted from hcBCA-

exos using acetonitrile and subsequently derivatized with 3-

nitrophenylhydrazine. SCFAs were analyzed using a Jasper

HPLC-Sciex 4500 MD system. Free fatty acids (FFAs) were

extracted from exosomes via modified Bligh and Dyer methods.

Medium- and long-chain fatty acids were analyzed using a

Shimadzu Nexera 20AD-HPLC/ExionLC-AD triple quadrupole/

ion trap mass spectrometer (6500 Plus QTRAP; SCIEX). Very-

long-chain fatty acids were analyzed via the Jasper HPLC—Sciex
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4500 MD system, and FFAs were quantified using d31-FFA 16:0

(Sigma-Aldrich) and d8-FFA 20:4 (Cayman Chemicals) as internal

standards (24).
2.15 Immunofluorescence

The paraffin-embedded sections were sequentially immersed in

xylene and ethanol for dewaxing and hydration. The sections were

then treated with antigen retrieval solution, after which endogenous

peroxidase activity was blocked with H2O2. The sections were

subsequently incubated in sealing solution for 1 h. After

overnight incubation with fluorescent antibodies (CD11b:

Invitrogen, 2396712; iNOS: Invitrogen, 53-5920; CD206:

Invitrogen, 12-2061), the sections were washed, stained with

DAPI, and imaged using a Zeiss LSM 880 confocal microscope.

The mean immunofluorescent intensity of each protein was

calculated using the software ImageJ (25).
2.16 Transdermal drug delivery study

We labeled the carboxyl group of C22:6 with CY5 dye. C22:6-

CY5 was mixed with a vitamin E emulsion at a concentration of

0.25 mg/mL and applied to the skin surface of the mice in a dark

environment. The control group received a coating of vitamin E

emulsion to eliminate autofluorescence. The fluorescence on both

the outer and inner surfaces of the skin was measured using a small

animal live imager. Skin tissue samples were embedded in optimal

cutting temperature (OCT) compound (Tissue-Tek®, Sakura

Finetek, USA) at -80°C. Sections of 20 mm thick skin were cut

using a cryosectioner (CM3050S, Leica, Germany), and images were

captured with a Zeiss LSM 880 confocal microscope.
2.17 Statistical analysis

The data are expressed as the means ± standard errors (SEs) of

the means. Comparisons between groups were performed via one-

way ANOVA or Student’s t-test. Statistical significance was set at

***P < 0.001, **P < 0.01 and *P < 0.05.
3 Results

3.1 Isolation and identification of hcBAC-
exos

To collect hcBAC-exos, brown adipocytes were cultured in 15

cm diameter dishes. Once the cell confluence reached

approximately 80%, the growth medium was replaced with

serum-free medium. After 36 h of incubation, the supernatant

was harvested, and hcBAC-exos were extracted using an exosome

isolation kit according to the manufacturer’s instructions

(Figure 1A). The morphology and size of the extracted hcBAC-
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exos were validated through transmission electron microscopy

(TEM) and laser scattering microscopy. TEM images

demonstrated that hcBAC-exos displayed a characteristic cup-

shaped morphology (Figure 1B). Nanoparticle tracking analysis

(NTA) further revealed that the particle sizes of hcBAC-exos

ranged from 50 to 150 nm (Figure 1C). Western blot analysis

confirmed the specific expression of the exosomal markers CD63

and CD81 (Figure 1D). These findings collectively validated the

successful isolation of hcBAC-exos.
3.2 Anti-inflammatory properties of
hcBAC-exos in vitro

Given the pivotal role of macrophages in RA, the RAW264.7

macrophage line was utilized to assess the impact of hcBAC-exos on

inflammatory cytokine release. Lipopolysaccharide (LPS)

significantly increased the mRNA levels of pro-inflammatory

cytokines, including IL-1b, IL-6, COX2, and TNFa in macrophages

(all P<0.01). Treatment with 1mg/mL of hcBAC-exos notably

reduced the mRNA levels of IL-1b, IL-6 and COX2, while having

no effect on the expression of TNFa (Figure 2A–D). Consequently, a

concentration of 1mg/mL for hcBAC-exos was selected for

subsequent cell experiment. Consistently, western blot analysis

revealed a significant decrease in IL1-b protein level following

hcBAC-exos treatment; however, it had minimal impact on the

protein expression levels of IL-6, COX2 and TNFa. (Figure 2E). To
further evaluate the effect of hcBAC-exos on pro-inflammatory

cytokine secretion, an ELISA kit was used to measure IL-1b levels

in the supernatant of macrophages, and the results demonstrated

that hcBAC-exos markedly inhibited LPS-induced IL-1b secretion

(Figure 2F). Finally, co-culture experiments using 1,1’-dioctadecyl-

3,3,3’,3’-tetramethylindodicarbocyanine,4-chlorobenzenesulfonate

salt (DID) dye-labeled hcBAC-exos confirmed the uptake of hcBAC-

exos by macrophages, with the uptake levels increasing over time

(Figure 2G). These results indicate that hcBAC-exos significantly

inhibited the expression of IL-1bat the cellular level.
3.3 hcBAC-exos improve RA symptoms in
CIA mice

To assess the transdermal effects of hcBAC-exos on RA in vivo,

we established a CIA mouse model. The CIA model was established

through immunization with collagen type II (CII) and complete

freund’s adjuvant (CFA) on day 0, followed by a booster with CII

and incomplete freund’s adjuvant (IFA) on day 21. HcBAC-exos,

combined with a vitamin E emulsion, were topically administered

to the ankle joints and paws of CIA mice, whereas the control group

received only the vitamin E emulsion (Figure 3A). Three weeks after

hcBAC-exos treatment, a significant reduction in swelling of the

ankle joints and paws was observed compared with that in the

control group (Figure 3B). Measurements from the vernier caliper

and clinical arthritis scores revealed that the hcBAC-exos group

exhibited a notable decrease in paw thickness and arthritis scores
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when compared to the control group (Figures 3C, D, Supernatant

Table 1). Furthermore, the serum levels of inflammatory cytokines,

including IL-1b and TNFa were significantly reduced after hcBAC-

exos treatment (Figures 3E, F). H&E revealed that inflammatory cell

infiltration was dramatically inhibited by hcBAC-exos treatment.

Furthermore, SO/FG, which specifically stains chondrocytes,

indicated that hcBAC-exos protect against joint chondrocyte

damage (Figures 3G, H).
3.4 FFA in hcBAC-exos suppresses IL-1b
expression in macrophages

To identify the key component of hcBAC-exos responsible for

inhibiting pro-inflammatory factor expression, we applied hcBAC-

exos to the skin of mice and extracted the transdermal substances

using a vertical franz diffusion system. Considering the transdermal

molecular weight cutoff of 500 Daltons, we analyzed the types and

concentrations of free fatty acids present in both the hcBAC-exos and

the transdermal material (Figure 4A). We found that a considerable

amount of free fatty acids was enriched in the post-transdermal

portions. To determine which fatty acids are predominantly

involved in inflammation, we selected the top 10 fatty acids with

high expression levels before and after transdermal processing in the
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RAW264.7 cell line. Among these fatty acids, C11:0 and C22:6

significantly reduced the protein level of IL-1b (Figure 4B).

Furthermore, C22:6 exhibited a greater inhibitory effect than C11:0

did (Figure 4C). Therefore, we chose C22:6 as our candidate for

further investigation. Additionally, C22:6 significantly decreased the

mRNA levels of IL-6, COX2, and iNOS (Figures 4D–F). Similarly,

ELISA analysis of cell supernatants confirmed that C22:6 significantly

diminished LPS-induced IL-1b secretion inmacrophages (Figure 4G).

These results highlight C22:6 as a main component of hcBAC-exos

that plays a pivotal role in inhibiting the expression of IL-1b.
3.5 C22:6 alleviates RA symptoms in CIA
mice

We further expanded upon our previous findings in a CIA mouse

model. C22:6 was administered daily to the ankles and paws of the

mice beginning on the second day after immunization. The effect of

C22:6 wasmonitored through weekly assessments of joint thickness. As

anticipated, we found that C22:6 significantly reduced paw swelling

and arthritis scores after three weeks of treatment (Figures 5A–C,

Supernatant Table 2). In addition, the systemic serum levels of pro-

inflammatory factors such as IL-1b and TNFa were markedly lower

than those in the control group (Figure 5D). Consistently, H&E
FIGURE 1

Isolation and anti-inflammatory properties of hcBAC-exos in vitro. (A) Extraction of hcBAC-exos from brown adipocytes supernatant. (B) TEM image
showing the morphology of hcBAC-exos. (C) Size distribution of hcBAC-exos via NTA. (D) Western blot analysis of protein markers associated
with hcBAC-exos.
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staining revealed that inflammatory cell infiltration was dramatically

inhibited by C22:6 treatment. Furthermore, SO/FG staining

demonstrated that C22:6 protects against joint chondrocyte damage

(Figures 5E, F). Since pro-inflammatory factors are predominantly

released by M1 macrophages, we performed immunofluorescence

staining of ankle joints. The results revealed a reduction in CD11b+

and significant reduction in iNOS+ (M1 marker) cell populations, and

an increase in CD206+ (M2 marker) cells following C22:6 treatment

(Figures 5G–I). Collectively, these findings suggest that the topical

application of C22:6 effectively mitigates the symptoms of CIA in mice.
3.6 C22:6 inhibits IL-1b expression via
TLR4.

The next question is how C22:6 inhibits IL-1b expression. To

investigate this, we first assessed the expression levels of fatty acid
Frontiers in Immunology 07
receptors (GPR40, GPR41, GPR43, GPR84 and GPR120) and

inflammatory receptors (IL1R1 , TNFR1 and TLR4) in

macrophages. Notably, TLR4, GPR120, and GPR84 exhibited

relatively high expression levels compared with TNFR1

(Figure 6A). We then performed loss-of-function experiments,

which revealed that the gene expression of GPR120 and GPR84

was successfully downregulated after using lentiviral vectors

containing shRNAs targeting these receptors. However,

knockdown of GPR120 and GPR84 did not alter LPS induced IL-

1b expression (data not shown). In contrast, after TLR4

knockdown, C22:6 failed to inhibit LPS induced IL-1b expression

(Figures 6B–D), indicating that C22:6 may exert its anti-

inflammatory effects through TLR4.

To further investigate the interaction between C22:6 and TLR4,

we employed AutoDock Vina for molecular docking analysis.

Interestingly, we identified 12 potential binding sites for C22:6 on

TLR4, with a predicted dissociation constant of -5.585 kcal/mol
FIGURE 2

Anti-inflammatory properties of hcBAC-exos in vitro. (A-D) Effects of hcBAC-exos on the mRNA expression levels of IL-1b, IL-6 and COX2 in
macrophages. (E) Effects of hcBAC-exos on the protein expression of pro-inflammatory factors in macrophages. (F) Effects of hcBAC-exos on
IL-1b in the supernatant of macrophages. (G) Confocal microscopy observation of hcBAC-exos-DID uptake by macrophages. Data are shown as
mean ± SEM. One-way ANOVA were performed; ***p <0.001, **p < 0.01, and *p < 0.05 was considered to be significant.
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(Figures 6E, F). To confirm the biomolecular interactions, we

conducted mutagenesis experiments on the top five residues with

high dissociation constants, Y183, S210, E265, S182, and R223 of

TLR4, replacing them with alanine. We then purified proteins of
Frontiers in Immunology 08
both the wild type and mutant forms tagged with myelin basic

protein (MBP). We subsequently used the MST-NanoTemper

instrument to measure biomolecular interactions. As expected,

MBP did not interact with C22:6, whereas wild type TLR4
FIGURE 3

HcBAC-exos alleviate RA symptoms in CIA mice. (A) CIA mouse model was generated and administered via protocol. (B) Representative images of
paw swelling in different experimental groups after hcBAC-exos were applied to the paws of mice for three weeks (n=7-9). (C) Measurement of hind
paw thickness across various groups of mice (n=7-9). (D) Clinical arthritis scores of mice in both groups. (E, F) Serum levels of IL-1b and TNFa in the
two groups of mice (serum was collected after two weeks of hcBAC-exos application, n=7-9). (G, H) Representative histological images of mouse
ankles following the application of hcBAC-exos to the paws for three weeks (G: H&E staining; H: SO/FG staining). Yellow arrows indicate areas of
synovial inflammatory cell infiltration and red arrows indicate cartilage locations. Data are shown as mean ± SEM. Two-tailed Student’s t-test and
One-way ANOVA were performed; **p < 0.01, *p < 0.05 were considered to be significant.
FIGURE 4

FFA in hcBAC-exos suppresses IL-1b expression in macrophages. (A) Heatmap illustrating the types and relative abundances of FFAs in hcBAC-exos
before and after transdermal transit (pre-hcBAC-exos: hcBAC-exos before transdermal transit; post-hcBAC-exos: after transdermal transit). (B) Effects of
FFAs on the protein expression of IL-1b in macrophages. (C) Effects of C11:0 and C22:6 on the mRNA expression of IL-1b in macrophages. (D–F) Effects
of C22:6 on the mRNA expression of IL-6, COX2 and iNOS. (G) Effects of C22:6 on IL-1b levels in the supernatant of macrophages. Data are shown as
mean ± SEM. One-way ANOVA was performed; ***p <0.001 and *p < 0.05 was considered to be significant.
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showed binding affinity with a dissociation constant of 1.53 mM.

Interestingly, the mutant TLR4 protein did not bind to C22:6

(Figures 6G–I). These findings suggest that C22:6 inhibits

inflammation by directly binding to TLR4, specifically by

targeting the amino acids Y183, S210, E265, S182, and R223.
3.7 Transdermal delivery of C22:6

A crucial question is whether C22:6 can penetrate the skin. In

recent years, transdermal drug delivery has been increasingly utilized

for the treatment of various conditions, including arthritis and skin

disorders. This method is noninvasive, allows for flexible dosing, and

effectively bypasses first-pass metabolism in the liver (26). To evaluate

the transdermal efficacy of C22:6, we conjugated its carboxyl group

with a CY5 dye. The C22:6-CY5 complex was mixed with a vitamin E

emulsion, applied to the skin of the mice, and shielded from light.

Using a small animal live imager, fluorescence was detected both on the

skin surface and within the dermis. Both the outer and inner epidermis

exhibited high fluorescence intensity (Figure 7A). Frozen tissue sections

confirmed the presence of red fluorescence in the dermis, indicating
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successful transdermal absorption of C22:6-CY5 (Figure 7B). These

results suggest that C22:6 can be effectively delivered transderminally.
4 Discussion

In this study, we found that hcBAC-exos suppressed the LPS-

induced expression of pro-inflammatory factors in macrophages.

Furthermore, the direct application of hcBAC-exos to the skin of the

foot paws of CIA mice significantly improved RA symptoms.

Lipidomic analysis of hcBAC-exos revealed that the primary

component exerting anti-inflammatory effects is C22:6.

Mechanistically, we discovered that C22:6 binds directly to the TLR4

receptor, specifically through the amino acids Y183, S210, E265, S182,

and R223, thereby suppressing the expression of inflammatory factors.

These findings provide new insights into the role of hcBAC-exos in

regulating the inflammatory response and suggest potential strategies

for RA treatment.

Exosomes are widely present in cell cultures and various

body fluids (27, 28). The cell-targeting ability of exosomes

enhances their role as drug delivery platforms. Compared with
FIGURE 5

C22:6 improved RA symptoms in CIA mice. (A) Representative images of paw swelling in different experimental groups following the application of
C22:6 to the paws of mice for three weeks (n=7). (B, C) The thickness of the paw and the arthritis score were measured in both the control group and
the C22:6 group (n=7). (D) Serum levels of IL-1b and TNFa in the two groups of mice, with serum collected after two weeks of C22:6 treatment (n=7).
(E, F) Representative histological images of mouse ankles after three weeks of C22:6 application (E: H&E staining; F: SO/FG staining). The green arrows
indicate synovial inflammatory cell infiltration, while the red arrows indicate cartilage locations. (G–I) Immunofluorescence staining of paraffin sections
from mouse ankle joints. (CD11b: total macrophage marker; iNOS: M1 macrophage marker; CD206: M2 macrophage marker). Data are shown as mean
± SEM. Two-tailed Student’s t-test and One-way ANOVA were performed; ***p<0.001, **p < 0.01, *p < 0.05 were considered to be significant.
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cell-based therapies, exosomes offer advantages such as no

cytotoxicity, low immunogenicity, high circulatory stability, and

good biocompatibility, making them suitable drug-delivery carriers

for various diseases (29). We found that brown adipocytes produce

a substantial number of exosomes that can be taken up by

macrophages. In vitro, hcBAC-exos demonstrated potent anti-

inflammatory properties, primarily as evidenced by their ability to

inhibit LPS-induced pro-inflammatory cytokine expression in

macrophages. This finding aligns with the role of exosomes as

cell-to-cell messengers that modulate immune responses and

inflammation (30). Moon et al. reported that BAT transplantation

significantly reduced bone damage, inflammation, and cartilage

damage, along with pro-inflammatory cytokine levels in CIA

recipient mice (31). In the present study, we topically applied

hcBAC-exos to the skin of the feet and claws of CIA mice,

resulting in a significant improvement in RA symptoms. These
Frontiers in Immunology 10
observations underscore the potential of exosome-based therapies

to target specific tissues and modulate local inflammatory responses

without systemic side effects. The specificity of exosome action may

confer a distinct advantage over traditional broad-spectrum anti-

inflammatory drugs, which often have significant side effects (32,

33). Additionally, hcBAC-exos are easier to administer than BAT

transplantation and avoid immune rejection, positioning hcBAC-

exos as a promising new strategy for RA treatment.

Numerous studies have highlighted the importance of exosomes

in intercellular communication by facilitating the transfer of

biologically active lipids, proteins, and nucleic acids, thereby

influencing the physiological functions of recipient cells (34–36).

Wu et al. reported that miR-204-5P was abnormally expressed in

the plasma exosomes of patients with RA. Furthermore, the

overexpression of miR-204-5p in synovial fibroblasts inhibited

their activation by targeting genes associated with cell
FIGURE 6

C22:6 inhibits IL-1b expression through TLR4. (A) Expression levels of inflammatory and fatty acid-related receptors in RAW 264.7 cells (IL-1R1,
GPR40, GPR41, and GPR84 expression levels were too low to be shown). (B) shRNA-mediated knockdown of TLR4. (C, D) mRNA and protein
expression levels of IL-1b in each group were detected by RT-qPCR and WB. (E, F) AutoDock Vina software was used to predict potential binding
sites for TLR4 and C22:6. (G-I) C22:6 affinity assay for MBP, wild-type (WT) TLR4 and the TLR4 mutant. (Fluorescence intensity was measured after
mixing varying concentrations of C22:6 with fluorescently labeled MBP (G) WT TLR4 (H) or the TLR4 mutant (I) The x-axis represents the
concentration of C22:6, whereas the y-axis represents the fluorescence intensity). Data are shown as mean ± SEM. Two-tailed Student’s t-test or
one-way ANOVA were performed; ***p <0.001, **p < 0.01, and *p < 0.05 were considered to be significant. NS represents no significant difference.
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proliferation and invasion (37). Proteomic analysis of serum

exosomes from RA patients revealed that the levels of amyloid A

(AA) and lymphatic vessel endothelial hyaluronic acid receptor-1

(LYVE-1) significantly differed between the control and RA groups.

These two proteins have potential as additional biomarkers of

disease activity in RA patients (38). Furthermore, studies indicate

that different types of fatty acids have different mechanisms of

action in the regulation of inflammation. Omega-3 fatty acids, such

as linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid,

can mitigate inflammation by inhibiting the synthesis of

inflammatory mediators, including prostaglandins and leukocyte

chemokines (39–41). In addition, they modulate inflammation-
Frontiers in Immunology 11
related signaling pathways, such as the NF-kB and MAPK

pathways, thereby exerting an inhibitory effect on inflammation

(42). In contrast, omega-6 fatty acids, such as linoleic acid (43), are

considered pro-inflammatory. Excessive intake of omega-6

fatty acids enhances the production of inflammatory mediators,

such as prostaglandin E2, thereby exacerbating the inflammatory

response (44). Consequently, fatty acids derived from BAT-derived

exosomes may play a crucial role in the pathogenesis of RA.

We wondered whether some of the fatty acids in hcBAC-exos

were involved in inflammatory pathways. To test this hypothesis,

we focused on the role of FFAs in hcBAC-exos. Metabolomic

analysis revealed that the anti-inflammatory effects of hcBAC-
FIGURE 7

Transdermal delivery of C22:6. (A) Fluorescence imaging was used to detect fluorescence values measured on the exterior and interior of the mouse
skin. (B) Frozen sections of skin tissue were analyzed using fluorescence microscopy to observe the transdermal absorption of C22:6-CY5.
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exos were attributed mainly to the presence of C22:6. This finding is

important because it highlights the role of specific lipid mediators in

the regulation of immune responses. C22:6 directly binds to amino

acids Y183, S210, E265, S182, and R223 of the TLR4 receptor,

subsequently inhibiting IL-1b expression and providing a clear

molecular mechanism by which hcBAC-exos exert their anti-

inflammatory effects. Exosomal lipids play crucial roles in the

progression of metabolic diseases (45). For example, sphingosine

1-phosphate (S1P), which is found in endothelial-derived

exosomes, can enhance the migration of hepatic stellate cells (46).

In patients with simple steatosis and early fibrosis associated with

nonalcoholic steatohepatitis (NASH), the number of circulating

exosomes containing C16:0 ceramides and S1P-rich lipids in plasma

gradually increases (47). Currently, the role of lipids in exosomes

remains poorly understood, and their role in RA is even less

understood. Our understanding of the mechanism by which

C22:6 inhibits inflammation through the TLR4 receptor is novel

and has broad implications for lipid-mediated immune regulation.

Although the application of hcBAC-exos and C22:6 in RA

treatment is st il l in the research stage, their natural

biocompatibility and anti-inflammatory properties present

promising avenues for non-pharmacological interventions (48).

Stem cell-derived exosomes have been shown to be edited via

metabolic glycoengineering (MGE) technology to selectively target

macrophages and alleviate symptoms of rheumatoid arthritis (RA)

by modulating macrophage heterogeneity (36). The functional

resolution and targeted modification of exosomes are important

for effective disease treatment. Combining C22:6 with fine-tuned

exosomes may facilitate targeted delivery to affected organs, thereby

enhancing therapeutic efficacy in suppressing RA. Current research

is limited by the use of a single animal model and a single bioactive

lipid. Future studies should investigate the role of hcBAC-exos in
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various RA animal models and explore the synergistic effects of

multiple bioactive components within hcBAC-exos. Furthermore,

to substantiate our findings, evaluating the potential for clinical

translation is essential. The quantification of hcBAC-exos and

C22:6, along with their stability during transportation and

preservation, as well as their safety and efficacy in human

subjects, requires further investigation.

In conclusion, our study revealed the role of hcBAC-exos in

modulating the inflammatory response and proposed a potential

mechanism of action for hcBAC-exos, especially C22:6, in RA

(Figure 8). This may represent a novel approach to RA treatment,

providingmechanistic insights that establish a foundation for targeted

therapy in RA and potentially other inflammatory diseases. Future

research should concentrate on addressing the limitations of current

studies and translating these findings into clinical practice.
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