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Bioinformatics meets machine
learning: identifying circulating
biomarkers for vitiligo across
blood and tissues
Qiyu Wang1, Jingwei Yuan1,2, Mengdi Zhang2, Haiyan Jia2,
Hongjie Lu2 and Yan Wu2*

1Beijing Technology and Business University, Beijing, China, 2Air Force Medical Center of the Chinese
People’s Liberation Army, Beijing, China
Background: Vitiligo is a skin disorder characterized by the progressive loss of

pigmentation in the skin and mucous membranes. The exact aetiology and

pathogenesis of vitiligo remain incompletely understood.

Methods: First, a microarray dataset of blood samples frommultiple patients with

vitiligo was collected from GEO database.The limma package was used to

analyze the microarray data and identify significant differentially expressed

genes (DEGs). The merged microarray data were then used for WGCNA to

identify modules of features genes. DEGs selected with the limma package and

module genes derived from the WGCNA were intersected using the Venn

package in R. Enrichment analyses were performed on the overlapping genes,

including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes

methodology. Advanced screening was performed using the least absolute

shrinkage and selection operator and support vector machine techniques from

the machine learning toolkit. CIBERSORT was used to analyse the immune cell

composition in the microarray data to assess the relationships among these

genes and immune cells. Biological samples were obtained from the patients,

and gene expression analysis was performed to evaluate the levels of core genes

throughout the progression of vitiligo. Finally, we obtained the microarray

datasets GSE53146 and GSE75819 from the affected skin of vitiligo patients and

GSE205155 from healthy skin to perform expression analysis and gene set

enrichment analysis of the hub genes.

Results: Two hub genes, HMGA1 and PSMD13, were identified via machine

learning and WGCNA. The analysis of immune cell infiltration suggested that

different immune cell types could play a role in the progression of vitiligo.

Moreover, these hub genes exhibited varying degrees of association with

immune cell profiles. qRT–PCR analysis of blood samples from vitiligo patients

revealed notable downregulation of the hub genes. Analysis of the microarray

datasets derived from skin lesions revealed thatHMGA1 expression levels remained

relatively stable, whereas PSMD13 expression levels markedly decreased.
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Conclusion: PSMD13 may influence vitiligo development via the Nod-like

receptor signaling pathway and could serve as a potential diagnostic marker

for evaluating skin lesions in vitiligo.
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1 Introduction

Vitiligo is an autoimmune dermatological disorder

characterized by the loss of melanocytes, the cells that produce

skin pigments, leading to areas of depigmentation that manifest as

white patches on the skin (1, 2). Statistics indicate that the global

incidence rate is 0.36%. In adults, the rate is around 0.67%, while in

children it is about 0.24%. Overall, approximately 28.5 million

people are affected (3). In addition, due to its negative impact on

patients’ social interactions, vitiligo leads to a high prevalence of

mental disorders such as anxiety and depression (4, 5), which leads

to a significant decline in the quality of life of patients.

The pathogenesis of this disease has not been fully elucidated,

and current research has focused primarily on oxidative stress

promoting the CD8+ T-cell response in the skin (6, 7). Inherent

lymphocytes mediate the apoptosis of melanocytes (8) and the

effects of family genetics (9). Present treatments include ultraviolet

light–based combination therapies (10), targeted T-cell therapies

(11) and JAK inhibitors, but the likelihood of achieving long-term

colour recovery is quite small (12). Therefore, investigating the

mechanisms underlying vitiligo, identifying biomarkers for this

disease, and developing prevention and treatment strategies on

the basis of these findings are highly important.

In recent years, advancements in bioinformatics have led to its

widespread application along with machine learning techniques for

identifying treatment targets for various diseases (13).Gene chips, a

high-sequence technique for analysing RNA expression, have been

used in medical research into numerous disorders, including

neurodevelopmental disorders (NDDs) (14).

Weighted gene co-expression network analysis (WGCNA) is a

powerful method for analysing transcriptomic data. In WGCNA,

tightly connected genes are clustered into different modules, not

only identifying differentially expressed genes (DEGs) but also

exploring the correlations between modules and diseases (15).

The identification of disease biomarkers through scale-free

WGCNA has been utilized in numerous disease studies (16–18).

Machine learning encompasses a range of mathematical techniques

designed to extract insights from large datasets (19). Machine

learning algorithms offer several advantages, such as non-

linearity, fault tolerance, and real-time operation, that make them

well suited for complex applications (20).

In this study, we obtained two expression microarray datasets of

peripheral blood mononuclear cells (PBMCs) from vitiligo patients
02
and healthy controls from the Gene Expression Omnibus (GEO)

database. Differential gene identification (n=154) was conducted

with the limma and WGCNA packages in R. Machine learning

algorithms were used to select two core genes. Additionally, we

assessed the proportions of 22 immune cell types in the PBMCs of

vitiligo patients and healthy individuals via the CIBERSORT

algorithm. Biological samples were collected, and the expression

levels of these core genes throughout vitiligo pathogenesis were

evaluated. Finally, we collected microarray datasets from lesional

skin and healthy skin for expression analysis and gene set

enrichment analysis (GSEA) of the hub genes. The analysis

process of this study is illustrated in Figure 1.
2 Materials and methods

2.1 Gene expression profile (dataset
download and processing)

Data were collected from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/), a public resource for high-

throughput gene expression data, chips, and microarrays. We

obtained two datasets derived from blood samples from vitiligo

patients: GSE90880 (GPL8300), which included nine vitiligo

patients and six healthy controls, and GSE80009 (GPL16951),

which included eight vitiligo patients and four healthy controls.

Three datasets derived from skin samples of vitiligo patients and

healthy controls were used for data validation: GSE53146

(GPL14951), which included 5 vitiligo patients and 5 healthy

controls; GSE75819 (GPL6884), which included 15 vitiligo

patients; and GSE205155 (GPL14550), which included 11

healthy controls.
2.2 Identification of DEGs

We compared vitiligo subjects with healthy control subjects

using R (v4.2.2). The R package “limma” was used to identify DEGs

between the vitiligo patient group and healthy control group for

both the GSE90880 and GSE80009 datasets. Adjusted p values were

evaluated to mitigate the risk of false positives in the GEO dataset.

DEGs with adjusted p values < 0.05 and |log2 fold change (log2FC)|

> 0.5 were deemed significant. Volcano maps were created with a
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volcano plotting tool (http://soft.sangerbox.com/). Heatmaps based

on filtered DEGs were generated with the pheatmap package in R.
2.3 Weighted gene co-expression networks

The gene expression profile was generated using the “sva”

package to normalize the data and correct for batch effects. The

GSE90880 and GSE80009 datasets were subsequently merged. The

Pearson correlation coefficient was computed with the R WGCNA

software package to determine the correlation between gene pairs,

establishing the gene co-expression matrix. Following the scale-free

network principle, soft thresholds (power = 12, R2 = 0.89) were

chosen successively to construct scale-free co-representation

networks. The adjacency matrix was then converted into a

topological overlap matrix. Subsequently, cluster analysis was

performed to delineate gene modules, each containing at least 60

genes. Hierarchical clustering was employed to generate a

dendrogram, evaluating the correlation between module feature

genes and the disease phenotype. The module with the highest

correlation coefficient and the lowest P value was identified as the

disease feature. Next, the module feature genes obtained using

limma were intersected with the GSE90880 and GSE80009

datasets, and a Venn diagram was generated to identify the

hub genes.
2.4 Selection of feature genes for Gene
Ontology and Kyoto encyclopedia of genes
and genomes functional enrichment
analyses

The intersecting genes identified by limma and WGCNA were

selected using the Venn software package in R.

In this study, the “clusterProfiler” R package was used to

perform GO and KEGG functional enrichment analyses, with a

focus on gene-related biological process (BP), molecular function

(MF), and cellular component (CC) terms and their associated

signalling pathways.
2.5 Machine learning analysis of disease
genes

We employed three machine learning algorithms, namely, least

absolute shrinkage and selection operator (LASSO) regression

analysis, support vector machine with recursive feature

elimination (SVM-RFE) analysis, and random forest (RF)

analysis, to analyse the genes identified by the aforementioned

methods. We used performed the LASSO regression analysis with

the R package “rms”, SVM-RFE analysis using the R package

“e1071”, and RF analysis with the R package “randomForest.”

The intersecting genes obtained from these three analyses are

considered the core genes of vitiligo. Finally, we implemented
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stratified 5-fold cross-validation in R software to evaluate the

logistic regression model built on core genes. Each fold preserved

the original class distribution of the dataset. After training the

model on four folds, we generated predictions for the held-out test

fold and merged all test fold predictions to compute the pooled

AUC. To evaluate stability, we conducted 1000 bootstrap

resampling on the combined predictions, reporting the mean

AUC and the 95% confidence interval.
2.6 Immune infiltration analysis

CIBERSORT is a computational tool that was used to estimate

the proportions of immune cells in vitiligo and control samples on

the basis of tissue gene expression profiles, helping to identify

variations in immune cell composition. We analysed immune cell

infiltration with the “Cibersort” R software package. Bar graphs

illustrating the distributions of various immune cell types across

different samples were generated. The proportions of different

immune cell types in the vitiligo and control groups were

compared with violin plots. Additionally, heatmaps showing the

correlations among 22 types of infiltrating immune cells were

generated with the “corrplot” R package.
2.7 Clinical validation of core genes

2.7.1 Sample collection
This study received approval from the Medical Ethics

Committee of the Air Force Medical Center of the Chinese

People’s Liberation Army (Approval No. 2023-67-PJ01) and

followed ethical guidelines consistent with the principles

established by the Declaration of Helsinki. All participants

provided written informed consent. A total of 30 patients with

vitiligo and 30 healthy controls participated in this study. Our

research primarily focuses on individuals with the disease who have

not undergone systemic treatment. The inclusion criteria are based

on the consensus for diagnosing and treating vitiligo (21).: (1) skin

lesions presented as depigmented white patches of varying sizes and

shapes, with normal or increased pigmentation around the edges;

(2) skin lesions commonly occurred on the face, neck, hands, torso,

and oral and mucosal tissues and the surrounding skin and were

frequently found in traumatized areas, with hairs in the white

patches typically turning white; (3) other pigmentation disorders

or depigmentation diseases were excluded; (4) bright white

fluorescence was observed in the white patches under Wood’s

lamp examination; (5) disease duration of over 2 years; (6)

absence of comorbid autoimmune diseases; and (7) no history of

systemic or immunosuppressive therapies.

2.7.2 RNA extraction and quantitative RT–PCR
Total RNA was extracted from peripheral blood using a whole-

blood total RNA extraction kit (Simgen, China). The concentration

and purity of the extracted RNA were assessed with a NanoDrop
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2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA). The assessment focused on A260/A280 ratios that fell within

the range of 1.8 to 2.0. The primer sequences of the hub genes used

in qRT-PCR are shown in Table 1.
2.8 Skin dataset validation of the hub
genes

2.8.1 Merging multiple datasets and removing
batch effects

We first merged GSE53146 (GPL14951), GSE75819 (GPL6884)

and GSE205155 (GPL14550) using the inSilicoMerging package in

R(A total of 18 cases of vitiligo patients and 12 healthy controls)

(22), followed by the Combat package to remove batch effects (23).

2.8.2 Expression of the hub genes in the skin-
derived datasets

The expression of the hub genes in the skin-derived datasets was

calculated via t tests.

2.8.3 Receiver operating characteristic curve
analysis

The diagnostic performance of the hub genes was assessed via

ROC curve analysis.

2.8.4 Single-gene GSEA
We conducted single-gene GSEA to explore potential pathways

regulated by the hub genes.
2.9 Statistical analysis

GraphPad Prism (version 9.5.0, San Diego, California, USA)

was used to perform two-sided Student’s t tests to compare the

differences between the disease group and the normal group. The t

value and P value for each gene were calculated. A P value less than

0.05 was considered to indicate a significant difference between the

normal group and the vitiligo group.
3 Results

3.1 Identification of DEGs

In this study, we identified 347 DEGs, including 154 that were

upregulated and 193 that were downregulated, from a dataset

consisting of 8,621 samples. This dataset included 4 blood

samples from healthy individuals and 8 blood samples from

patients with vitiligo, sourced from GSE90880. Additionally, 2423

DEGs (398 upregulated genes and 2025 downregulated genes) were

selected from a dataset of 20134 samples (including 6 blood samples

from healthy individuals and 8 blood samples from vitiligo patients)

obtained from GSE80009. A volcano plot of the DEGs was created

with thresholds of log2FC greater than 0.5 and an adjusted p value
Frontiers in Immunology 04
less than 0.05 (Figures 2A, C). Additionally, a heatmap was

generated to illustrate the top 30 upregulated and top 30

downregulated genes (Figures 2B, D).
3.2 Weighted gene co-expression network
analysis

We utilized WGCNA to detect gene modules associated with

specific traits. Initially, we calculated a matrix of similarities and

transformed it into an adjacency matrix, applying an optimal soft

threshold (b = 12) (Figures 3A, B). Ten distinct gene modules were

identified in the analysis (Figure 3C). We identified the “brown”

module (correlation coefficient = 0.92, p-value = 0.06) and the

“blue” module (correlation coefficient = 0.91, p-value = 0.07) as the

modules most clinically relevant to vitiligo on the basis of their

associations with the phenotypic traits of the condition (Figure 3D).

The intersection of the DEGs identified by limma in GSE90880

and GSE80009 with the key module genes identified by WGCNA

via Venn analysis resulted in the identification of 154 core genes.

To examine the regulatory roles of the 154 core genes in disease

development, we compared the DEGs from GSE90880 with those

from GSE80009, which were identified via the limma package, along

with key module genes identified viaWGCNA, ultimately leading to

the selection of the 154 core genes (Figure 4A). We subsequently

conducted GO and KEGG pathway analyses on the 154 core genes

to identify the biological functions of these DEGs. KEGG analysis

revealed that the DEGs were associated primarily with pathways

such as Epstein–Barr virus infection; the cell cycle; the NF-kB
signalling pathway; parathyroid hormone synthesis, secretion and

action; and the spliceosome (Figures 4B, C). GO analysis revealed

enrichment of DEGs in pathways related to negative regulation of

cellular processes, the nuclear lumen, negative regulation of

metabolic processes, negative regulation of macromolecule

metabolic processes, the nucleoplasm, and negative regulation of

cellular processes (Figures 4D, E).
3.3 Machine learning

First, the LASSO regression algorithm was used to identify 16

hub genes (Figure 5A). Next, the SVM-RFE algorithm was

subsequently employed to identify 8 hub genes (Figure 5B). The

RF algorithm was used for identification (Figure 5C). We visualized

the overlapping hub genes from the three algorithms using a Venn

diagram, which revealed 2 hub genes: HMGA1 and PSMD13

(Figure 5D). Finally, we conducted ROC curve analysis on the 2

hub genes, yielding an AUC of 0.92 for HMGA1 and 0.87 for

PSMD13 (Figures 5E, F).
3.4 CIBERSORT

Because the hub genes were found to be enriched in immune-

related pathways, we explored the immune landscape in the training
frontiersin.org
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datasets via the CIBERSORT algorithm to better elucidate the role

of immune regulation in vitiligo pathogenesis. Figure 6 shows the

infiltration levels of 22 immune cell types in both the vitiligo and

normal groups. The bar plot visually depicts the proportions of

immune cells in each sample from the GSE90880 and GSE80009

datasets (Figures 6A, B). The violin plots displaying differences in

immune cell infiltration revealed that, compared with normal

control samples, resting natural killer (NK) cells (p <0.05)

exhibited greater infiltration in the GSE90880 dataset (Figure 6C).

In the GSE80009 dataset, mast cells were activated (p <0.01), and

neutrophils (p <0.05) had increased infiltration (Figure 6D).
3.5 qRT–PCR

The expression levels of the overlapping hub genes HMGA1 and

PSMD13 in the peripheral blood of vitiligo patients and control

patients were assessed via qRT–PCR. HMGA1 and PSMD13

expression levels were significantly lower in the vitiligo group than

in the control group (Figure 7A, P=0.015; Figure 7B, P=0.0077),

which is consistent with the results of the bioinformatics analysis.
Frontiers in Immunology 05
3.6 Validation of the hub genes in the skin-
derived dataset

After the batch effect was removed, a boxplot was generated,

which suggested that the data distribution among the datasets

converged and that the median was on a line (Figure 8A), and

the uniform manifold approximation and projection (UMAP) plot

demonstrated that the samples from the different datasets clustered

closely together, indicating effective removal of the batch effect

(Figure 8B). The changes in HMGA1 expression in the inflamed

skin of vitiligo patients compared with that in healthy skin were not

significant, but PSMD13 expression showed a significant

downwards trend (Figures 8C, D). We conducted ROC curve

analysis to evaluate the diagnostic potential of the two hub genes,

with an area under the curve (AUC) value greater than 0.7

considered to indicate a potential diagnostic marker. In the

combined dataset, the AUC value of HMGA1 was 0.50, and that

of PSMD13 was 0.73 (Figures 8E, F). GSEA revealed that the group

with low HMGA1 expression was enriched in epithelial cell

signalling pathways associated with Helicobacter pylori infection

(Figure 8G). The group with low PSMD13 expression was
FIGURE 1

Study flowchart.
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significantly enriched in the NOD-like receptor signalling pathway

and highly enriched in the proximal tubule bicarbonate reclamation

pathway (Figure 8H).
4 Discussion

The pathogenesis of vitiligo is closely related to autoimmune

and oxidative stress (1, 24). This study identified two key genes,

HMGA1 and PSMD13, in the blood of vitiligo patients using

bioinformatics and machine learning techniques. These genes

were found to be downregulated in vitiligo patients and may

trigger the onset of the disease via the NOD-like receptor and

NF-kB signaling pathways. Additionally, the expression of these key
Frontiers in Immunology 06
genes was confirmed using clinical blood samples and skin datasets.

These findings indicate that these genes may significantly contribute

to the pathogenesis of vitiligo.

Nucleotide-binding and oligomerization domain (NOD)-like

receptors (NLRs) are intracellular proteins with a central role in

innate and adaptive immunity (25). NLRs include inflammasome

receptors/sensors leading to the maturation of caspase 1, IL-1b, IL-
18, and gasdermin D to drive inflammation and cell death (26).

Additionally, several members of the NLR family act as checkpoints

in innate immunity by functioning as negative regulators. Various

NLRs regulate the balance between cell death, cell survival,

autophagy, mitophagy, and even cellular metabolism (27). Many

preclinical studies have confirmed that NLRs are closely related to

the pathogenesis of vitiligo, indicating that NLRs can regulate
FIGURE 2

Dysregulated genes in vitiligo are displayed in (A) the volcano plot and (B) the heatmap for GSE90880 and in (C) the volcano plot and (D) the
heatmap for GSE80009.
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melanocyte apoptosis, thereby mediating the onset of vitiligo (28–

31). The NF-kB pathway is crucial for inducing pro-inflammatory

cytokines, chemokines, and other inflammatory mediators in

different types of innate immune cells. These inflammatory

mediators can cause inflammation directly or indirectly promote

the differentiation of inflammatory T cells (32). Research indicates

that modulating the NF-kB pathway may alleviate melanocyte

damage, offering new insights for the clinical management of

vitiligo (33, 34). Additionally, NLRs can respond to external
Frontiers in Immunology 07
signals to activate NF-kB signaling. They negatively regulate NF-

kB signal transduction by interacting with TNF receptor-associated

factor 6 (TRAF6), which results in the secretion of inflammatory

factors (35, 36).

PSMD13 (26S proteasome non-ATPase regulatory subunit 13),

also known as S11 or Rpn9, is a regulatory subunit of the 26S

proteasome. PSMD13 facilitates the ATP-dependent degradation of

ubiquitinated proteins, which is crucial for maintaining cellular

function through the removal of damaged proteins, and it is also a
FIGURE 3

(A) Determination of the appropriate soft threshold for constructing a scale-free gene co-expression network. (B) Hierarchical clustering
representation of all genes. (C) Cluster dendrograms showed the clustering process of the gene modules. (D) Assessment of the relationship
between individual modules and vitiligo patients versus controls.
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fundamental complex that helps regulate T-cell function (37).

PSMD13 is involved in processes such as cell cycle regulation and

DNA replication, which are essential for maintaining cellular health

and longevity (38, 39). One study revealed that PSMD13 inhibits the

NF-kB pathway, indicating its significant role in innate immune

responses (40, 41). In addition, PSMD13 is involved in the ageing

process and is related to the human lifespan (42). A decrease in

PSMD13 expression weakens the resistance of cells to emergency

injury and megakaryocyte differentiation (43). Our study revealed a

decrease in PSMD13 expression within the blood samples of vitiligo

patients, corroborated by a consistent downwards trend observed in

follow-up validations using lesional skin datasets. Further insights

gained from single-gene GSEA of patient lesional skin datasets

implicate the potential role of the Nod-like receptor signalling

pathway in the manifestation of characteristic skin lesions in

vitiligo patients. TAK1 plays a crucial role in the NF-kB signaling

pathway. It can induce pyroptosis by facilitating the nuclear

translocation of NF-kB p65 and activating the NOD-like receptor

pyrin domain-containing 3 (NLRP3) inflammasome (44, 45).

Studies have demonstrated that PSMD13 inhibits the

development of NF-kB signaling pathway neuroinflammation by

targeting TAK1 (40). In summary, PSMD13 may inhibit NF-kB
signaling through the degradation of TAK1 or kinases associated
Frontiers in Immunology 08
with the Nod-like receptor pathway. Additionally, its proteasome

function might regulate the stability of NLRs, which could reduce

melanocyte damage caused by the inflammasome.

The HMGA1 protein is a nuclear architectural factor belonging

to the non-histone chromosomal binding protein superfamily.

HMGA1 can resist cell apoptosis and enhance senescence, thereby

preventing replication (46, 47). Its downregulation can promote

myocyte differentiation and skeletal muscle regeneration (48),

potentially serving as a downstream target of DNA damage (49).

On the one hand, the protein encoded by the HMGA1 gene

regulates gene transcription activity and chromatin structure in

the nucleus and plays an important role in cell proliferation,

differentiation and growth (50, 51). Our results suggest that in

vitiligo, the abnormal expression of HMGA1may lead to changes in

the function of pigment cells, increasing their vulnerability to attack

by immune cells or triggering an autoimmune response, thus

exacerbating vitiligo. In addition to the NF-kB signalling

pathway, the Epstein–Barr virus infection pathway is also relevant

to the pathogenesis of vitiligo according to KEGG analysis.

Although this pathway is associated primarily with viral infection,

its role in immune regulation and cell proliferation processes may

indirectly influence the immunopathological mechanisms of vitiligo

(52). On the other hand, the PSMD13 gene encodes a protein
FIGURE 4

(A) Venn diagram illustrating the overlap between the differentially expressed genes from GSE90880 and GSE80009 and the key module genes
identified through WGCNA, revealing a total of 154 core genes. (B, C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the
core genes. (D, E) Gene Ontology (GO) analysis of the core genes to assess their functional characteristics.
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involved in regulating the cell cycle and the NF-kB signalling

pathway, both of which are critical in immune responses and

apoptosis (41). The NF-kB signalling pathway plays a crucial role

in regulating inflammation, and its abnormal activation is

associated with various autoimmune diseases, including vitiligo.

Studies indicate that aberrant activation of the NF-kB signalling

pathway may lead immune cells to attack melanocytes, affecting

their normal function and promoting the onset and progression of

vitiligo (33, 53).

The role of immune cells in vitiligo cannot be overlooked (54).

NK cells, activated mast cells, neutrophils, and other immune cells

play crucial roles in the process of immune inflammation. These

cells can influence the function and survival of melanocytes directly

or indirectly through the release of inflammatory mediators and the

activation of immune responses, thereby participating in the

pathological processes of vitiligo (55–57).

Our analysis of blood microarray data revealed that reduced

expression levels of the PSMD13 and HMGA1 genes influence

cellular processes such as the cell cycle and NF-kB signalling, as

well as nuclear transcriptional activities. These effects could

significantly impact immune-inflammatory responses and the

function of pigment cells in individuals with vitiligo. The abnormal
Frontiers in Immunology 09
activation of KEGG pathways such as the NF-kB signalling pathway

and the Epstein–Barr virus infection pathway, as well as the activation

state of immune cells, are also closely related to the pathogenesis of

vitiligo. We verified the expression of the hub genes in blood via

qRT–PCR. In addition, PSMD13 significantly decreased in the

lesioned skin of vitiligo patients, suggesting that PSMD13 is

involved in the skin lesion development process through the NOD-

like-receptor signalling pathway, but HMGA1 did not significantly

decrease in the lesioned skin. Our study explored the potential of

HMGA1 and PSMD13 as markers for vitiligo; these results validate

our findings and have practical implications for the diagnosis and

treatment of vitiligo. Future research should elucidate the specific

roles of these molecules and pathways in the development of vitiligo

to provide a stronger theoretical foundation for the development of

new treatment strategies.

This study identified PSMD13 and HMGA1 as potential hub

genes linked to vitiligo using integrated bioinformatics and

experimental validation. While the exact immune mechanisms of

PSMD13 are unclear, our findings lay a strong foundation for future

studies on its functional role, especially in the Nod-like receptor

signaling pathway. Furthermore, although the module-trait

correlations in WGCNA were only marginally significant (P =
FIGURE 5

Machine learning algorithms: (A) least absolute shrinkage and selection operator (LASSO) regression, (B) support vector machine with recursive
feature elimination (SVM-RFE), and (C) the random forest (RF) algorithm. (D) Venn diagram illustrating the overlapping and distinct genes identified
by LASSO, SVM-RFE, and RF. (E, F) ROC curve of hub genes HMGA1 and PSMD13.
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FIGURE 6

Immune infiltration analysis. (A) Stacked bar plot visualization of various infiltrating immune cells in GSE90880. (B) Stacked bar plot visualization of
various infiltrating immune cells in GSE80009. (C) Violin plot visualization of infiltrating immune cells in the vitiligo and normal groups in GSE90880.
*p < 0.05, **p < 0.01. Wilcoxon rank-sum test. (D) Violin plot visualization of infiltrating immune cells in the vitiligo and normal groups in GSE80009.
*p < 0.05, **p < 0.01. Wilcoxon rank-sum test.
FIGURE 7

Clinical validation of the hub genes. (A) Relative mRNA levels of HMGA1 in controls and vitiligo patients. (B) Relative mRNA levels of PSMD13 in
controls and vitiligo patients (* p < 0.05, ** p < 0.01).
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0.06 and P = 0.07), downstream analyses, such as functional

enrichment and immune cell association, strongly supported the

relevance of these modules. These limitations underscore the

exploratory nature of this study and highlight the necessity for
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further validation using larger cohorts and functional assays.

Despite these constraints, this study provides valuable insights

into the molecular mechanisms underlying vitiligo and suggests

novel targets for future diagnostic and therapeutic approaches.
FIGURE 8

Validation of the hub genes in the skin-derived dataset. (A) Boxplot after removal of the batch effect. (B) UMAP plot after removal of the batch effect.
(C, D) Expression of hub genes and validation of skin-derived datasets (* p < 0.05). (E, F) Hub genes in the skin-derived datasets were analysed via
ROC curves. (G, H) GSEA of the hub genes.
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5 Conclusions

In summary, we identified two vitiligo-associated genes,

HMGA1 and PSMD13, via WGCNA and machine learning

approaches on datasets GSE80009 and GSE90880. We verified

this trend by collecting blood samples from vitiligo patients and

conducting qRT–PCR analyses of the identified hub genes.

Additionally, we gathered microarray datasets (GSE53146 and

GSE75819) from affected skin areas of these patients along with a

control microarray dataset (GSE205155) from healthy skin for

comprehensive expression and GSEA analyses of the hub genes.

Our findings indicate that PSMD13 plays a role in the skin lesion

development process via the Nod-like receptor signalling pathway,

whereas HMGA1 does not seem to be directly involved in skin

lesions according to our data. Despite their potential importance,

research into the specific functions of HMGA1 and PSMD13 within

the context of vitiligo remains scarce. Our work underscores the

importance of HMGA1 and PSMD13 in the pathophysiological

mechanisms underlying vitiligo, potentially opening new avenues

for both diagnostic and treatment strategies for this condition.
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Gene Forwards primer sequence Reverse primer sequence

HMGA1 AGCGAAGTGCCAACACCTAAG TGGTGGTTTTCCGGGTCTTG

PSMD13 CAGATGACTGATCCTAATGTGGC CCAGGAAGGTTGTTGAGCATTT

GAPDH GGCACAGTCAAGGCTGAGAATG ATGGTGGTGAAGACGCCAGTA
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