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Introduction

Stem cells are an important compartment supporting tissues with differentiating cells

and responding to regeneration demand (1–4). There are interesting evidences that

subpopulations of stem cells migrate to developing organs and tissues during

embryogenesis, but do not directly contribute to development (5–10). They persist to

provide support as stem cells of the adult organism. If more cells would have proliferative

and differentiation potential of stem cells, it would be good for regeneration. However, it

should be balanced with risks of mutations and oncogenesis. A self-maintaining, highly

proliferative cell would need fewer changes to become a cancer cell. The quiescence of stem

cells with high proliferative potential could be a solution to place them evolutionarily

further away from cancer cells (11). Slow dividing cells also have a lower mutation potential

associated with the number of divisions (11, 12). Lower mutational potential is associated

with resistance to oncogenesis, as well as with a lower number of neoantigens and

consequently lower autoimmunity (13). These reasons are important, but in the context

of long-living strategies, could there be benefits from keeping stem cells quiescent in the

short-term? The quiescence of stem cells, coupled with their metabolic processes, enables

them to survive in severely damaged tissues, thereby facilitating regeneration (14, 15).

Given their role in regeneration, an increase in the number of stem cells would be expected

to enhance the regenerative potential. Stem cells from stroma of adult tissues are

maintained at the proportion 10-5-10-4 (16–21). There should be reasons to maintain

this stem cell number at a relatively low level. An interesting note that an increased number

of stem cells suggests a lower number of divisions for each, this way significantly reducing a

chance of a random cooperation of oncogenic mutations in a single cell, thereby lowering

cancer risk (11). A potential explanation is that it is a matter of energy consumption

efficiency. However, a tenfold change in the number of stem cells results in a mere 0.1%

alteration in the total value. More firm reasons could be derived from the

immunomodulatory properties of stem cells. Pronounced and diverse immune
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modulation of mesenchymal stem cells (MSCs) earlier led to their

identification as agents of the immune system (22, 23). However,

demonstrated later immune rejection of mesenchymal cells in

transplantations ceased that idea (24, 25). Recently, the immune

privileges (IPs) of stem cells, including MSCs, have been

demonstrated (20, 26–28). It was previously suggested that the

IPs of stem cells are associated with their quiescent state and relate

to regeneration and inflammation regulation (26, 29). A number of

molecular mechanisms are demonstrated to contribute to immune

modulation exerted by MSCs, qualifying them as immune

modulatory stem cells (IMSCs) (30). That way, IMSCs are cells

demonstrating active participation in immune regulation and

capability of IPs. I propose a generalized model that functionally

links the newly demonstrated IPs to other attributes of IMSCs.
Functional model

The functional significance of IMSCs is of particular evolutionary

importance with respect to the stem and immune systems (29). The

reports indicate that MSCs not only evade cytotoxic immune action

(31), but also actively attract immune cells and can activate or

reprogram them depending on the molecular context (32–36).

Immune modulation of stem cells is employed in the context of

solid organ transplantation and is utilized in the treatment of

autoimmune pathology (32–35). This gives ground to mark

MSCs as baring functional of immune suppression and as

IMSCs. The activation of MSCs and the subsequent induction of

the regenerative program results in the suppression of the

inflammatory program (34, 37). MSCs have been shown to express

a range of immunosuppressing molecules, including PGE2, TGF‐b,
HLA-G5, IL‐10, HGF, galectins, CD73, CD39, PD-L1, HLA-G1 and

other (30, 34, 37, 38). Immunomodulatory capabilities are more

pronounced in IMSCs than in other differentiated cells (39, 40). It is

challenging to determine where the immune or other functions of

IMSCs are lost during differentiation to their progeny, particularly in

light of the potential for dedifferentiation (41, 42). The existing

mutual integration of stem and immune systems highlights the

evolutionary significance of this integration, as an additional

mechanism may potentially act as a break point. This underscores

the necessity for evolutionary coordination with respect to the

attributes of immune and stem cells involved in this integration.

The construction of a comprehensive model is hindered by the vast

number of elements and the incomplete knowledge about their

connections. Therefore, I propose a functional model (Figure 1).

As IMSCs provide immune suppression upon activation (32, 34,

37), they should remain inactive. Otherwise, their immune

suppression could potentially compromise the immune protection

of a tissue from invading pathogens. A higher concentration of

IMSCs results in a more pronounced immune suppression, so

reasoning their limited numbers (Figure 1). In this manner, IMSCs

serve as an activating special agent in the periphery, suppressing the

potentially destructive actions of an overactive immune system. This

model offers an evolutionary rationale for the maintenance of IMSC

quiescence and their low numbers. The traumas and infections have
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higher risks during life than cancer, so provide possibly stronger

selective pressure for long-term living strategies and stay actual for

even short-term living strategies.

In the event of infection, resident cells signal to attract immune

cells. MSCs are among the cells that signal for immune activation (35,

36, 43). The relatively limited number of IMSCs induces suppressing

signals at a slower rate than the initial proinflammatory reaction. This

allows the necessary time for an acute inflammatory reaction to occur

(Figure 1). Upon activation, IMSCsmigrate to sites of damage (17, 19,

44, 45), where they exert their immunosuppressive effects. Over time,

the inflammatory response stimulates the stem system, thereby

inducing its regenerative and anti-inflammatory functions. As a

result, the initially inflamed area becomes an area of active

regeneration, with the inflammatory response polarized toward a

regenerative subtype.

Immune suppression functions can be exploited by invading

pathogens (43, 46, 47). The immune system is also responsible for

protecting against oncogenesis (48), this emphasizes the risks

associated with IPs (46, 49, 50). That way immune suppression

should be presented by complex and enigmatic regulation, which

serves as a natural barrier against hijacking. Furthermore, the

regulatory mechanisms must be robust. The additional protection

is provided by a strong connection of this function to a small

subpopulation of IMSCs. If pathogens target IMSCs and their

immunosuppression, it would be necessary for infection to evolve

in order to fit the specific conditions of the stem niche. The

physiology and energy exchange of stem cells enable their survival

and resistance to infection (51, 52). The fitness of a pathogen to a

small subgroup would render it ineffective for the infection of other

cells, thereby exerting selection pressure against such fitness

(Figure 1). The isolation of immune suppression to a small,

specific subpopulation of stem cells provides a robust form of

protection from infection. The coevolution of immune regulation

and infection represents a dynamic and interdependent relationship

(46). It is important to note that IMSCs lack absolute protection and

may be infected (43, 47). When infected, stem cells can suppress an

infection by direct antiviral action and by reducing the number of

stem cells through apoptosis (53, 54).

This model also provides a rationale for the seeding of IMSCs to

developing tissues during embryogenesis (5). The functional

rationale for differentiating between stem cells in adult and

embryonic contexts may be attributed to the heightened risk of

pathogens invasions in adult tissues during the lifespan. Given the

pivotal role of IMSCs in immune function, the divergence in

immune status preceding and following labor may provide a

potential explanation for the evolutionary adaptation.

The metabolic differences that distinguish stem cells enable

them to survive in conditions that would otherwise be lethal for the

majority of other cells (15, 51). This enables the regeneration of

severely damaged tissues. The model, where IMSCs possess IPs,

implies an additional potential for the restoration of areas afflicted

by excessive inflammation. As different physiology and a paucity of

IMSCs provide evolutionary protection from infection, the risk

associated with migration of IMSCs to contaminated tissue

is diminished.
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Discussion

The model proposes an evolutionary perspective for IMSCs,

including MSC, which have been identified in various tissues of the

human body (55). MUSE and VSELs are also stem cells with

pronounced immune modulation, derived from a mesenchymal

subpopulation of different organs (28, 56, 57). The similarities of

functions and molecular mechanisms with other quiescent and

immune-privileged stem cells, such as hair follicle stem cells, muscle

stem cells or hematopoietic stem cells, require further definition

(26, 27). The proposed model does not align with the organizational

structure of all tissues and their stem cells. There are examples of

stem cell organizations that do not align with the proposed model

and that may require significant adjustments (58). The esophageal

epithelium is an illustrative example of a tissue wherein 65% of cells

are engaged in proliferation, self-maintaince, and repair-related
Frontiers in Immunology 03
processes, thereby fulfilling the stem cells functions (59). Lgr5+

stem cells of the colon and small intestine demonstrate sustained

proliferative activity throughout the lifespan (60–62). These cycling

stem cells illustrate different evolutionary solutions for tissue-

specific mutational processes, in addition to quiescence, to protect

against mutations (63). Proliferating Lgr5+ stem cells do not exhibit

the same IPs as a subpopulation of quiescent Lgr5+ stem cells (26).

In this manner, the cells also exhibit disparate patterns of immune

regulation. The regeneration of acute liver damage is mediated by

hepatocytes and biliary epithelial cells. In the context of liver

homeostasis, hepatocytes and biliary epithelial cells are in a state

of quiescence, yet they undergo activation in response to an acute

damage event (64). They are differentiated parenchymal cells of the

liver and are the primary contributors to cellular restoration (65,

66). Wound regeneration or inflammation not only activates

quiescent cells, but also upregulates dedifferentiation (67).
FIGURE 1

The evolutionary regulation of the activity and number of immune modulatory stem cells (IMSCs) according to their role in the immune system. The
left part represents the process of infection under physiological conditions, while the right part represents a hypothetical scenario with increased
activity and number of IMSCs. Infection of tissue cells leads to cell death and inflammation of the area. Rare IMSCs, which are able to survive and
proliferate in damaged areas due to their homeostatic adaptation, are attracted to the inflamed area. Activated IMSCs suppress inflammation and
drive regeneration. Suppressive immune modulation provides protection from the immune system and could be exploited by invading pathogens.
The differences in homeostasis of IMSCs protect them from infections. An increase in the number or activity of IMSCs would provide an evolutionary
opportunity for infections to adapt to the IMSC phenotype and support the spread of infection, leading to severe tissue damage. Thus, IMSCs and
infections are interdependent in the evolutionary equilibrium. The evolutionary competition between host and infection leads to an escalation in the
complexity of immune regulation.
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Dedifferentiation may serve to regulate the stem cell pool (68). The

number of stem cells is also subject to negative feedback, whereby

stem cells inhibit dedifferentiation and reduce the number of

surrounding stem cells (69, 70). Further studies are required to

elucidate the role of dedifferentiation in immune and stem cell

regulation. Further experimental study is required to elucidate the

strong functional distinction of quiescent, immune-privileged stem

cells. More experiments are required to elucidate the nuances of

immune modulation function across stem cells derived from

different tissues.

The model provides a logical explanation for the difficulties in

expanding stem cells and their immunomodulatory properties used

in the clinic to protect against pathological inflammation and

immunotoxicity (28, 32, 34, 71–75). The model could be extended

to elucidate the IPs of cancer stem cells as an attribute of the stem

state (49, 50). The model can also elucidate the role of non-cancerous

stroma in the protection of cancer cells by conceptualizing

cancerous tissue as a region of active regeneration, wherein the

immunomodulatory function of the stem system is activated (67,

76, 77). This provides a natural explanation for the stimulation of

immune modulation from non-cancer stroma in response to therapy

that damages cancer tissue, thereby further stimulating the function

of regeneration (78, 79). The immunomodulatory properties of MSCs

are significant and well recognized in the scientific community (32,

34, 71, 73). The principal objective of this article is to designate MSCs

or IMSCs as a component of the immune system. It is proposed that

IMSCs should be acknowledged as part of the immune system, with a

role in the peripheral control of inflammation and autoimmunity, in

addition to IMSCs regenerative potential.

The proposed model establishes a functional link between the

attributes of IMSCs and their associated IPs and immune

modulation. The model provides a functional analysis, eschewing a

detailed examination of the underlying mechanisms. A particular

mechanism may contribute to different functions simultaneously,

thereby forming a complex network. However, it should also exhibit

functional robustness beyond this. Additional restrictions imposed

on IMSC attributes enhance the overall robustness and offer a

compelling explanation for their observed values. To provide a

rationale for the links in the model, I present an evolutionary

perspective, but with the support of data from experiments that are

not necessarily context-specific to evolutionary theory. Nevertheless,

the existing deep mutual integration of immune and stem functions

provides a robust foundation for the model. It is important to note

that the evolutionary link between functions is not necessarily

realized by an actual molecular mechanism. Alternatively, functions

could be adjusted by independent shifts, which would provide

advantages in subsequent generations. The model proposes
Frontiers in Immunology 04
evolutionary links for the IMSCs attributes. This presentation does

not provide a detailed account of the evolutionary process that led to

this state or an analysis of the specific mechanisms involved.

Nevertheless, these issues warrant further investigation.
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17. Mansilla E, Marıń GH, Drago H, Sturla F, Salas E, Gardiner C, et al. Bloodstream
cells phenotypically identical to human mesenchymal bone marrow stem cells circulate
in large amounts under the influence of acute large skin damage: new evidence for their
use in regenerative medicine. Transplant Proc. (2006) 38:967–9. doi: 10.1016/
J.TRANSPROCEED.2006.02.053

18. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira S,
et al. and frenette, P.S. (2010) Mesenchymal and haematopoietic stem cells form a
unique bone marrow niche. Nature. (2010) 466:829–34. doi: 10.1038/nature09262

19. Sato T, Wakao S, Kushida Y, Tatsumi K, Kitada M, Abe T, et al. A novel type of
stem cells double-positive for SSEA-3 and CD45 in human peripheral blood. Cell
Transplant. (2020) 29:0963689720923574. doi: 10.1177/0963689720923574

20. Karpenko D, Kapranov N, Bigildeev A. Nestin-GFP transgene labels
immunoprivileged bone marrow mesenchymal stem cells in the model of ectopic
foci formation. Front Cell Dev Biol. (2022) 10:993056/FULL. doi: 10.3389/
FCELL.2022.993056/FULL

21. Kuroda Y, Kitada M,Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, et al.
Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl
Acad Sci United States America. (2010) 107:8639–43. doi: 10.1073/PNAS.0911647107

22. Lombardo E, Delarosa O. Modulation of adult mesenchymal stem cells activity
by toll-like receptors: implications on therapeutic potential. Mediators Inflammation.
(2010) 2010:865601. doi: 10.1155/2010/865601

23. Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal
stem cells. Eur J Immunol. (2006) 36:2566–73. doi: 10.1002/EJI.200636416

24. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not
immune privileged. Nat Biotechnol. (2014) 32:252–60. doi: 10.1038/nbt.2816

25. Berglund AK, Fortier LA, Antczak DF, Schnabel LV. Immunoprivileged no
more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells, stem
cell research and therapy. Stem Cell Res Ther. (2017) 8:288. doi: 10.1186/s13287-017-
0742-8

26. Agudo J, Park ES, Rose SA, Alibo E, Sweeney R, Dhainaut M, et al. Quiescent
tissue stem cells evade immune surveillance. Immunity. (2018) 48:271–285.e5.
doi: 10.1016/j.immuni.2018.02.001

27. Hirata Y, Furuhashi K, Ishii H, Li HW, Pinho S, Ding L, et al. CD150 high bone
marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via
adenosine. Cell Stem Cell. (2018) 22:445–453.e5. doi: 10.1016/j.stem.2018.01.017

28. Kuroda Y, Oguma Y, Hall K, Dezawa M. Endogenous reparative pluripotent
muse cells with a unique immune privilege system: hint at a new strategy for controlling
acute and chronic inflammation. Front Pharmacol. (2022) 13:1027961. doi: 10.3389/
FPHAR.2022.1027961
Frontiers in Immunology 05
29. Karpenko DV. Immune privileges as a result of mutual regulation of immune and
stem systems. Biochem Biokhimiia. (2023) 88:1818–31. doi: 10.1134/S0006297923110123

30. Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell
proliferation. (2020) 53:e12712. doi: 10.1111/CPR.12712

31. Rasmusson I, Ringdén O, Sundberg B, Le Blanc K. Mesenchymal stem cells
inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T
lymphocytes or natural killer cells. Transplantation. (2003) 76:1208–13. doi: 10.1097/
01.TP.0000082540.43730.80

32. Sergeant E, Buysse M, Devos T, Sprangers B. Multipotent mesenchymal stromal
cells in kidney transplant recipients: the next big thing? Blood Rev. (2021) 45:100718.
doi: 10.1016/J.BLRE.2020.100718

33. Raicevic G, Rouas R, Najar M, Stordeur P, Id Boufker H, Bron D, et al.
Inflammation modifies the pattern and the function of toll-like receptors expressed
by human mesenchymal stromal cells. Hum Immunol. (2010) 71:235–44. doi: 10.1016/
J.HUMIMM.2009.12.005
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