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Monoamine signaling and
neuroinflammation: mechanistic
connections and implications for
neuropsychiatric disorders
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Monoamines, including norepinephrine, serotonin, and dopamine, orchestrate a

broad spectrum of neurophysiological and homeostatic events. Recent research

shows a pivotal role for monoaminergic signaling in modulating

neuroinflammation by regulating proinflammatory cytokines and chemokines

within the central nervous system. Importantly, this modulation is not

unidirectional; released proinflammatory cytokines markedly “feedback” to

influence the metabolism of monoamine neurotransmitters, impacting their

synthesis, release, and reuptake. This bidirectional interplay significantly links

monoaminergic pathways and neuroinflammatory responses. In this review, we

summarize current knowledge of the dynamic interactions betweenmonoamine

signaling and neuroinflammation, as well as their critical implications for the

pathophysiology of neuropsychiatric disorders, including Parkinson’s Disease,

Major Depressive Disorder, and Alzheimer’s Disease. By integrating recent

findings, we shed light on potential therapeutic targets within these

interconnected pathways, providing insights into novel treatment strategies for

these devastating disorders.
KEYWORDS
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GRAPHICAL ABSTRACT

Created with Biorender.com.
1 Introduction

Monoamine neurotransmitters, including norepinephrine

(NE), serotonin (5-HT), and dopamine (DA), are important

bioactive signaling molecules in the central nervous system

(CNS). For example, monoaminergic (MA-ergic) systems regulate

the gastrointestinal, respiratory, and cardiovascular systems, as well
Abbreviations: 5-HT, Serotonin; 5-HTR, Serotonin receptor; AC, Adenylate

cyclase; AD, Alzheimer ’s Disease; BBB, Blood-brain barrier; BH4,

Tetrahydrobiopterin; cAMP, Cyclic adenosine monophosphate; CNS, Central

nervous system; CRYAB, controlled aB-crystallin; DA, Dopamine; DAT,

Dopamine transporters; DMN, Default mode network; DR, Dopamine

receptor; DRD2, Astrocytic D2 receptor; DSP4, N-(2-chloroethyl)-N-ethyl-2-

bromobenzylamine; EPI, Epinephrine; GPCRs, G protein-coupled receptors;

ICH, intracerebral hemorrhage; IDO, Indoleamine-2,3-dioxygenase; IFN-g,

Interferon-gamma; IL-18, Interleukin-18; IL-1Ra, IL-1 receptor antagonist; IL-

1RII, IL-1 type II receptor; IL-1b, Interleukin-beta; IL-6, Iinterleukin-6; iNOS,

nitric oxide synthase; KA, Kynurenic acid; LC, Locus coeruleus; LPS,

Lipopolysaccharide; MA-ergic, Monoaminergic; MAPK, Mitrogen-activated

protein kinase; MAT, Monoamine transporters; MDD, Major Depressive

Disorder; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NE,

Norepinephrine; NO, Nitric oxide; PAMP, Pathogen-associated molecular

patterns; PD, Parkinson’s Disease; PKA, Protein Kinase A; PNS, Peripheral

nervous system; ROS, Reactive oxygen species; SERT, Serotonin transporter;

SNRI, Selective norepinephrine reuptake inhibitor; SSRIs, Selective serotonin

reuptake inhibitors; TH, Tyrosine hydroxylase; TNF, Tumor necrosis factor;

VTA, Ventral tegmental area.
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as modulate mood, cognition, sleep, nociception, temperature,

perspiration, and other processes (1). Given their extensive

influence, disruptions of these systems produce numerous

pathological effects, contributing to the development of

neuropsychiatric disorders (2–4).

MA-ergic systems participate in many physiological activities

that regulate CNS inflammation (5), which can be initiated in

response to various cues such as infection, traumatic brain injury,

toxic metabolites, or autoimmune response (5). Neuroinflammation

involves local microglial cells, infiltrating immune cells, and

cytokines released from these cells and the peripheral nervous

system (PNS). Upon infection or neuronal injury, microglia

secrete either proinflammatory factors, which enhance

cytotoxicity, or anti-inflammatory factors, which aid in wound

healing and tissue repair (6). Excessive microglial activation,

immune cell infiltration, and the release of proinflammatory

cytokines can damage surrounding healthy neural tissue.

Additionally, cellular factors released by dying neurons amplify

chronic microglial activation and the infiltration of peripheral

inflammatory mediators, accelerating further neuronal loss.

Proinflammatory cytokines can also dysregulate MA-ergic

systems by modulating their synthesis, release, and reuptake,

further contributing to neuroinflammation, a common factor in

many neurological disorders (7).

In this review, we explore recent findings on the interactions

between MA-ergic function and neuroinflammation and briefly

discuss the role of these interactions in neurological disorders such

as Major Depressive Disorder (MDD), Alzheimer’s Disease (AD),
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and Parkinson’s Disease (PD). While histamine is also a

monoamine involved in CNS function and neuroinflammation

(8), this review focuses on NE, 5-HT, and DA due to their direct

regulation of mood, cognition, and the pathophysiology of major

neuropsychiatric disorders. These monoamine neurotransmitters

are also the primary targets of many therapeutic interventions.

While many studies have linked neurological diseases to specific

neuroinflammatory changes in the brain, we are continuously

discovering that these diseases involve additional neuroinflammatory

processes. Neuroinflammation plays a key role in the pathogenesis of

depression, AD, and PD (9–11). By delineating the role of

MA-ergic systems in regulating neuroinflammation and modulating

monoamine neurotransmission by cytokines and chemokines, we

endeavor to deepen our comprehension of how these systems

contribute to disease pathophysiology. Our goal is to integrate

existing knowledge to catalyze future research and the development

of novel therapeutic approaches.
2 The monoamine system

The MA-ergic neurotransmitters NE, 5-HT, and DA play

important roles in regulating functions within the nervous and

immune systems by binding to receptors in the CNS and PNS.

Neurochemical and structural changes in brain circuits, particularly

in regions like the prefrontal cortex, amygdala, nucleus accumbens,

and hippocampus, are linked to neuropsychiatric symptoms, such as

depression, which is often associated with dysregulated 5-HT and DA

signaling (4, 12, 13). Monoamine receptors, primarily G protein-

coupled receptors (GPCRs), except for the 5-HT3 receptor (a ligand-

gated ion channel) (14), are involved in cellular responses to

neurotransmitters and the modulation of inflammation. GPCR

subtypes exhibit distinct affinities for various ligands and influence

physiological and inflammatory processes. Many immune cells

express multiple GPCRs, regulating various inflammatory pathways

(15, 16).
2.1 Norepinephrine

Adrenergic pathways are essential conduits for communication

between the nervous and immune systems. NE is synthesized from

DA by dopamine b-hydroxylase and is released from the

locus coeruleus (LC), acting as a neuromodulator to regulate

arousal, stress responses, anxiety, executive control, and memory

consolidation. NE also plays a significant role in neuroinflammation,

influencing microglia activation and the blood-brain barrier’s integrity

(BBB) (17, 18). NE can be converted to epinephrine (EPI) (19), which

is involved in the “fight-or-flight” response. Both EPI and NE

stimulate adrenergic receptors, common receptors that are classified

into three groups: a1 (a1A, a1B, a1D), a2 (a2A, a2B, a2C), and

b receptors, all belonging to the G-protein-coupled receptor family.
Frontiers in Immunology 03
a1 receptor subtypes activate phospholipase C, through Gaq/11

coupling, elevating levels of inositol triphosphate, Ca2+, and

diacylglycerol. In contrast, a2 receptors inhibit adenylyl cyclase,

via Gai/o coupling, decreasing cyclic adenosine monophosphate

(cAMP) levels and protein kinase A (PKA) activity (20). Similarly, b
receptors, which include three subtypes (b1, b2, and b3), also play an
important role in adrenergic signaling. All b receptors associate

with Gas proteins and activate adenylyl cyclase, increasing cAMP

levels and PKA signaling. Additionally, the b2 isoform can couple to

Gai/o, allowing for more diverse intracellular effects.

Adrenergic drugs, which target NE and EPI receptors, are

commonly used in the treatment of psychiatric conditions. b-
blockers like propranolol are sometimes used off-label to manage

anxiety, although this is not an FDA-approved indication. Alpha-2

agonists like clonidine are prescribed for anxiety and ADHD,

selective NE reuptake inhibitors (SNRIs) like venlafaxine increase

NE levels to treat depression, and alpha-1 blockers like prazosin are

used to address PTSD-related nightmares. Some of these uses, such

as propranolol for anxiety, may not be officially approved but are

utilized in clinical practice based on their effects.
2.2 Serotonin

5-HT, a vital neurotransmitter and hormone with diverse functions

across various organs, is synthesized from tryptophan, with its rate-

limiting step catalyzed by the enzyme tryptophan hydroxylase. 5-HT is

primarily produced by enterochromaffin neuroendocrine cells in the

gastrointestinal tract (21) and by serotonergic neurons in the raphe

nuclei (located in the brainstem) within the CNS (22, 23). These

serotonergic neurons are extensively distributed throughout the

mammalian brain, making the serotonergic system the CNS’s largest,

and perhaps the most complex, efferent system (24). Serotonergic

nuclei, such as rostral, dorsal, and medial nuclei, diffuse their

projections throughout the CNS, contributing to the regulation of

temperature, appetite, sleep cycles, emesis, and sexual behavior.

Conversely, caudal nuclei project into the spinal cord, modulating

nociception and motor tone (4, 24, 25).

The functions of 5-HT in the CNS are diverse, affecting

physiology, cognition, and behavior. Additionally, 5-HT has been

implicated in CNS development, acting as a growth factor that guides

the proliferation, organization, and maturation of the developing

brain (26). It is also stored in blood platelets, highly concentrated in

dense granules, and is released during agitation and vasoconstriction

(27). Like many other neurotransmitters, 5-HT is usually taken back

up by the presynaptic cell (reuptake) or degraded by monoamine

oxidase (28). Selective 5-HT reuptake inhibitors (SSRIs), whose

mechanism of action is to block 5-HT reuptake, are widely used to

treat many psychiatric and mental health conditions (29).

Although only approximately 5% of total bodily 5-HT is found

in the CNS, every brain cell is in close proximity to a serotonergic

fiber, and all CNS regions express 5-HT receptors (5-HTRs) in a
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subtype-specific manner (26, 30). Individual neurons have been

shown to express multiple 5-HTRs, leading to differential effects of

5-HT on the activity of distinct neurons (30). Furthermore, the

serotonergic system interacts with other neurotransmitter systems,

such as the catecholaminergic system, to influence numerous

physiological processes (31).

5-HT’s actions are mediated by the 15 known receptor subtypes

(across 7 mammalian 5-HT receptor classes), its interaction with

the 5-HT transporter (SERT), and covalent binding to different

effector proteins. Each family of 5-HT receptors has different

subtypes, classified by morphology, pharmacologic profiles, and

distribution (32). Despite the multitude of CNS functions

influenced by 5-HT, its most clinically relevant aspect is its

involvement in the pathophysiology of neuropsychiatric disorders.
2.3 Dopamine

DA is a neurotransmitter pivotal to brain function, governing

movement control and reward-related behaviors while modulating

cognitive functions through molecular substrates linked to plasticity.

DA is synthesized from tyrosine through enzymatic reactions that

convert it first into L-DOPA and then DA (33). Dysregulated DA

signaling is implicated across various neurodegenerative, psychiatric,

and autoimmune disorders, often accompanied by CNS

neuroinflammation. Dopaminergic neurons, primarily found in

specific brain regions such as the substantia nigra pars compacta,

the ventral tegmental area (VTA), and the hypothalamus, delineate

four principal pathways: the nigrostriatal, the mesolimbic,

mesocortical, and the tuberoinfundibular pathways (34). The

nigrostriatal pathway is fundamental for motor control, and its

dysfunction is associated with PD, characterized by tremors,

rigidity, and akinesia (35, 36). The mesocortical pathway,

originating from the VTA, influences learning and memory (37) by

projecting to various frontal cortex regions. The mesolimbic pathway,

also originating from the VTA, regulates motivated behavior (36)

through innervation of the ventral striatum, olfactory tubercle, and

limbic system. On the other hand, the tuberoinfundibular pathway,

originating from the hypothalamic periventricular and arcuate nuclei,

modulates prolactin release and milk production.

DAmediates its effects through interactions with five DA receptors

(DRs) on target cell membranes, categorized into D1-like (DRD1 and

DRD5) and D2-like (DRD2, DRD3, and DRD4) receptor families (38).

DRs, belonging to the GPCR class, activate downstream signaling

pathways via heterotrimeric G proteins, specifically Gas/olf, for

stimulatory responses and Gai/o, for inhibitory responses. Activation

of D1 class receptors stimulates adenylate cyclase (AC), increasing

cAMP levels, while D2-like receptors inhibit AC, decreasing cAMP

levels (4, 39). Dopaminergic agonists, such as DA receptor agonists or

drugs like pramipexole or ropinirole, mimic DA’s effect by directly

activating these receptors (40). These drugs are often used in the

treatment of conditions like PD and restless leg syndrome, where

dopaminergic signaling is impaired. D1-like receptor agonists tend to

increase cAMP levels, whereas D2-like receptor agonists may reduce

cAMP levels, influencing neuronal activity and motor control (40, 41).
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3 Monoamine signaling in peripheral
inflammation

The immune and sympathetic nervous systems are deeply

interconnected, with sympathetic nerve fibers innervating primary

and secondary lymphoid tissues. These fibers primarily release NE,

which regulates immune function by interacting with adrenergic

receptors on immune cells, such as the b2-adrenergic receptor. This
direct communication enables immune cells to respond to

sympathetic signaling, influencing inflammation and immune

responses (42). Beyond NE, other monoamines, such as 5-HT and

DA, are key regulators of neuroinflammatory processes. Monoamine

receptors are expressed on various immune cells such as

macrophages, dendritic cells, and T cells, influencing immune

function and inflammatory responses. Monoamine signaling

influences cytokine secretion and other neuroimmune interactions,

which are increasingly recognized as important factors in the

development of neuropsychiatric and neurodegenerative diseases.

Further highlighting the overlap between the nervous and

immune systems, neurons express pattern-recognition receptors

such as Toll-like receptors, along with cytokine receptors. This

enables neurons to respond directly to pathogen-associated

molecular patterns (PAMPs) and immune-derived signals, further

integrating immune and neuronal functions. Additionally,

neurotransmitter signaling through monoamine receptors on

immune cells helps regulate immune responses, reinforcing the

bidirectional communication between these systems (43). This

section explores how NE, 5-HT, and DA contribute to peripheral

inflammation, with a specific focus on their roles in immune cell

activation, cytokine secretion, and neuroinflammatory processes.

Understanding these mechanisms provides valuable insight into

immune regulation and the pathogenesis of neurological disorders.
3.1 Norepinephrine and peripheral
inflammation

NE’s role in regulating peripheral immune responses has been

extensively reviewed previously (43–46). NE can be converted into

EPI by the enzyme phenylethanolamine N-methyltransferase, and

is predominantly released from the adrenal glands, particularly

from the adrenal medulla, into the bloodstream. NE and EPI can

modulate lymphocyte trafficking, proliferation, and cytokine

production, with both pro-inflammatory and anti-inflammatory

effects depending on the immune cell type and receptor (45–49).

For instance, NE and EPI activate b2 adrenoceptors, which

inhibit proinflammatory cytokine production and promote anti-

inflammatory cytokine production (45, 46). In contrast, NE and

EPI acting on a2 adrenoceptors in monocytes and macrophages

promote the production of tumor necrosis factor (TNF) and

other cytokines (46, 50, 51). Interestingly, NE’s effects on b2
adrenoceptors can vary. In obese mice, b2 stimulation exerts

anti-inflammatory effects, while in lean mice, it induces

proinflammatory responses (49). Additionally, b2-adrenergic
frontiersin.org
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stimulation inhibits neutrophil functions, such as the formation of

extracellular traps in human polymorphonuclear leukocytes (52).
3.2 Serotonin and peripheral inflammation

The role of 5-HT in inflammation and immunity has been

widely studied and reviewed (5, 32). 5-HT, primarily synthesized in

the gastrointestinal tract and released by platelets during

inflammation (53, 54) also modulates immune responses.

Notably, peripheral immune cells, including T cells, monocytes,

macrophages, and dendritic cells, express one or more 5-HT

receptors and possess 5-HT-related machinery transport (e.g.

SERT), synthesis (via tryptophan hydroxylase 1), storage (in

vesicles), and degradation (via monoamine oxidase). This allows

5HT to influence immune functions, including cellular activation,

migration, and cytokine production.

5-HT signaling exerts complex modulatory effects on

inflammation and immunity. The role of 5-HT in immune cells,

particularly T cells, is of growing interest, as T cells play a central

role in immune regulation and inflammation. 5-HT influences T

cell responses by modulating T cell proliferation, differentiation,

and cytokine production (55–58). It has been shown to promote the

differentiation of naive T cells into Th1 or Th17 cells, both of which

are involved in inflammatory responses, while its effects on

regulatory T cells (Tregs) appear to be more context-dependent,

sometimes promoting their differentiation and other times

inhibiting it. While serotonergic components are well-

documented in general T cell populations, the expression and

function of specific 5-HTRs, such as 5-HT1, 5-HT2, 5-HT3, and

5-HT4, as well as SERT and enzymes, such as tryptophan

hydroxylase, in T cell subtypes remain limited. The 5-HT1A

receptor is known to be expressed on Tregs and has been

implicated in promoting their anti-inflammatory functions. In

contrast, 5-HT3 receptors, primarily expressed on effector T cells

like Th1 and Th17 cells, have been linked to pro-inflammatory

responses (5, 26, 59–61).

In addition to its role in regulating T cells, 5-HT regulates

macrophage phagocytic function and cytokine secretion (62, 63),

and it influences dendritic cell maturation and their ability to

promote T-cell activation through modulating chemokine and

cytokine release, particularly in response to microbial pathogens

(64–67). Additionally, many 5-HT receptors expressed by immune

cells have complex and sometimes opposing roles in inflammation.

While 5-HT3 receptors are associated with the promotion of

inflammation through increased production of pro-inflammatory

cytokines, such as IFN-g and IL-17, 5-HT2A and 5-HT4 receptors

may attenuate these responses, possibly by dampening Th1 and

Th17 differentiation or promoting Treg function (60, 61, 68). This

receptor-specific dichotomy adds to the complexity of 5-HT’s role

in modulating immune responses, making it difficult to generalize

its pro- or anti-inflammatory effects.

Furthermore, discrepancies in study results and variations in

experimental models, species, and even the timing of 5-HT

exposure contribute to the ongoing uncertainty surrounding 5-
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HT’s immune functions. For example, previous research using

chemical mitogens like Con A to activate T cells may not fully

capture the complexity of in vivo activation, which typically

involves interactions with antigen-presenting cells, co-stimulatory

signals, and cytokine networks. Discrepancies in the effects of 5-HT

on T cells could arise from its differential roles in effector T cells

(e.g., Th1, Th17, CD8+ cytotoxic T cells) versus regulatory T cells,

as these subsets exhibit distinct signaling pathways, such as IL-2 and

mTOR, which are differentially regulated. Its influence on cAMP

and mTOR signaling pathways is also likely to vary between effector

and regulatory T cells, further complicating its effects. More

targeted research is needed to clarify 5-HT’s role in different T

cell subtypes, particularly in the context of Th17 and Treg cell

interactions (5, 59, 61).
3.3 Dopamine and peripheral inflammation

DA has gained increasing attention for its role in modulating

peripheral inflammation, as it both influences and is influenced by

inflammatory processes. DA receptors on immune cells regulate the

release of pro-inflammatory cytokines, shaping immune responses

and contributing to the complex interplay between the nervous and

immune systems. Many immune cells, including T cells, B cells,

neutrophils, eosinophils, NK cells, dendritic cells, macrophages,

microglia, and monocytes, are capable of producing DA at low

levels and expressing DA receptors (69, 70). DA acts in an autocrine

and paracrine manner, impacting immune cell functions through

D1-like and D2-like receptors. These receptors regulate immune

cell activation, inhibition, proliferation, and their specific immune

functions. For example, DA can reduce reactive oxygen species

(ROS) production and migration of human polymorphonuclear

leukocytes by activating D1-like receptors, particularly D5R (71).

DA also regulates various immune functions, such as cell

differentiation, adhesion, migration, cytokine secretion,

cytotoxicity, and chemotaxis. Its effects are complex, influencing

immune homeostasis and disease, depending on immune cell type,

receptor subtype, local concentration, and activation state. For

instance, DA can activate normal resting peripheral human T

lymphocytes, promoting cell adhesion, trafficking, and cytokine

secretion (72–74), but it inhibits activated T cells in functions like

cell proliferation, cytokine secretion, and cytotoxicity (75, 76).

DA has been shown to have anti-inflammatory effects,

especially in the peripheral dopaminergic system, where

activation of DA receptors modulates tissue inflammation

and injury in conditions like acute pancreatitis and renal

inflammation (77, 78). However, research on DA’s immune

regulatory role has shown conflicting results due to variations in

experimental models, samples, and methods. DA’s effects depend

on factors like immune cell subtype, receptor abundance,

and ligand availability, making comparisons across studies

difficult (79). While extensive research has explored DA’s role in

immune function (79, 80), its complex regulatory mechanisms and

potential involvement in peripheral immune responses warrant

further investigation.
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4 Monoamine regulation of glial cell
activation and neuroinflammation

Monoamines are important in regulating glial cell activation and

neuroinflammation in the CNS. Glial cells, such as microglia and

astrocytes, are essential for maintaining brain homeostasis and

responding to stress, injury, or disease. Dysregulated monoamine

signaling can lead to excessive activation of these glial cells, triggering

neuroinflammation, which is linked to various neurological and

psychiatric disorders (81–84). The effects of monoamines on glial

function are complex, as they can influence microglial and astrocytic

responses in both protective and detrimental ways. In addition,

monoamine-induced peripheral inflammation may contribute to

neuroinflammation as well. A deeper understanding of how NE, 5-

HT, and DA regulate glial cells could open new therapeutic avenues

for targeting neuroinflammation in these diseases. This section

explores the roles of NE, 5-HT, and DA in glial activation and

neuroinflammation, synthesizing key findings on their impact.
4.1 Norepinephrine

Adrenergic receptors are present in varying densities among

different types of glial cells (85, 86). Through these receptors, NE

mainly exerts anti-inflammatory effects on the CNS. Multiple

evidence supporting an anti-inflammatory role of NE come from

the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine

(DSP4)-treated animals. DSP4 treatment induces degeneration of

central noradrenergic pathways, augments the proinflammatory

response to b-amyloid in rat cortex, significantly elevating iNOS,

interleukin-beta (IL-1b), and interleukin-6 (IL-6) expression (87).

The heightened IL-1b expression in microglia and astrocytes after

b-amyloid injection in DSP4-treated rats was mitigated by

co-injection with NE or the b-adrenergic receptor agonist

isoproterenol. Depletion of NE in aged rats by DSP4, followed by

LPS injection to induce systemic inflammation, also increased

serum levels of several proinflammatory cytokines, augmented

astroglial and microglial activation in the hippocampus, and

decreased cognitive performance in a novel object recognition

task (88). Similarly, injecting mice with DSP4 induced chronic

neuroinflammation and neurodegeneration (89, 90). On the other

hand, increasing NE by pharmacological SNRIs, such as

desipramine and atomoxetine, enhanced central noradrenergic

tone and reduced proinflammatory cytokines IL-1b and TNFa, as
well as iNOS and microglial activation markers, in the rat cortex

and hippocampus following LPS challenges (91, 92). Desipramine

and atomoxetine have also been reported to induce IL-10 and

suppressor of cytokine signaling-3 in the rat cortex and

hippocampus (93).

b-adrenergic receptors primarily mediate the anti-inflammatory

role of NE, and their activation has been shown to reduce

proinflammatory responses in microglia and astrocytes induced by

inflammatory stimuli such as LPS (92, 94–97). Administration of a b1
adrenergic receptor agonist, xamoterol, suppressed LPS-induced
Frontiers in Immunology 06
TNF-a production in rat microglia cultures, reducing

proinflammatory markers, and attenuating microgliosis and

astrogliosis. A b2 adrenergic receptor agonist, clenbuterol, was also

able to mitigate LPS-induced expression of TNF-a, IL-6, chemokines

RANTES and IP-10, and cell adhesion molecules in rat cortex (98).

NE activation of b-adrenoceptors can exert anti-inflammatory

effects by inhibiting the expression of interferon-gamma (IFN-g)-
induced major histocompatibility complex class II molecules (99,

100). Additionally, NE promotes the expression IL-1 receptor

antagonist (IL-1ra), and IL-1 type II receptor (IL-1RII), which

protect against IL-1b-induced neurotoxicity (101). Administration

of the b2-adrenoceptor agonist clenbuterol or the SNRI reboxetine
increased the expression of IL-1b, IL-1ra, and IL-1RII in the rat

cortex. However, when the rat cortex was activated by systemic LPS,

clenbuterol reduced IL-1b expression while maintaining its ability

to upregulate IL-1RII and IL-1Ra (98), highlighting the complexity

of NE-mediated regulation of the IL-1 system. In addition to IFN-g
and IL-1, NE regulates the NFkB pathway. Pre-treatment with the

b2-adrenoceptor agonist clenbuterol suppressed LPS-induced NFkB
activation, blocked LPS-induced IkBa phosphorylation and

degradation, and downregulated the NFkB-inducible genes TNF-

a and ICAM-1 in the cortex and hippocampus (102).
4.2 Serotonin

Unlike NE, which mainly has anti-inflammatory effects, 5-HT

plays a dual role in neuroinflammation, with effects that depend on

its concentration, receptor subtypes, and cellular contexts. Under

basal conditions, 5-HT can promote inflammation, as shown in

SERT knockout models, where increased extracellular 5-HT

enhances IL-1b and CD11b mRNA expression, indicating

elevated microglial activation (103). However, under pathological

or injury conditions, 5-HT exerts anti-inflammatory effects,

primarily by enhancing microglial neuroprotective functions and

promoting astrocytic release of transforming growth factor b (TGF-

b1) (104). Different 5-HT receptor subtypes can mediate distinct

effects on inflammation. 5-HT1a activation inhibits NF-kB,
reducing proinflammatory cytokine release and mediating

neuroprotective effects (104). 5-HT7 has also been shown to

promote anti-inflammatory and neuroprotective effects in

microglia and astrocytes (105–107). On the other hand, 5-HT2a,

5-HT2b and 5-HT2c are linked to microglial activation and

increased neuroinflammation by enhancing NF-kB signaling (26,

32). These studies highlight the complexity of 5-HT-induced

regulation of neuroinflammation.

5HT receptors are expressed in both microglia and astrocytes.

Acting through these receptors, 5-HT influences microglial

polarization, shifting their state between proinflammatory (M1)

and anti-inflammatory (M2) phenotypes. Activation of 5-HT1a

receptors skews microglia toward the M2 phenotype, reducing

TNF-a and IL-1b expression, while 5-HT2 receptors are

associated with the M1 state, promoting inflammatory responses

(108–110). The 5-HT concentration seems to play a decisive role in
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microglia activation, as high 5-HT concentrations augment TNF-a
release in LPS-stimulated microglia (111, 112). Additionally, 5-HT

modulates microglial motility, as demonstrated by Krabbe et al.,

who found that serotonin enhances microglial movement in

response to injury, suggesting a role in neuroprotection and tissue

repair (113). Astrocytes expressing 5-HT receptors also contribute

to the serotonergic regulation of neuroinflammation (113, 114).

Pousset et al. found that low-5-HT levels induce both

proinflammatory (IL-6, TNF-a) and anti-inflammatory (TGF-b)
cytokine expression in rat hippocampal astrocytes (115), again

demonstrating the bidirectional regulation by 5-HT. Intriguingly,

SSRIs like paroxetine and fluoxetine, which increase extracellular 5-

HT, suppress TNF-a, nitric oxide (NO), and NFkB activity,

reducing microglial activation and neutrophil infiltration in

inflammatory conditions (111, 116–118). More research is needed

to fully elucidate the role of 5-HT in neuroinflammation.
4.3 Dopamine

In the CNS, the five DA receptors are differently distributed in

brain regions with the relative density: D1 > D2 > D3 > D5 > D4 (119,

120). DA signaling has been found critical for regulating glial cell

activation and neuroinflammation. Both astrocytic andmicroglial cells

have been reported to express DA receptors, which may be altered

during inflammation (121, 122). Recent studies have revealed multiple

mechanisms by which DA regulates neuroinflammation (123).

Using gain-of-function studies, Shao et al. first demonstrated that

the astrocytic DRD2 could suppress neuroinflammation through

controlled aB-crystallin (CRYAB), a known mediator of

neuroinflammation. Analogously, global knockout of Drd2, but not

Drd1 or Drd3, pronounced activation of astrocyte and microglia cells,

with significant upregulation of proinflammatory mediator genes,

including IL-1b, IL-2, IL-6, IL-12b, COX2, and downregulation of the
anti-inflammatory cytokine gene, IL-10 (but not TNF-a) (70). In the

conditional astrocytic Drd2−knockout mouse, while mesencephalic

dopaminergic neurons were maintained, levels of proinflammatory

mediators in the substantia nigra were remarkably elevated, indicating

the critical role of astrocytic DRD2 in neuroinflammation

regulation. The authors further found that DRD2 tightly controlled

CRYAB expression, required for Drd2-mediated suppression of

proinflammatory response, in astrocytes. Moreover, administration

of the DRD2 agonist quinpirole significantly inhibited 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced activation of

astrocytes and microglia, while also suppressing the expression of

proinflammatorymediators, and loss of nigral dopaminergic neurons,

in control, but not Drd2-null or Cryab-null, mice.

Although DRD2 was found highly expressed in neurons, in vivo

selective neuronal deletion of Drd2 only mildly increased levels of

proinflammatory mediators. Conversely, despite very low DRD2

levels in resident microglia from healthy mouse brains, DRD2 could

be induced in microglia upon activation (122, 124). Likewise, Zhang

et al. reported upregulated endogenous DRD2 on astrocytes and

microglia following intracerebral hemorrhage (ICH)-induced brain

injury (124). They further found that DRD2 knockdown aggravated
Frontiers in Immunology 07
neurobehavioral deficits, with pronounced expression of cytokines

and chemokines (including IL-1b and MCP-1) post-ICH (124).

Moreover, the DRD2 agonists, quinpirole and ropinirole,

suppressed microglia activation and ameliorated neurobehavioral

deficits after ICH, likely mediated by aB-crystallin and enhanced by

cytoplasmic binding activity of NF-kB.
DA can also inhibit activation and inflammation of the NLRP3

inflammasome through DRD1 signaling (125), promoting the

maturation and release of several proinflammatory cytokines, such as

IL-1b and interleukin-18 (IL-18) (126). Yan et al. reported that DA

treatment could inhibit IL-1b upregulation by the bacterial neurotoxin

nigericin in both microglia and astrocytes, and DA’s inhibitory effects

were impaired inDrd1-null cells (125). Moreover,Drd1 knockout mice

showed more inflammasome activation, by analyzing IL-1b and IL-18

production or caspase-1 activation, which were impaired in Drd1 and

Nlrp3 double-knockout mice. They further found higher NLRP3

expression and less NLRP3 ubiquitination following MPTP

neurotoxin treatment (a model for PD) in brains from Drd1-

knockout versus control mice (126). Taken together, these results

suggest that DRD1 signaling prevents neuroinflammation by

inhibiting the NLRP3 inflammasome by promoting NLRP3

ubiquitination. Likewise, Wang et al. reported that DRD1 activation

decreased NLRP3-mediated inflammation in ICH-induced mice (127).

A DRD1-specific agonist, A68930, inhibited microglia activation,

neutrophil infiltration, and expression of NLRP3, caspase 1, and IL-

1b, in ICHmice. In contrast to the inhibitory role of DRD1 signaling in

neuroinflammation, Wang et al. recently reported that

methamphetamine exacerbates an LPS pro-inflammatory response

by activating D1-like receptors (128), suggesting complex regulation

of neuroinflammation by DA.

Although there is a relatively low expression in the CNS, D3R

(DRD3) displays the highest selectivity for DA (Ki ≈ 27 nM), followed

by D5R (Ki ≈ 228 nM) and then D4R, D2R, and D1R (129–132).

While DRD3 is strongly involved in peripheral and central

inflammation, in several experimental systems (133) its role in

neuroinflammation regulation remains controversial. For example,

Elgueta et al. showed that the D3R-selective antagonist PG01037,

when administered intraperitoneally, improves locomotor

performance, reduces dopaminergic neuron loss in the nigrostriatal

pathway, and promotes astrogliosis and microglial ramification in an

MPTP-induced PD mouse model. This study further demonstrates

that D3R antagonism protects dopaminergic neurons, enhances

motor function, and modulates neuroinflammation by reducing

astrocyte reactivity, which may subsequently activate an anti-

inflammatory signal to microglia (134). In line with this, IFN-g, a
critical cytokine in stimulating and maintaining glial cell activation,

was upregulated in wild-type CD4+ T cells, following DRD3 agonism

by PD128907, but decreased by DRD3 deficiency under Th1

differentiation conditions. In contrast, DRD3 deficiency resulted in

chronic depression as measured by increased immobility (135–137)

and neuroinflammation, as evidenced by increased activation of

microglia but not astrocytes, as well as elevated mRNA expression

of the proinflammatory cytokines TNF-a, IL-1b, and IL-6, in

mesolimbic dopaminergic regions (136). Importantly, microglial

inhibition partially ameliorated depressive-like behavior and
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neuroinflammation in selected mesolimbic reward areas induced by

D3R deficiency.

The discrepancy described above could be due to DRD3 cell-

specific effects on pro- or anti-inflammatory responses. In Elgueta’s

study, CD4+ T cells infiltrated into the CNS after MPTP treatment

(134), while low levels of DA selectively activated DRD3 (due to its

high affinity), in CD4+ T cells, which preferably differentiated into

proinflammatory Th1 cells. Subsequently, IFN-g and TNF-a, secreted
by Th1 CD4+ T cells, enhanced MPTP-induced microglia activation,

contributing to neuroinflammation (134). Conversely, in Wang’s

studies, microglial DRD3 signaling was proinflammatory, under

basal conditions (138). Analogously, DRD3 deficiency resulted in

microglia activation and subsequently, chronic inflammation (138).
5 Neuroinflammation effects on
monoamine signaling

Various stimuli, including viral and bacterial infections, can disrupt

brain neurochemistry, leading to impaired neurotransmission. More

specifically, evidence suggests close communication between the

immune system and the CNS, as mediated by an immune-neural-

synaptic axis. This involves peripheral immune cells infiltrating the

brain or activation of glial cells via humoral immune factors that cross
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the BBB (Figure 1) (36, 37). During neuroinflammation, pro- and anti-

inflammatory cytokines, synthesized and released from activated local

glial cells and infiltrating immune cells, can in turn regulate

monoamine signaling by affecting their synthesis, release, reuptake,

and turnover (139–144). Cytokines can also participate in

neurogenesis, or mediate cell death of neurons in the CNS, to

indirectly affect monoamine synthesis (82, 145).
5.1 Cytokine effects on monoamine
synthesis

There are at least two major pathways by which cytokines

regulate the synthesis of monoamine neurotransmitters. First,

proinflammatory cytokines, including IL-6, IFN‐g, IL‐1, and

TNF-a, may reduce 5-HT synthesis by reducing the availability of

its precursor, tryptophan (146–150), via its catabolism into

kynurenine by indoleamine-2,3-dioxygenase (IDO), an enzyme

present in glial cells and neurons (151). Second, proinflammatory

cytokines may interfere with DA synthesis by acting on

tetrahydrobiopterin (BH4) (152), a cofactor of three aromatic

amino acid hydroxylase enzymes (153) that degrades the amino

acid phenylalanine, which is used in the biosynthesis of the

neurotransmitters 5-HT, NE, DA, and EPI (154). Although
FIGURE 1

Role of microglia and astrocytes in brain neuroinflammation. Neuroinflammation in the brain, and the role of microglia. Left, damage to the blood-brain
barrier (BBB) allows neutrophils and leukocytes into the brain, activating microglia. The central section illustrates microglia in different states: resting,
proinflammatory, and anti-inflammatory, withproinflammatory microglia releasing harmful mediators, and anti-inflammatory microglia being protective.
Reactive astrocytes interact with activated microglia, affecting inflammatory response. Right, the image contrasts a healthy neuron with a degenerated
one, emphasizing how inflammation and receptor activation affect neuronal damage and neurological disorders. Created with Biorender.com.
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proinflammatory cytokines, including TNFa and IL-1b, can induce

BH4 production, they can also stimulate NOS production of NO, a

reaction that requires BH4 as a cofactor, decreasing the availability

of BH4 for monoamine synthesis (155–157). Proinflammatory

cytokines, such as IFN-g, can also trigger high output of ROS,

which can destroy the oxidation-labile BH4, reducing monoamine

biosynthesis (158).
5.2 Cytokine effects on monoamine release

Proinflammatory cytokines can also influence monoamine

signaling by affecting neurotransmitter release. For instance, it

was reported that IL-1a could stimulate DA release by activating

type II protein kinase A in PC-12 cells (159), while IL-1b injected

directly into the rat anterior hypothalamus, elicited the release of

NE, DA, and 5-HT, also increasing their metabolites (160).

Moreover, administration of IFN-a to Hepatitis C patients

increased reuptake and decreased release of radiolabeled DOPA,

the primary precursor of DA (161). This was possibly related to

increased cranial production of the tryptophan metabolite

kynurenine acid (KA), via activation of IDO, as intrastriatal KA

administration (by in vivo micro-dialysis) is known to decrease

extracellular DA, in rats (162).
5.3 Cytokine effects on monoamine
reuptake

Monoamine transporters (MATs) regulate neurotransmission via

reuptake of DA, 5-HT, and NE from extra-neuronal regions and

decrease the synaptic availability of monoamine neurotransmitters.

There are three main MAT members: the DA transporter (DAT),

SERT, and the NE transporter (163–169). Several proinflammatory

cytokines, such as IL-1b, TNF-a, IFN-a, and IFN-g, can upregulate

SERT activity (thus reducing availability of extracellular 5-HT) (170–

172) while the anti-inflammatory cytokine IL-4 can inhibit SERT

activity (173). Similarly, Wu et al. found increased DAT levels

following injection of the proinflammatory cytokine TNF-a (174).

Many signaling pathways regulateMATs, including mitogen‐activated

protein kinase (MAPK) (175) which is activated by increased levels of

proinflammatory cytokines such as IL‐1b and TNF‐a, consequently
enhancing cell membrane transporter activity and the reuptake of the

neurotransmitters 5‐HT, DA, and NE (140, 176, 177).
5.4 Cytokine effects on monoamine
turnover

Proinflammatory cytokines may also regulate monoamine

signaling through neurotransmitter turnover. For instance,

intraperitoneal IL-1 injection increased NE turnover in the whole

hypothalamus and several specific hypothalamic nuclei, but not in

the medulla oblongata and cerebral cortex (178), while systemic
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administration of TNF-a into CD-1 mice altered central NE, DA,

and 5-HT turnover (179). Likewise, intracerebroventricular

infusion of IFN-a into the rat brain promoted 5-HT and DA

turnover in the prefrontal cortex and CA2/CA3 hippocampal

regions, respectively, as suggested by findings of increased ratios

of major metabolites and parental amines (180). A recent study also

revealed that significant dopaminergic turnover within the dorsal

striatum was induced by IFN-g treatment (181). Specifically, the

effects of proinflammatory cytokines on monoamine turnover

largely depend on the specific cytokine, treatment duration, and

specific brain region (182).
6 Interconnection of monoamine
signaling and neuroinflammation in
neuropsychiatric disorders

Research into neuroinflammation and its connection to

psychiatric disorders is expanding quickly. A better understanding

of this relationship could revolutionize how we treat mental illnesses.

This could lead to more targeted and effective therapies that alleviate

symptoms and address the underlying causes of these disorders.

Classical psychiatric disorders (e.g., schizophrenia, autism,

major depression, bipolar disorder, and obsessive-compulsive

disorder) and neurological diseases with psychiatric symptoms

(e.g. AD and PD) are widely associated with neuroinflammation

and immunological abnormalities, in addition to disrupted

neurotransmission. Many of these disorders exhibit both chronic

neuroinflammation and dysregulated monoamine signaling,

suggesting potential interconnections (9, 82, 144). This section

discusses the interconnection between each monoamine system and

neuroinflammation and how these processes contribute to

neurological diseases, particularly MDD, AD, and PD.
6.1 Monoamine signaling and
neuroinflammation in major depressive
disorder

MDD is a complex and heterogeneous mental health condition

characterized by persistent low mood, anhedonia, and cognitive

impairments. Its pathophysiology involves disruptions in multiple

neurobiological systems, including monoamine neurotransmission

and neuroinflammation. A growing body of evidence suggests that

neuroinflammation not only contributes to MDD but also interacts

with MA-ergic pathways, exacerbating neurotransmitter

imbalances and influencing treatment response (183–187).

Elevated inflammation in both PNS and CNS, along with glial cell

activation, has been consistently linked to MDD (188, 189),

highlighting inflammation as a key contributor to disease

pathology. Studies suggest that IL-1R/C3/C3aR activation in

astrocytes and microglia may contribute to abnormal synaptic

pruning in depression, supporting the inflammatory hypothesis of
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MDD (190). Pro-inflammatory cytokines such as TNF-a, IL-6, and
CRP, are consistently elevated in MDD patients (183, 184, 186,

187). These pro-inflammatory cytokines can cross the BBB,

influencing brain regions like the insula, which governs emotional

processing and cognition (191, 192). Elevated cytokine levels

correlate with reduced connectivity in these regions, leading to

depressive rumination (193).

Chronic stress, a major environmental risk factor, induces

neuroinflammatory processes that disrupt monoamine

neurotransmission and modulate monoamine metabolism, reuptake,

and receptor function, contributing to imbalances in 5-HT, NE, and

DA (194–196). Moreover, chronic stress enhances the kynurenine

pathway, leading to higher oxidative stress and neurotoxicity, which in

turn disrupts the balance of monoamines and impairs neuronal health

(196). In addition to stress, obesity, metabolic dysfunction, genetics,

and lifestyle also contribute to inflammation and increase the risk for

psychiatric illness (197).

DA, essential for reward processing and motivation, is

implicated in anhedonia, a core symptom of MDD (198).

Laboratory studies have demonstrated that inflammatory stimuli

affect neurotransmitters and reward-processing circuits, including

the ventral striatum and ventromedial prefrontal cortex, which are

associated with reduced motivation (197). Neuroimaging studies

also confirm that increased endogenous inflammation is associated

with decreased activation and reduced functional connectivity

within reward circuits, reinforcing the association between

inflammation and anhedonia (197). Inflammation’s impact on

neurotransmitter synthesis, release, and reuptake, particularly of

DA and glutamate, appears to drive motivational deficits. For

example, inflammation-induced DA dysfunction has been linked

to elevated CRP levels, which correlate with reduced DA synthesis

and release (197). Chronic stress-induced inflammation further

disrupts DA signaling, particularly in the VTA and nucleus

accumbens, regions involved in reward processing. These studies

collectively suggest that inflammation as a critical factor influencing

brain circuits responsible for reward and motivation (197).

In addition to DA signaling, recent findings highlight that

inflammation modulates 5-HT signaling (199, 200). Inflammation

activates the indoleamine 2,3-dioxygenase (IDO) enzyme, which

shifts tryptophan metabolism away from 5-HT production toward

the neurotoxic kynurenine pathway (194, 195). This results in 5-HT

depletion and increased neurotoxic metabolites, exacerbating

depressive symptoms. Inflammation also depletes tryptophan,

impairing 5-HT production (201). On the other hand, 5-HT

regulates immune responses, and dysregulation of this interaction

has been implicated in MDD, particularly in patients with elevated

inflammatory markers (200). Genetic variations in the SERT can

influence immune system activity, further supporting a bidirectional

relationship between 5-HT signaling and neuroinflammation (196).

Given the interplay between inflammation and neurotransmitter

systems, it is not surprising that antidepressant responses vary

depending on an individual’s inflammatory status. SSRIs increase 5-
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HT availability but may be less effective in individuals with high

inflammation, as cytokines impair 5-HT receptor function (199). In

contrast, dopaminergic agents (e.g., bupropion, L-DOPA)may bemore

effective in patients with elevated CRP or IL-17 levels, as they target

inflammation-related DA deficits (200) Indeed, MDD patients with

CRP >2mg/L show increased ventral striatum-ventromedial prefrontal

cortex connectivity following L-DOPA administration, suggesting that

DA-enhancing treatments may be particularly beneficial in

inflammation-associated depression (197). Additionally, elevated IL-

17 levels have been identified as a biomarker for antidepressant

response, with patients showing better responses to dopaminergic

antidepressants like bupropion than to SSRIs alone (200, 202, 203).

By contrast, patients with low IL-17 levels respond better to SSRI

monotherapy (200). Additionally, TNF-a inhibitors have

demonstrated antidepressant effects in high-inflammation patients

(204, 205), though some evidence suggests that their combination

with SSRIs may reduce efficacy (189, 206). These studies underscore the

need for precision medicine in antidepressant selection.

The recognition of both monoamine dysfunction and

neuroinflammation has led to the development of treatments

targeting these mechanisms. SSRIs and SNRIs aim to increase

monoamine availability, and they also support neuroplasticity by

increasing brain-derived neurotrophic factor (BDNF) and exhibit

modest anti-inflammatory effects, suggesting a connection between

inflammation and MDD (207, 208). However, their efficacy can

diminish over time due to SERT degradation, particularly when

inflammation is involved (209). Some medications can reduce

proinflammatory cytokines like TNF-a and IL-6, further

emphasizing the role of inflammation in MDD. Combining

antidepressants with anti-inflammatory treatments may enhance

therapeutic outcomes (210).

Alongside traditional treatments, alternative pharmacological

therapies have shown promise. Ketamine, for example, targets

NMDA receptors, promotes neuroplasticity, reduces inflammation,

and provides rapid relief from suicidal ideation and treatment-

resistant depression (211, 212). Cannabinoids, such as THC and

CBD, offer both antidepressant and anti-inflammatory effects, with

CBD also providing neuroprotective benefits. Psychedelics like

psilocybin and ayahuasca, which target the 5-HT2A receptor, have

shown potential in reducing neuroinflammation and improving

mood, offering long-lasting improvements in mood regulation.

However, further research is required to fully understand their

mechanisms and long-term effectiveness (212).

The mechanistic links between monoamine signaling and

neuroinflammation provide critical insights into the pathophysiology

of MDD. Inflammation disrupts 5-HT and DA systems, contributing

to treatment resistance in some patients. Identifying biomarkers such

as CRP and IL-17 may help guide personalized treatment strategies,

optimizing the use of monoaminergic antidepressants, dopaminergic

agents, and anti-inflammatory therapies. Future research should focus

on refining precision medicine approaches to improve treatment

outcomes for individuals with inflammation-associated depression.
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6.2 Monoamine signaling and
neuroinflammation in Alzheimer’s disease

In AD, pathology often begins with disruptions in monoamine

systems: dopaminergic, noradrenergic, and serotonergic signaling

(213). Early tau abnormalities target key regions like the locus

coeruleus and serotonergic nuclei, initiating the spread of disease to

the hippocampus and neocortex. These monoaminergic neurons,

with their long, unmyelinated axons and high metabolic demands,

are particularly vulnerable to degeneration. This early loss contributes

to cognitive decline, neuropsychiatric symptoms (like depression and

agitation), and motor deficits (4, 213). For instance, the locus

coeruleus, a hub for NE, suffers significant neuronal loss, leading to

altered NE transmission and impaired attention and memory (214).

Surviving neurons attempt to compensate by sprouting dendrites,

ramping up synthesis, and slowing reuptake, which elevates

cerebrospinal fluid NE levels (215, 216). This adaptation may cause

heightened NE activity via a2A (217, 218), and b2 (219, 220)

adrenergic receptors to promote amyloid-beta (Ab) deposition.

Similarly, 5-HT deficits impair cognition and mood regulation,

while DA loss affects both motor function and executive abilities.

Studies show reduced nucleolar volume and RNA in these neurons,

underscoring the profound impact of their dysfunction (213).

As AD progresses, neuroinflammation takes the center stage,

driven by microglial activation. Ab plaques trigger microglia

through receptors like toll-like receptors (TLRs) and RAGE,

prompting the release of pro-inflammatory cytokines such as

TNF-a and IL-1b (10, 164). These cytokines exacerbate

neurodegeneration and directly disrupt monoamine signaling

(221). Activated microglia increase indoleamine 2,3-dioxygenase

(IDO), diverting tryptophan from 5-HT synthesis to the kynurenine

pathway, thus depleting 5-HT (222). Inflammation also activates

p38 MAPK, accelerating the clearance of DA and NE, further

deepening cognitive and mood disturbances (223–225).

Microglial activation is not only involved in neurodegeneration

but also plays a critical role in neuropsychiatric symptoms common

in AD, including depression, anxiety, agitation, and apathy (226). In

regions like the anterior cingulate cortex (part of the default mode

network), microglial activation correlates with irritability and

negative affect, while elevated cytokine levels track with symptom

severity (227). Meanwhile, microglia surrounding Ab plaques

become dysfunctional: they’re meant to phagocytize amyloid, but

instead, they fail, perpetuating a cycle of protein accumulation,

inflammation, and neurotoxic factor release—ROS, NO, and more.

This cascade drives neurodegeneration (228). The kynurenine

pathway adds another layer (223), activated microglia convert

kynurenine into quinolinic acid, an NMDA receptor agonist.

Coupled with impaired glutamate reuptake, this leads to

excitotoxicity, reducing BDNF and worsening depressive symptoms

—a pattern seen not just in AD but also in diseases like Parkinson’s

(229, 230). Some research, like studies in APPswe/PS1DE9 mice,

suggests that rising cytokines precede drops in SERT activity, with

amyloid status further influencing 5-HT function (231).

The interplay among monoamine dysfunction, neuroinflammation,

and Ab accumulation creates a vicious cycle: monoamine deficits fuel
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early symptoms, neuroinflammation amplifies the damage, and Ab
accumulation keeps the fire burning. Interestingly, disruptions in the

default mode network link inflammation to amyloid pathology,

suggesting a feedback loop. Some researchers now argue that

neuroinflammation may outpace amyloid plaques and tau tangles

(232) as a driver of AD progression, with chronic microglial activation

accelerating the disease (10, 233). Therapeutically, this opens doors.

Targeting microglial activation could break the cycle—post-mortem

studies of AD patients treated with an Ab42 vaccine show reduced

microglial activity and plaque burden (234). Recent studies even propose

microglial activation as an early diagnostic biomarker, offering a chance

to intervene before damage escalates (235, 236). In animal models,

deleting receptors like TLR4, TLR6, or CD36 curbs cytokine production

and amyloid accumulation, hinting at ways to slow the progression (237–

239). In addition, other treatments for neuroinflammation have been

explored for AD (240). While not FDA-approved for neurodegenerative

diseases, drugs like minocycline, curcumin, vitamin E, and celecoxib,

approved for other conditions, target neuroinflammation and may

potentially slow disease progression. Pioglitazone, a PPARg agonist,

has shown promise in shifting microglia to a more protective state,

which may enhance the clearance of Ab plaques (240).

Addressing monoamine dysfunction also holds promise:

inhibiting IDO could restore 5-HT levels while stabilizing NE

might ease cognitive and mood symptoms. Several drugs targeting

monoamines and neuroinflammation are being explored in AD

(241). Recently, aducanumab (Aduhelm) was approved by the

FDA for early-stage AD and mild cognitive impairment, showing

promise in reducing amyloid-beta (Ab) accumulation and halting

cognitive decline (4, 241). Lecanemab also demonstrated reduced

amyloid markers and slowed cognitive decline in early AD

patients. Immunotherapies, mainly targeting tau, are a growing

area of research. Some anti-tau vaccines and monoclonal

antibodies, like AADvac1, gosuranemab, and tilavonemab, have

reached Phase II trials. These treatments utilize the immune

system to target Ab and tau, but their effectiveness and safety

are still being evaluated (242). Despite these advances, challenges

remain, including recruitment difficulties and high costs of

clinical trials. While Aducanumab and Lecanemab provide

hope, more targeted therapies are required to address the

complex mechanisms of Ab accumulation, tau aggregation,

and neuroinflammation.
6.3 Monoamine signaling and
neuroinflammation in Parkinson’s disease

Parkinson’s disease is primarily characterized by the loss of

dopaminergic neurons in the substantia nigra, resulting in reduced

DA levels and motor symptoms such as tremors, rigidity, and

bradykinesia. This neurodegeneration is driven by a complex

interplay of genetic, environmental, and immunological factors,

contributing to the disease’s multifaceted nature, which shares

similarities with autoimmune diseases (243). The pathological

mechanisms behind PD are similar to those seen in other

neurodegenerative disorders and involve neuron dysfunction,
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protein aggregation, oxidative stress, mitochondrial dysfunction,

and neuroinflammation (244).

Microglia, the resident immune cells of the brain, become

activated by the presence of misfolded a-synuclein fibrils, which

are a hallmark of PD pathology. While these activated microglia

attempt to clear the misfolded proteins, they become chronically

activated without success. As dopaminergic neurons die, they

release pro-inflammatory mediators such as a-synuclein, MMP-3,

and ATP, which further activate microglia and contribute to the

release of toxic substances that damage neighboring cells (245).

Additionally, pro-inflammatory signals from astrocytes intensify

microglial activation, while misfolded proteins drive microglial M1

polarization, which is associated with further neurotoxicity. Studies

involving animal models, such as chronic MPTP exposure, show a

reduction in the protective M2 phenotype of microglia, which can

be reversed by using a mixture of M1 and M2-conditioned media,

offering potential therapeutic insights (246).

DA signaling itself plays a significant role in regulating

neuroinflammation (247). In PD patients, elevated proinflammatory

cytokines, such as IL-1b, TNF-a, and IL-6, have been found in the

brain in correlation with dopaminergic neuron loss (248–250).

Experimental models, such as the MPTP-induced mouse model,

also show a strong association between low DA levels and increased

neuroinflammation, including microglial activation and T-cell

infiltration. The activated microglia release harmful molecules such

as TNFa, INF-g, ROS, and NO, further contributing to neuronal

damage (250–252). Notably, enhancing 5-HT or DA signaling

through treatments like the 5-HT1A receptor agonist 8-OH-DPAT

and levodopa has been shown to reduce neuroinflammation and

alleviate symptoms (253, 254).

Given the critical role of inflammation in PD, immunomodulatory

therapies have emerged as a promising avenue for treatment. The

inhibition of neuroinflammation has proven to be neuroprotective in

various studies, including the use of dominant-negative TNF

inhibitors to block soluble TNF signaling, which reduces

dopaminergic neuron loss in animal models (255). Anti-

inflammatory compounds have also shown promise in restoring DA

levels and reversing dopaminergic neuron degeneration in PD models

(256). Although nonsteroidal anti-inflammatory drugs (NSAIDs) have

yielded inconsistent results in epidemiological studies, likely due

to methodological differences (257), targeting glial activation

and cytokine shows promise. Drugs like minocycline and

dexamethasone, which modulate glial activity, have shown potential

benefits, while the NLRP3 inhibitor MCC950 has been demonstrated

to reduce microglial activation and alleviate PD symptoms (258). In

addition, targeting pro-inflammatory cytokines such as IL-1 and TNF

using neutralizing antibodies or activating the GLP1 receptor has

demonstrated neuroprotective effects, with clinical trials exploring

the use of GLP1 analogs like semaglutide (NCT03659682).

Immunomodulation of the peripheral immune system, such as T-

cell transfer, has also demonstrated protective effects on dopaminergic

neurons (259). Furthermore, immunomodulatory approaches aiming

to resolve inflammation, such as the use of resolvin D1, have also been

shown to alleviate motor deficits in PD models (260).
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While current PD treatments primarily focus on symptom

management, typically through maintaining DA levels with

inhibitors (monoamine oxidase B and catechol-O-methyl transferase)

or DA precursors like levodopa, these therapies do not modify the

underlying disease (261). Immunotherapy targeting a-synuclein
aggregation, either through active immunization or passive antibody

administration, is currently under investigation in clinical trials (262).

Research continues to explore potential disease-modifying approaches,

with particular attention to how inflammation, neuroinflammation,

and monoamine signaling contribute to PD pathophysiology. The

complex relationship between DA signaling and neuroinflammation in

PD offers opportunities for novel therapeutic strategies. Targeting

neuroinflammation, whether through cytokine modulation, glial

activation, or a-synuclein aggregation inhibition, holds promise for

slowing or halting disease progression. However, more research is

needed to clarify the exact causative factors and to identify effective

disease-modifying treatments for PD.
7 Conclusion and perspectives

The bidirectional relationship between monoamine signaling and

neuroinflammation has emerged as a pivotal factor in the

pathophysiology of various neuropsychiatric and neurodegenerative

disorders. This interplay, marked by the mutual influence of

monoamine neurotransmitters (NE, 5-HT, and DA) and

inflammatory processes, is central to understanding diseases like

MDD, AD, and PD. Chronic dysregulation of monoamine signaling

leads to detrimental consequences for brain function and behavior.

Monoamine neurotransmitters also affect immune and glial cells,

regulating their migration, proliferation, and inflammasome activation

and altering cytokine secretion and various neuroinflammatory

processes. Conversely, neuroinflammation disrupts monoamine

function by modifying neurotransmitter synthesis, release, reuptake,

and turnover, creating a feedback loop that exacerbates the progression

of neuropsychiatric and neurodegenerative diseases. Therefore,

therapeutic approaches aimed at both normalizing monoamine levels

and modulating neuroinflammatory processes offer promising new

directions for treatment.

For MDD, the therapeutic landscape is evolving with a focus on

combining traditional antidepressants, which primarily target

monoamine systems, with anti-inflammatory strategies. Although

SSRIs and SNRIs remain the cornerstone of MDD treatment, their

anti-inflammatory properties are gaining attention, particularly in

treatment-resistant cases. The combination of NSAIDs, cytokine

inhibitors, or biologics with conventional antidepressants holds

promise in mitigating the neuroinflammation that often accompanies

depression (263). In AD, the complex interplay between

monoaminergic degeneration, neuroinflammation, Ab plaque

accumulation, and tau pathology requires innovative cocktail

therapies. Targeting the monoamine system and neuroinflammation

would not only help control neuropsychiatric symptoms, which are

prevalent in AD (4), but also hold the potential to slow disease

progression. New clinical approaches may combine these approaches
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with immunotherapies that target Ab, potentially slowing the

progression of the disease and improving patient outcomes. In

addition to pharmacological treatments, non-pharmacological

interventions such as exercise, dietary modifications, and

mindfulness-based therapies are gaining recognition for their ability

to modulate neuroinflammatory pathways, potentially enhancing

treatment outcomes across all three disorders (264–266). In PD,

preclinical studies have highlighted the potential of combining anti-

inflammatory treatments with dopaminergic therapies, with NSAIDs,

alpha-lipoic acid, and other immunomodulatory agents showing

promise in protecting dopaminergic neurons (267). Future therapies

will likely focus on neuroprotection while simultaneously addressing

inflammation, potentially offering more comprehensive treatment

options for PD.

Given the complexity of monoamine signaling and

neuroinflammation, advancing therapeutic strategies for diseases

involving these systems requires the use of cutting-edge research

techniques. Emerging methodologies, such as single-cell RNA

sequencing, spatial transcriptomics, and 3D in vitro models,

provide unprecedented cellular and molecular insights into the

dynamics of glial activation, neurotransmitter signaling, and

inflammatory pathways, facilitating the identification of novel

therapeutic targets. New organ-on-chip systems and animal

models that closely replicate human disease states are available

for the preclinical evaluation of novel therapies (268). Imaging

techniques like positron emission tomography and magnetic

resonance imaging allow monitoring neuroinflammation and

assessing the efficacy of treatments in vivo (269). With the

advancement of new technologies, researchers are better equipped

to address monoamine dysfunction and neuroinflammation for

improved treatment strategies.

In conclusion, integrating anti-inflammatory strategies with

traditional treatments targeting monoamine dysfunction holds

significant promise for improving the management of MDD, AD,

and PD. Addressing both systems simultaneously could lead to

more effective, holistic therapies that alleviate symptoms, modify

disease progression, and enhance overall functional outcomes.
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