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Mapping the genetic landscape
of immune-mediated
disorders: potential implications
for classification and
therapeutic strategies
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Objectives: Based on clinical, biomarker, and genetic data, McGonagle and

McDermott suggested that autoimmune and autoinflammatory disorders can be

classified as a disease continuum from purely autoimmune to autoinflammatory

with mixed diseases in between. However, the genetic architecture of this

spectrum has not been systematically described. Here, we investigate the

continuum of polygenic immune-mediated disorders using genome-wide

association studies (GWAS) and statistical genetics methods.

Methods: We mapped the genetic landscape of 15 immune-mediated disorders

using GWAS summary statistics and methods including genomic structural

equation modeling (genomic SEM), linkage disequilibrium score regression,

Local Analysis of [co]Variant Association, and Gaussian causal mixture

modeling (MiXeR). We performed enrichment analyses of tissues and biological

gene sets using MAGMA.

Results: Genomic SEM suggested a continuum structure with four underlying

latent factors from autoimmune diseases at one end to autoinflammatory on the

opposite end. Across disorders, we observed a balanced mixture of negative and

positive local genetic correlations within the major histocompatibility complex,

while outside this region, local genetic correlations were predominantly positive.

MiXeR analysis showed large genetic overlap in accordance with the continuum

landscape. MAGMA analysis implicated genes associated with knownmonogenic

immune diseases for prominent autoimmune and autoinflammatory component.

Conclusions: Our findings support a polygenic continuum across immune-

mediated disorders, with four genetic clusters. The “polygenic autoimmune”
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and “polygenic autoinflammatory” clusters reside on margins of this continuum.

These findings provide insights and lead us to hypothesize that the identified

clusters could inform future therapeutical strategies, with patients in the same

clusters potentially responding similarly to specific therapies.
KEYWORDS

autoimmunity, inflammation, autoimmune diseases, genome-wide association studies,
polygenicity, classification
1 Introduction

During the last 20 years, autoimmune and autoinflammatory

disorders have garnered attention in the fields of neurology and

rheumatology particularly regarding nosology and treatment. Various

new diseases have been described, including autoimmune encephalitis

(1), myelin oligodendrocyte glycoprotein-associated diseases, and

monogenic autoinflammatory diseases (interferonopathies and

adenosine deaminase 2 deficiency) (2–4). The global rise in the

prevalence of immune-mediated diseases, as highlighted by

epidemiological studies (5, 6), has sparked a need for urgent

innovation in the development of classification, curation approaches,

and treatment strategies.

The release of new therapeutic options for neuromyelitis optica

(7), myasthenia gravis (8), and monogenic immune diseases (9)

brings to the fore the importance of clinical conception and

classification of immune diseases and their underlying genetics.

The current understanding of immune-mediated diseases relies on

immunological concepts, which define autoinflammation as a

dysregulated activation of innate immune cells, driven by an

imbalance of pro- and anti-inflammatory cytokines, which leads

to damage of host tissues without a break in immune tolerance (10,

11). Conversely, autoimmunity is characterized by the loss of

immune tolerance, the recognition of self-antigens, and the

activation of T and B cells, followed by the production of specific

autoantibodies and the damage of multiple organs owing to a

dysregulated adaptive immune response (12–14).
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The conceptualization of autoimmune and autoinflammatory

diseases as a continuum began with proof-of-concept publications

suggesting the classification of immunological diseases based on

clinical and laboratory data [(12) updated by (15) and (10)]. This

classification described a continuum with five main classes

(monogenic autoinflammatory, polygenic autoinflammatory, mixed

pattern, polygenic autoimmune, and monogenic autoimmune

diseases) highlighting the importance of genetic factors for the

classification (Figure 1). This classification has become standard

practice in rheumatology, where systemic lupus erythematosus

(SLE) represents the prototype of systemic autoimmunity with

production of multiple autoantibodies. There is still no consensus

on the precise classification of some diseases such as rheumatoid

arthritis (RA), juvenile idiopathic arthritis (JIA), and ankylosing

spondylitis (AS) (17), since they exhibit overlapping features of

both autoimmunity and autoinflammation (11). In neurology,

some immune-mediated diseases are easier to place on the

continuum: for example, myasthenia gravis and anti-LGi1-positive

autoimmune encephalitis are classical autoimmune diseases (18, 19).

However, for conditions like central nervous system vasculitis and

acute encephalomyelitis (20, 21), their placement remains unclear.

Since autoimmune and autoinflammatory diseases are widely spread

across different medical specialities (neurology, rheumatology,

endocrinology, gastroenterology, etc.), current categorization efforts

based on clinical features and qualitative markers lead to competing

classifications with different hierarchical structures (22, 23). This

highlights a need for new methods and data-driven approaches to

improve classification.

Immune-mediated diseases have a high degree of comorbidity

within families (24, 25), twins (26), and individuals, suggesting

shared genetic risk factors across different immune pathologies (27,

28). The idea of genetic-based disease classification has been used

previously in cross-disorder genetic analyses of immune diseases

(29–32). Nevertheless, most of these studies have used only a

limited number of disorders and focus on shared-genetic

components as opposed to characterizing genetic-based clusters

of disorders. Few studies have systematically evaluated the

autoimmune-autoinflammatory continuum itself. A great effort

was made to use the AutoCore network for the integration of a

set of inborn errors of immunity (33) with predominant

autoimmunity or autoinflammation into a comprehensive map of
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human immune dysregulation (34). The TransImmunome project

revisits the nosology of autoimmune and autoinflammatory

diseases by combining clinical and biomarkers information (35,

36). State-of-the-art methods of statistical genetics provide an

additional opportunity to address this heterogeneity through

diseases classification into more homogeneous subgroups based

on the underlying genes and pathways that drive disease.

Here, we aim to a) evaluate the hypothesis of autoimmune-

autoinflammatory continuum for polygenic disorders based on

genome-wide association studies (GWAS) data and b) identify

genetically driven clusters of closely related polygenic disorders

and their shared genetic factors using publicly available large

datasets and advanced methodology. Bridging genetically driven

classification with existing clinical knowledge can deepen our

understanding of disease-specific molecular mechanisms, guiding

further research on classification and potential drug targets.
2 Materials and methods

2.1 Samples

We curated a collection of well-powered publicly available

GWAS summary statistics of 15 polygenic immune-mediated

diseases (Table 1), which belong to neurological, rheumatological,

gastroenterological, and endocrine system domains. The selection

procedure is described below. We emphasize that our study is
Frontiers in Immunology 03
focused exclusively on polygenic disorders within the immune-

mediated continuum. Unfortunately, we are unable to include rare

monogenic disorders in our analysis, as the statistical genetics

methods that we employ are specifically designed to be effective

for polygenic disorders.

We started with 26 immune-linked disorders (Supplementary

Table S1) with existing GWAS data. Those GWAS with an effective

sample size >5,000 [based on recommendations (54, 55); N effective =

4/(1/n cases) + (1/n controls)] and >200,000 single-nucleotide

polymorphisms (SNPs), which overlap with the linkage

disequilibrium (LD) score regression reference panel (56) were

included. We also excluded AS and narcolepsy because only

ImmunoChip genetic data were available without genome-wide

coverage. This resulted in the inclusion of 15 immune-mediated

diseases for this study. To increase GWAS power for SLE, JIA,

psoriasis (PS), and celiac disease (CeD), we performed in-house

meta-analyses for each disorder across multiple publicly available

GWAS datasets using METAL (Table 1; Supplementary Table S2). As

well, we can highlight the need for more powerful GWAS datasets in

immune-mediated neurological diseases because we can keep only

two neurological diseases across whole dataset. All GWAS summary

statistics were limited to participants of European ancestry. After data

harmonization (conversion to GRCh37 genomic build) and pre-

processing of the GWAS summary statistics with Python Convert

(https://github.com/precimed/python_convert), we conducted cross-

trait analyses using a variety of analytical tools as described below.

The study design was shown at Figure 2
FIGURE 1

The immunological disease landscape (initial idea taken from (10, 12, 16)). Autoimmune and autoinflammatory diseases were described by
McGonagle and McDermott as a continuum with five main classes (monogenic autoinflammatory, polygenic autoinflammatory, mixed pattern,
polygenic autoimmune, and monogenic autoimmune disorders) highlighting the importance of genetic factors for the classification. Methods of
statistical genetics can work with polygenic disorders and can help to characterize this continuum from genetics perspectives using available
GWAS data.
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2.2 Analytical tools

2.2.1 Genomic structural equation modeling
Genomic structural equation modeling (SEM) (57) can be used

to model the multivariate genetic architecture across traits and

reveal latent factors underlying genetic correlations and determine

how those latent factors correlate with each other.

We conducted exploratory and confirmatory factor analyses

(EFA and CFA, respectively) of the 15 immune-mediated diseases.

First, the multivariable extension of LD score regression (LDSC)

employed in genomic SEM was used to derive a genetic covariance

matrix (S) and sampling covariance matrix (V). Population

prevalence was taken from the literature (Supplementary Table

S3). Next, EFA with promax rotation was conducted on the

standardized S matrix using the R genomic SEM package (R

version 4.3.2, https://github.com/GenomicSEM/, Supplementary

Table S4). Results from the EFA were used to guide CFA for a one-,

two-, three-, four-, and five-factor model. EFA was performed using

genomic SEM, and correlated factors with standardized loadings

>0.25 were retained for CFA. Model fit (Table 2; Supplementary

Table S5) for each factor model was assessed using recommended fit

indices: standardized root mean square residual (SRMR), model c2

statistic, Akaike Information Criterion (AIC), and Comparative Fit

Index (CFI). Model fit was considered acceptable for CFI values

≥ 0.90 and SRMR < 0.1 (57).
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2.2.2 Linkage disequilibrium score regression and
Gaussian causal mixture modeling (MiXeR)

For each phenotype, we estimated the SNP heritability and

genome-wide genetic correlation using linkage disequilibrium score

regression (LDSC) (54).

We applied MiXeR (58), (https://github.com/precimed/mixer) to

pairs of phenotypes, to estimate the number of variants influencing

both analyzed phenotypes (shared polygenicity) and the number of

variants distinctively influencing each of the analyzed traits (trait-

specific polygenicity). For MiXeR analyses, we excluded the MHC

region 26–34 Mb, chromosome 6, as described (58) due to the

intricate LD structure. For assessment of model robustness, delta

AIC >0 and visual evaluation of log-likelihood plots were used. For

the analysis of disease triplets, we used trivariate MiXeR (59),

https://codeberg.org/intercm/mix3r with the possibility to access

overlap between three phenotypes simultaneously.

2.2.3 Local Analysis of [co]Variant Association
For local correlation analyses, we used Local Analysis of [co]

Variant Association (LAVA) version 1.3.8, following the protocol with

the LD reference panel based on 1000 Genomes phase 3 genotype data

for European samples and the partition of the genome into 2,495

regions with an average size of 1 Mb as described elsewhere (60). Only

regions revealing significant estimated SNP heritability (p<0.05/2,495)

in both diseases were used to estimate local genetic correlations
TABLE 1 Overview of the GWAS used in the study.

Diseases Abbr. N cases N controls N effective GWAS source, PMID

Autoimmune thyroiditis AITD 30,234 725,172 114,296 32581359 (37)

Celiac disease CeD 6,897 334,824 22,142
20190752 (38), 34278373 (39); for details, see Supplementary
Table S2.

Crohn’s disease CD 12,194 34,915 36,151 28067908 (40)

Juvenile idiopathic arthritis JIA 4,799 294,231 15,670
FinnGen (41), 33106285 (42);
for details, see Supplementary Table S2

Multiple sclerosis MS 14,802 26,703 38,093 31604244 (43)

Myasthenia gravis MG 1,873 36,370 7,125 35074870 (44)

Primary biliary cholangitis PBC 8,021 16,489 21,584 34033851 (45)

Primary
sclerosing cholangitis PSC 2,871 12,019 9,270 27992413 (46)

Primary Sjogren's syndrome SjS 3,232 17,481 10,911 35896530 (47)

Psoriasis (including
Psoriatic arthritis)

PS
(with PsA) 17,255 693,100 64,320

FinnGen (41), 34278373 (39), 24482804 (48); for details, see
Supplementary Table S2

Rheumatoid arthritis RA 22,350 74,823 68,838 36333501 (49)

Systemic
lupus erythematosus SLE 5,595 361,571 15,096

FinnGen (41), 26502338 (50), 29848360 (51); for details, see
Supplementary Table S2

Systemic sclerosis SS 9,095 17,584 23,978 31672989 (52)

Type 1 diabetes T1D 18,942 501,638 73,011 34012112 (53)

Ulcerative colitis UC 12,366 34,915 36,527 28067908 (40)
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TABLE 2 Genomic SEM model performance criteria.

N factors Df c2 p-value c2 AIC CFI SRMR

1 90 1,321.83 4.56E−218 1,381.83 0.658 0.124

2 88 1,073.7 3.08E−169 1,137.69 0.727 0.111

3 87 779.35 9.09E−112 845.35 0.808 0.094

4 56 215.59 1.42E−20 285.59 0.919 0.077

5 54 238.37 5.25E−25 312.37 0.907 0.083
F
rontiers in Immunolog
y
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c2, model chi-square, reflecting index of exact fit to observed data df; p-value c2, degrees of freedom and p-value for the model c2; AIC, Akaike Information Criterion; CFI, Comparative Fit Index;
SRMR, standardized root mean square residual. Bold font was used for optimal 4-factor model.
GWAS data for 15 immune-mediated polygenic diseases

Genomic SEM, LDSC-based 
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FIGURE 2

Schematic overview of the study design. The genomic structural equation model (SEM) was performed to cluster 15 immune-linked disorders on
autoimmune–autoinflammatory axis. Linkage disequilibrium score regression (LDSR) was applied to study common genetic correlation between
disorders. We did Local Analysis of [co]Variant Association (LAVA) to study local genetic correlations inside and outside MHC region. The causal
mixture model (MiXeR), univariate, bivariate, and trivariate were applied to genetic overlap beyond global genetic correlation. Finally, MAGMA analysis
was performed to reveal shared and unique gene, gene sets, and perform tissue analysis.
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between the traits. We applied Bonferroni correction to account for

multiple comparisons within each pairwise correlation analysis. The

statistical tests conducted were all two-sided. Then, we identified 10

regions with the greatest number of significant local genetic

correlations across immune traits and created network plots

displaying these associations.

2.2.4 Functional annotation
We applied MAGMA v1.08 with default parameters as

implemented in FUMA v1.6.1 (61–63) to perform gene-level

analysis for protein coding genes, gene-set analysis (17,023 gene

sets from MsigDB v2023.1Hs), and tissue specificity analysis (54

different tissue types from GTEx eQTL v8) (61). We also analyzed

genes revealed by MAGMA in each of the 15 diseases and common

for all phenotypes and unique genes for diseases assigned to

marginal latent factors obtained in genomic SEM analysis.

Additionally, we analyzed unique gene sets from MAGMA results

for genomic SEM factors. Bonferroni correction was used according

to the number of comparisons. We used Cytoscape application Java

11.0.6 version 3.9.1 with default settings http://cytoscape.org,

STRING app (64), and the STRING protein database (65) for

protein–protein interaction visualization.
Frontiers in Immunology 06
3 Results

3.1 Genomic SEM

In our investigation of the genetic basis underlying the 15

immune-mediated diseases using genomic SEM, we sought to

identify latent genetic factors shared across these traits. We

employed multivariate LDSC as it implemented in genomic

SEM to estimate genetic correlations, which informed our EFA.

During CFA, we uncovered latent factors that represent shared

variance components across diseases and modelled the genetic

variance–covariance matrices across traits (Figure 3). This

analysis identified a model with four latent factors as optimal

among one-, two-, three-, four-, and five-factor model presented

in Table 2, based on model performance criteria (seeMaterial and

methods). T1D and MS loaded on multiple factors using our

predefined significance threshold (<0.25, see Material and

methods) , indicating diffuse association patterns that

compromised the CFA model fit. Consequently, T1D and MS

were excluded from the final model to maintain statistical

robustness , as minor loadings led to reduced model

performance. Supplementary Table S4 showcases the EFA
FIGURE 3

Four groups of immune-mediated diseases identified in genomic SEM analysis. Genomic SEM model with four latent factors representing four
diseases clusters. Green represents factor 1 (F1, “autoimmune”), orange factor 2 (F2, “autoimmune-mixed”), blue factor 3 (F3, “mixed pattern”), purple
factor 4 (F4, “autoinflammatory”), and diseases cross-load on two factors are shown in its own color. The arrows connecting the latent variables with
diseases are shown as “factor loadings” obtained from confirmatory factor analysis. The rounded and dashed arrows on the indicators (traits) are
residual variances in the genetic indicators not explained by the common factor. The dashed arrows connecting factors are covariances and give an
idea about the factors’ mutual associations.
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loadings of the four-factor model illustrating the non-specific

loading patterns of T1D and MS.

Factor 1 consists of polygenic rheumatic diseases with

autoimmune origin (SjS, SLE, and SS). Factor 2 consists of MG and

CeD, but MG also loaded on factor 3. Factor 3 consists of AITD, JIA,

and PS, which belong to a “mixed pattern” of pathologies between

autoimmunity and autoinflammation. Factor 4 consists of diseases

with gastrointestinal tract with inflammatory origin (CD, UC, and

PSC). Several diseases cross-loaded on two factors, such as RA

(equally belongs to factors 1 and 2), PBC (factors 1 and 3), and

MG (factors 2 and 3; see Figure 3; Supplementary Table S6).

Here, we presented model performance criteria for the genomic

SEM for a one-, two-, three-, four-, and five-factor model. The

correlated factors with standardized loadings > 0.25 were retained

from EFA for CFA. Model fit for each factor model was assessed

using recommended fit indices: SRMR, model c2 statistic, AIC, and
CFI. Model fit was considered acceptable for CFI values ≥ 0.90 and

SRMR < 0.1 (57).
3.2 LDSC and MiXeR

We ran LDSC analysis (Supplementary Figure S1) to quantify

SNP heritability, observed scale (Figure 4), and univariate and

bivariate MiXeR for all phenotypes to characterize polygenicity

and overlap between diseases.

We quantified SNP heritability using LDSC (Supplementary

Figure S1) with the observed scale values depicted in Figure 4. CD,

SLE, and PBC have a higher SNP heritability compared to

others (>0.45).
Frontiers in Immunology 07
MiXeR results are presented in tables (Supplementary Tables

S7, S8) and as a heatmap (Supplementary Figure S2) showing the

proportion of trait-specific and shared trait-influencing SNPs

followed by the standard deviation across 20 independent runs.

Univariate MiXeR models exhibited good model fit (Supplementary

Table S7). As shown in Figure 4, CD, SLE, and PBC have a higher

observed scale SNP heritability compared to others (>0.45). CeD

and SjS have the lowest polygenicity, and RA and AITD have the

highest polygenicity. Bivariate results, for those diseases with

acceptable model fit as it was evaluated by delta AIC criteria and

log-likelihood profiles (58), see description in Methods) are

presented in Supplementary Figure S2, Supplementary Table S8.

Bivariate analysis for CeD, SjS, and PSC and as pairs of diseases

including SLE-SS and RA-SS did not fulfil model robustness criteria

and therefore are not presented. We run trivariate MiXeR for factor

1 and factor 4 clusters to show that diseases from the same factor

have more overlap when compared to another factor. Trivariate

analyses revealed that SLE/SS has less overlap with UC compared

with RA (Figure 5).
3.3 LAVA across immune-mediated
diseases

Local genetic correlation analyses complemented global genetic

correlation between the immune-related phenotypes. This step

allowed us to show which immune disorders genetic correlations

are restricted to specific genomic regions and to identify the shared

genetic factors located within these genomic regions. SLE, JIA, and

MG were excluded, as their models failed to converge.
FIGURE 4

Genetic architecture characteristics. Left part: single-nucleotide polymorphism-based heritability, observed scale, for 15 immune-mediated diseases
according to linkage disequilibrium score regression. Right part: the polygenicity value multiplied by 1000 according to Gaussian causal mixture
modeling. The color of dots corresponds to color in genomic SEM figure (green factor 1, orange factor 2, blue factor 3, purple factor 4, and own
color for mixed diseases).
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We visualized local genetic correlation across all loci

(Supplementary Figure S3). During assessment of the pattern of

intercorrelations (Supplementary Figure S3), we revealed that most

of all diseases display a high degree of locus correlations, except

CeD, which can be linked to small power of initial GWAS.

In addition, we separately visualized the significant local genetic

correlation inside MHC region (Figure 6) versus non-MHC loci. We

confirmed that the local correlation and heritability were prominent in

the MHC region, where strong genetic risk was shown. Among 20

regions with top significant local genetic correlation, 10 were in the

MHC region with the top 1 being in HLA DRB1 gene, top 2 in HLA

DQB1 (see Supplementary Table S12 with figures). The pattern of

local genetic correlation in the MHC region (Figure 6) involved a

mixture of concordant and discordant effects across the diseases. For

example, in loci on chromosome 6 (32539568–32586784), UC was

negatively correlated with PBC, PSC, PS, AITD, and RA but positively

correlated with MS. In comparison, fewer diseases displayed

significant correlations in loci outside the MHC, but the correlations

were generally strongly positive between the diseases (for example,

chromosome 2: 191051955–193033982).
3.4 Functional annotation

3.4.1 MAGMA shared results
MAGMA enrichment analyses for all 15 summary statistics

revealed whole blood as the most enriched tissues for all diseases

except PSC, SjS, and MG, and the spleen for all except PSC, SjS, and

CeD. In addition, the small intestine terminal ileum, Cells_EBV-

transformed_lymphocytes, and lung participated in 11, 9, and 8

diseases, respectively (Supplementary Table S11). We did not detect

grouping of enriched tissues by factor.

We assessed the most frequently associated genes across traits:

for 11 diseases follows (Supplementary Figure S4), GABBR1

(gamma-aminobutyric acid type B receptor subunit 1), ZKSCAN3

(Zinc Finger With KRAB And SCAN Domains 3), and PGBD1
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(PiggyBac Transposable Element-Derived 1), and for 10 diseases,

ZSCAN31 (Zinc Finger And SCAN Domain Containing 31),

SCAND3 (SCAN Domain Containing 3), and ZSCAN23 (Zinc

Finger And SCAN Domain Containing 23).

3.4.2 Factor-specific MAGMA results for non-
overlapping genes and gene sets

We also revealed genes only included in factor 1 or factor 4 (the

most margin groups of autoimmune and autoinflammatory

phenotypes, Supplementary Table S9). In factor 1, 22 genes were

unique, and in factor 4, 159 genes were unique with some of them

involved in monogenic immune diseases (see Supplementary Figure

S6 and Discussion).

Subsequently, we assessed gene sets and revealed the uniqueness

of each factor. Nine unique gene sets were revealed for factor 1

(N02-mediated IL12 pathways, PID_TCR_pathway, and leukocytes

and lymphocytes signaling), 16 unique gene sets for factor 3, 41

unique gene sets for factor 4, and 19 gene sets for MS and T1D

(Supplementary Table S10 and Discussion). There were no gene sets

specific for factor 2 likely because factor 2 diseases shared many

common genes with other factors.
4 Discussion

In this study of the common variant genetic architecture of diseases

on the autoimmune and autoinflammatory continuum, we observed a

strong convergence of shared genetic signal across different statistical

genetics methods, which indicate clustering of immune-mediated

disorders along the autoimmune-autoinflammatory continuum.

Thus, we provide new evidence that supports recent call to action

(33–36) on redefining the classification of immune-mediated diseases

by integrating the genetics of polygenic immune disorders. We used

state-of-the-art statistical methods to identify four clusters across the

continuum from GWAS data, with strong autoimmune component in

factor 1 and autoinflammatory component in factor 4. The extreme
FIGURE 5

Trivariate Gaussian causal mixture modeling shows the overlap between factors. The illustrations of the overlap inside “autoimmune” factor 1
(systemic sclerosis, systemic lupus erythematosus, and rheumatoid arthritis) and between “autoimmune” factor 1 (systemic sclerosis and systemic
lupus erythematosus) and “inflammatory” factor 4 (Ulcerative Colitis). For each triad of phenotypes, for every area of the diagram, its percentage is
shown with respect to the combined total area of three phenotypes (rounded to the closest integer). The color of circles corresponds to the color in
genomic SEM figure (green, F1; purple, F4; and beige, rheumatoid arthritis).
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positions for factor 1 and factor 4 diseases were further supported by

trivariate MiXeR. A significant overlap was observed within

autoimmune diseases (SS, SLE, and RA), while there was a smaller

overlap between factor 1 diseases (SLE and SS) and the factor 4 diseases

(UC). In addition, we revealed a “mixed pattern” in factor 3, which

includes JIA, PS, and AITD inside cluster, while factor 2 consists of MG

and CeD. MG and CeD diseases are confirmed to be autoimmune

disorders (12), but genetically, MG also shares components with factor

3, which belongs to mixed pathology. Therefore, we proposed naming

this cluster “autoimmune-mixed”.

The classification of UC, CD, and PSC in the same cluster (factor

4) is consistent with a previous study (30) that utilized genomic SEM

to demonstrate pathway convergence in immune disorders. While

authors (30) suggest that this factor corresponds to gastric disorders,

we show that other gastroenterological phenotypes (PBC and CeD)

cluster with different diseases. Therefore, this grouping may not solely

be due to the involvement of the gastroenterological tract but may

suggest grouping based on inflammatory pathogenesis. Additionally,

it is noteworthy that disorders affecting the same organ can be

classified into different groups, highlighting the complexity of their

immune mechanisms. Topaloudi et al. (32) also revealed four factors

structure in line with a recent preprint (16). The study found that MS

was grouped with PSC (32), and our study confirmed this connection

using LDSC and LAVA methods. Similarly, MG was grouped with

RA (32), and we were able to show that they belong partly to the same

factor 2. In the Transimmunome project (36, 66), five factors were

identified based on molecular immunophenotyping but with
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inclusion of additional diseases with monogenic inheritance or

diseases lacking robust GWAS data. Furthermore, our factor 3

consists of diseases that were not studied in their project. Tchitchek

et al. grouped CD and UC into the same factor (factor 4) supporting

the findings on biomarkers level. In addition, RA and T1D were

grouped together, which aligns with our large genetic overlap

observed in MiXeR (rg 0.33, shared fraction 38%) and strong local

positive correlations in some loci as indicated by LAVA.

In addition, in our study, SLE belongs to the “autoimmune”

factor 1, while RA is split between factors 1 and 2, indicating distinct

genetic backgrounds for RA and SLE.

SLE is regarded as a classical autoimmune disease with

autoantibody production, whereas RA has both autoimmune

(classical seropositive RA) and mixed/autoinflammatory features

(seronegative subtypes) (11). A notable observation in our study is

the grouping of MG with CeD (in factor 2), which may explain their

co-occurrence in case reports, despite lacking population-level evidence

(67). While MS was excluded from our genomic SEM model, it shows

high correlation and overlap with factor 4 diseases and PBC using other

methods. This was shown in previous studies (67, 68), which support

the observation that MS has common genetic background not only

with autoimmune but also with autoinflammatory clusters or, as it was

suggested recently, for functionally integrated immunopathology (69).

Based on our findings and previous literature (30, 32, 70), it

appears that the factor structure in the genomic SEM model

depends on 1) the initial set of disorders and 2) GWAS power. By

including more diseases in our analyses compared to the previous
FIGURE 6

Local Analysis of [co]Variant Association (LAVA) characteristics for MHC locus. Correlation matrix of positive and negative significant correlation and
number of loci within MHC (upper triangular part), with loci outside MHC (bottom triangular part). Numbers in cells show the number of regions with
significant heritability in both traits (Bonferroni corrected), where the correlation was assessed. Colour indicates the direction of effect (aquamarine,
positive; green, negative) for mean across all correlation values (rgs) within the regions with significant h2 for each phenotype. The correlation range
is represented on the scale with a color gradient changing from −1 to 1.
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studies, we were able to differentiate more factors within the

autoimmune spectrum. In summary, our results align with and

expand previous findings by including a broader range of immune-

mediated diseases, which enabled us to define more refined clusters

on the “autoimmune-autoinflammatory axis”.

LAVA analysis showed a mixed pattern of correlations (positive

and negative) inside the MHC region, but in loci outside, the MHC

region correlations were mostly positive. The same pattern for mixed

correlation in the main MHC hotspot (chromosome 6: 32539568–

32586784) was shown for immune-mediated diseases in the original

LAVA paper (60). Most MHC loci with significant local correlation

belong to the MHC II subgroup. In contrast, PS categorized as an

MHC-1-opathy according to the European Alliance of Associations

for Rheumatology classification (71, 72) generally shows a negative

correlation with other diseases in top-MHC loci. Considering the

development of demyelinating disorders in some MHC-I-opathies

during biological treatment (28), this insight can guide research on

more informed treatment choices and help prevent complications

arising from impacts on various pathways.

The most frequently identified overlapping genes

(Supplementary Figure S4) among the immune-mediated disorders

were involved in cell signaling and interaction, which is common for

all types of immune disorders and consistent with findings from a

previous study (31). We also assessed the unique genes in marginal

“autoimmune” and “autoinflammatory” factors. In “autoimmune”

factor (factor 1), 22 genes were unique, among them neutrophil

cytosolic factor 2, which is associated with autosomal recessive

chronic granulomatous disease 2 (73). Mutation in Interferon

Regulatory Factor 7 was described as a cause of immunodeficiency-

39 (73) and as a gene, which is linked to innate immunity according

to the classification of inborn errors of immunity (74). Mutation in

IKZF3 is linked to immunodeficiency-84, which is an autosomal

dominant primary immunologic disease associated with low levels of

B cells and impaired early B-cell development (75).

For “autoinflammatory” factor 4, 159 genes were unique, but few

participated in immunological processes (Supplementary Figure S6).

One immune-related example is NOD2, a gene involved in Blau

syndrome, which is a rare autosomal dominant autoinflammatory

syndrome classified as an autoinflammatory phenotype (74). These

findings are in line with (34), which reports that monogenic immune-

mediated diseases may represent genetically determined, more severe

forms of more common polygenic autoimmune and inflammatory

diseases. That also enables combining results from rare and complex

diseases, which can potentially inform new strategies for more precise

treatment selection. Based on these findings, we can explore certain

potential agents in greater depth. If these agents prove effective for

Blau syndrome, there is a possibility that they could also benefit other

disorders within the group (76, 77).

In the assessment of gene sets, we identified the involvement of

interleukin 12 (IL12) and IL23 gene sets in factor 4 diseases. A

monoclonal antibody that targets IL12/IL23 (ustekinumab) is

approved for the treatment of UC and CD, and PS (78–80). In

addition, IL3, IL4, IL18, IL27, T-helper, and IFN gene sets

involvement in “inflammatory” factor 4 can inform the potential

application of drugs that targets these interleukins and related pathways.
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For “autoimmune” factor 1, both N02-mediated IL12 pathways

and the IL12 pathway were involved as previously linked to SLE risk

(81). In addition, TCR signaling in naive CD4+ T cells and

leukocyte-associated pathways participated in factor 1 diseases.

This can be important for SjS and SS where fewer IL pathways-

linked studies exist due to the lack of powerful data (82).

In factor 3 diseases, a lot of pathways were enriched that were

linked to T cells, B cells, and JAK signaling, and IL17. Recent studies

have shown the involvement of IL17 in JIA pathogenesis (83). This

has led to the approval of secukinumab, an IL 17 blocker, for

treating two JIA subtypes (juvenile psoriatic arthritis and enthesitis-

related arthritis) and for PS treatment. In addition, for MS and T1D,

different IL2, IL6, and T-cell pathways were important.

Our approach offers significant advancements in understanding the

intricate genetics of immune-mediated disorders, and its translational

potential could be significant. The accumulated evidence from this study

and previous findings can help inform further research on

immunotherapy in immune-mediated disorders. Already designed

drugs that suppress major pro-inflammatory signaling pathways as IL-

17 and JAK inhibitors have success compared to traditional systemic

therapies (84). However, there are still unaddressed medical

requirements in terms of both long-term safety and overall

effectiveness, as a considerable number of patients do not attain

disease remission. Enhanced understanding of the genetically

informed mechanisms and diversity within immune-mediated diseases

would create opportunities to address these challenges, resulting in a

more personalized and efficient treatment approach (85).

A limitation of our study is that it focused only on GWAS

performed on populations of European ancestry. This is because

genomic SEM and LD score regression require the same ancestry

samples, and powerful GWAS data are lacking for non-European

ancestries in most diseases. The second limitation was that only

powerful GWAS datasets of polygenic diseases were included, a

requirement of the employed statistical methods. In addition,

cohort sample size and SNP sets are drivers of the limited

resolution of genetic mapping and the ability to detect robust

disease associations (86). The MHC findings could be limited by

non-specialized genotyping chips in GWAS and resolution of the

MHC region, and limitations of the LAVA method due to LD

structure and GWAS power. An additional limitation was to focus

only on genetics but not on the deep immunophenotyping due to

the lack of powerful data for these phenotypes.

To summarize, the revelation of four-factor clustering can help

to define the disease groups for which it is possible to use the same

therapies. The shared genetic landscape of this continuum can

potentially be used to update the nosological classification. Our

findings should be viewed as a foundation for further investigation

into personalized treatment strategies based on genetic clustering.

We believe that these insights could eventually contribute to

optimizing therapeutic approaches, but rigorous clinical validation

is necessary before any changes to existing treatments can be

recommended. Furthermore, our results can be instrumental in

assembling cluster-guided multi-parametric analyses that include

genetics and omics data and enable deep phenotyping of patients

leading to personalized drug selection. The current study sheds light
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on the autoimmune–autoinflammatory continuum from a genetic

perspective and can inform future studies in this field.
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