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Host and bacterial urine
proteomics might predict
treatment outcomes for
immunotherapy in advanced
non-small cell lung
cancer patients
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Edit Dulka4, Anna Mihucz1, Brigitta Roskó1, Sara Szincsak5,
Anton Iliuk6, Glen J. Weiss7 and Zoltan Lohinai5,4*
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2Department of Telecommunications and Media Informatics, Budapest University of Technology and
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Introduction: Urine samples are non-invasive approaches to study potential

circulating biomarkers from the host organism. Specific proteins cross the

bloodstream through the intestinal barrier and may also derive from gut

microbiota. In this study, we aimed to evaluate the predictive role of the host

and bacterial urine extracellular vesicle (EV) proteomes in patients with non-small

cell lung cancer (NSCLC) treated with anti-PD1 immunotherapy.

Methods: We analyzed the urine EV proteome of 33 advanced-stage NSCLC

patients treatedwith anti-PD1 immunotherapywith LC-MS/MS, stratifying patients

according to long (>6 months) and short (≤6 months) progression-free survival

(PFS). Gut microbial communities on a subcohort of 23 patients were also

analyzed with shotgun metagenomics. Internal validation was performed using

the Random Forest (RF) machine learning (ML) algorithm. RF was validated with a

non-linear Bayesian ML model. Gene enrichment, and pathway analysis of host

urine proteins were analyzed using the Reactome and Gene Ontology databases.

Results:We identified human (n=3513), bacterial (n=2647), fungal (n=19), and viral

(n=4) proteins. 186 human proteins showed differential abundance (p<0.05)

according to PFS groups, 101 being significantly more abundant in patients with

short PFS and n=85 in patients with long PFS. We found several pathways that

were significantly enriched in patients with short PFS (vs long PFS). Multivariate

Cox regression showed that human urine proteins MPP5, IGKV6-21, NT5E, and

KRT27 were strongly associated with long PFS, and LMAN2, NUTF2, NID1, TNC,

IGF1, BCR, GPHN, and PPBP showed the strongest association with short PFS. We

revealed that an increased bacterial/host protein ratio in the urine ismore frequent

in patients with long PFS. Increased abundance of E. coli and E. faecalis proteins in

the urine positively correlates with their gut metagenomic abundance. RF ML
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model supported the reliability in predicting PFS for critical human urine proteins

(AUC=0.89), accuracy (95%) and Bacterial proteins (AUC=0.74).

Conclusion: To our knowledge, this is the first study to depict the predictive role

of the host and bacterial urine proteome in anti-PD1-treated advanced NSCLC.
KEYWORDS

NSCLC, immunotherapy, gutmicrobiome, EV protein, urine proteome,machine learning
Introduction

Anti-programmed death ligand-1 (PD-L1) immunotherapy

with and without chemotherapy are now the standard of care in

multiple cancers, including front-line therapy in advanced-stage

non-small cell lung cancer (NSCLC) (1). The five-year overall

survival (OS) increased to 20% in unselected patients and up to

40% in PD-L1high-expressing patients (1–6). Others showed that

single agent anti-PD immunotherapy can be extended as first-line

therapy to patients with advanced stage tumors and low-PD-L1 TPS

(7). Clinical evidence shows that more than 50% of PD-L1high-

expressing patients still do not respond to PD-1/PD-L1 blockade

(8). Thus, there is a need to develop novel biomarkers to

enhance efficacy.

Urinary tests have been used as cost-effective and noninvasive

tools for the screening, diagnosis, and monitoring of various

conditions. In addition to the assessment of bladder and other

genito-urinary cancers (9, 10), urine can also indicate remote

malignancies not directly associated with the urinary tract, similar

to liquid biopsies, or analyzing of cell-free circulating DNA passing

through glomerular filtration from the bloodstream (9). Mass

spectroscopy can reveal a plethora of proteomic biomarkers

examined in centrifuged urine for pancreatic, (11), lung, (12),

colorectal, and gastric cancer (13). Quantitative analysis of

urinary metabolites provided predictive models for the diagnosis

of clear cell renal carcinoma (14), and to distinguish

cholangiocarcinoma from periductal fibrosis (15).

Circulating acellular components of innate immunity, such as

proteins of acute phase and complement activation can yield

valuable insights about the course of the disease and the response

to treatment, modulated by direct effects on tumor cells and by

supporting a cancer-abetting microenvironment (16). Recent

studies reported that mass-spectrometry-based plasma proteomic

signatures could predict survival in immune checkpoint inhibitor

(ICI)-treated advanced-stage NSCLC patients (17–19). However, to

date, we are unaware of a published study on urine biomarkers to

predict ICI efficacy in NSCLC. In addition, recent discoveries

indicate that extracellular vesicles (EVs) provide an effective and

ubiquitous method for intercellular communication, stimulation of

immune system, removal of harmful materials, etc. (20–22). As

these are shed into every biological fluid and embody a good
02
representation of their parent cell, analysis of the EV cargo has

great promise for biomarker discovery and disease diagnosis (23).

Studies analyzing plasma EV signatures, including PD-L1 mRNA

(24), specific microRNAs (25, 26), long mRNAs (27) and proteins

(28) successfully established robust EV signatures associated with

ICI-response.

Understanding of an intriguing association between the gut

microbiome and ICI outcomes (efficacy and toxicity) has been

unfolding in recent years (29, 30). Both in metastatic melanoma

and NSCLC, multiple studies reported the linkage between

microbial metagenomic and metatatranscriptomic signatures and

ICI efficacy (31–39). The introduction of tumor and plasma

microbial DNA analysis as a diagnostic approach and predictive

factor in cancer was already proposed (40, 41). However, bacterial

proteomic signatures in the urine have not been comprehensively

studied relative to lung cancer.

In this study, we analyzed the host and microbial proteomes

from urinary EVs of 33 advanced-stage NSCLC patients treated with

anti-PD1 immunotherapy and established a comprehensive human

and bacterial proteome profile for patients with long (>6 months)

and short (≤6 months) PFS, and used machine learning (ML)

algorithm Random Forest (RF) to internally validate our findings.
Materials and methods

Study population and treatments

A total of n=33 advanced-stage NSCLC patients treated with ICI

were enrolled in this study who received standard-of-care second line

nivolumab (anti-PD1) monotherapy (n=16), or first line

pembrolizumab (anti-PD1) monotherapy (n=10) and atezolizumab

(anti-PD-L1) monotherapy (n=1) or durvalumab-based (anti-PD-

L1) chemotherapy-immunotherapy (CHT+IO) combination (n=6)

(Supplementary Table 2). Immunotherapeutic agents were

administered first line, if PD-L1 Tumor Proportion Score (TPS)

was ≥50% and second line if PD-L1 TPS was <50%. All treatments

were administered between 2019 and 2020 at the County Hospital of

Pulmonology, Torokbalint, Hungary. For patients receiving chemo-

immunotherapy (CHT+IO), the regimen included pemetrexed +

carboplatin with durvalumab or pembrolizumab. Patients treated
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subsequent line with ICI received standard first-line platinum-based

doublet therapy, selected per clinical guidelines and physician

discretion. All patients included in our cohort were diagnosed with

advanced-stage NSCLC (Stage IIIB/IV) with histologically confirmed

adenocarcinoma (ADC), squamous cell carcinoma, and non-small

cell lung carcinoma not otherwise specified (NSCLC-NOS). The

clinical TNM (Tumor, Node, Metastasis) stage was determined

according to the Union for International Cancer Control (8th

edition). Baseline urine samples were collected before or within one

week after the first cycle of immunotherapy. Follow-up urine samples

were collected from n=17 patients 120 (± 7 days) after the first cycle.

All patients underwent routine clinical urine testing for pyuria,

hematuria, and bacteriuria and were screened for symptoms of

urinary tract infections (fever, discharge, dysuria). Patients with

suspected UTIs were excluded from the study.

Baseline stool samples were obtained from n=23 patients during

baseline urine sample collection and forwarded for microbiome

genome analysis (shotgun metagenomics). Clinicopathological data

were collected at diagnosis, including age, gender, stage, histology,
Frontiers in Immunology 03
BMI, the diagnosis of COPD, chemotherapy administration [first

line platinum based doublet without first line ICI (chemo-treated)

vs first line single agent ICI (chemo-naïve)], tumor PD-L1

expression (PD-L1 TPS <50% vs ≥50%) and progression-free

survival (PFS). PFS was calculated from the time of the first

immunotherapy cycle until progression. Since there were only

two non-smoker patients in our cohort (5.23%), we could not

analyze smoking status. The date of the last follow-up included in

this analysis was June 2022. All treatments were conducted under

the contemporary National Comprehensive Cancer Network

guidelines. Platinum based doublet chemotherapy was

administered to patients in first line followed by a single agent

ICI. The first line single agent ICI drug administration was covered

by the insurance in the study period if PD-L1 TPS was above 50%.

Patients were classified based on short-term (≤6 months) versus

long-term PFS (>6 months). Table 1 shows the clinicopathological

characteristics of our study cohort. Supplementary Table 1 shows

the inclusion and exclusion criteria of patients. Supplementary

Table 2 shows type of immunotherapies administered to patients.
TABLE 1 Clinicopathological characteristics of the patient cohort.

Long PFS N=22 (67%) Short PFS N=11 (33%) p-value

Age [years (mean)] 60.23 58.8 0.173

Gender

male [48% (n=16)]
female [52% (n=17)]

41% (n=9)
59% (n=13)

64% (n=7)
36% (n=4)

0.281

Histology

ADC [73% (n=24)]
SCC [27% (n=9)]

77% (n=17)
23% (n=5)

64% (n=7)
36% (n=4)

Stage

Stage IIIb [21% (n=7)]
Stage IV [79% (n=33)]

12% (n=4)
88% (n=18)

27% (n=3)
73% (n=7)

ICI Response (R) at 3 months

Response1 [82% (n=27)]
Non-response2 [18% (n=6)]

100% (n=22)
0% (n=0)

45% (n=5)
55% (n=6)

<0.001***

PFS [months, (median)] 12.07 3.47 <0.001***

Chemotherapy

CHT-treated [54% (n=18)]
CHT-naive [46% (n=15)]

50% (n=11)
50% (n=11)

64% (n=7)
36% (n=4)

0.712

PD-L1 TPS
>50% [36% (n=12)]
≤50% [64% (n=21)]

36% (8)
64% (14)

36% (4)
64% (7)

>0.999

Smoking [pack-years (mean) 37.12 40.4 0.096

COPD comorbidity
present [36% (n=12)]
not present [36% (n=21)]

41% (9)
59% (13)

27% (3)
73% (8)

0.702

BMI
>30 kg/m2 [36% (n=12)]
≤30 kg/m2 [36% (n=12)]

36% (8)
64% (14)

36% (4)
64% (7)

>0.999
*p < 0.05, **p < 0.01, ***p < 0.001.
Response1: complete response (CR), partial response (PR), stable disease (SD).
Non-response2: progressive disease (PD).
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PD-L1 immunohistochemistry

Tumor samples retrieved by lung biopsy were available for PD-

L1 immunohistochemistry (IHC) for all 33 advanced-stage NSCLC

patients. For IHC staining, 4-µm-sections were cut from formalin-

fixed-paraffin-embedded (FFPE) blocks. Staining was carried out on

a Leica Bond RX autostainer using rabbit monoclonal antibody for

PD-L1 diluted 1:300 (CST, cat: 13684S). Slides were stained with the

Bond Polymer Refine Detection kit (#DS9800) and Leica IHC

Protocol F, and epitope retrieval was carried out for twenty

minutes at low pH. Slides were cleared and dehydrated on a

Tissue-Tek Prisma platform before being coverslipped using a

Tissue-Tek Film coverslipper. An experienced and certified

histopathologist evaluated PD-L1 expression according to the

FDA-approved TPS scoring system. Patients were classified as

PD-L1-high (TPS ≥ 50%) or low (TPS < 50% percentile) expression.
Preparation of EV samples

As previously described, EVs from 900 µL of each urine sample

were captured and processed by Tymora Analytical Operations

(West Lafayette, IN) using magnetic EVtrap beads (42). EV samples

were characterized according to MISEV2023 recommendations.

Urinary EVs were isolated and analyzed using the EVtrap

(Extracellular Vesicles Total Recovery and Purification) method, a

high-efficiency magnetic bead-based affinity approach developed by

Tymora Analytical Operations. This method captures EVs through

their lipid bilayer interactions with amphiphilic beads, ensuring

high recovery and minimal contamination from soluble urinary

proteins. EVtrap has been extensively validated in prior studies,

demonstrating >95% recovery efficiency, with seven times greater

capture of CD9-positive EVs compared to ultracentrifugation (43,

44). The method has also been shown to significantly reduce the

presence of common urinary contaminants, such as albumin and

Tamm-Horsfall protein, through optimized bead-based binding

and elution conditions. EV-specific protein markers CD9, CD63,

and CD81 were verified using Western blot.
Extraction of EV proteins

The isolated and dried EV samples were lysed to extract

proteins using the phase-transfer surfactant (PTS) aided

procedure (42). The proteins were reduced and alkylated by

incubation in 10 mM tris(2-carboxyethyl)phosphine (TCEP) and

40 mM chloroacetamide (CAA) for 10 min at 95°C. The samples

were diluted fivefold with 50 mM triethylammonium bicarbonate

and digested with Lys-C (Wako) at 1:100 (wt/wt) enzyme-to-

protein ratio for 3 h at 37°C. Trypsin was added to a final 1:50

(wt/wt) enzyme-to-protein ratio for overnight digestion at 37°C.

Next, we removed the PTS surfactants from the samples, the

samples were acidified with trifluoroacetic acid (TFA) to a final

concentration of 1% TFA, and ethyl acetate solution was added at a

1:1 ratio. The mixture was vortexed for 2 min and then centrifuged
Frontiers in Immunology 04
at 16,000 × g for 2 min to obtain aqueous and organic phases. The

organic phase (top layer) was removed, and the aqueous phase was

collected. This step was repeated once more. According to the

manufacturer's instructions, the samples were dried in a vacuum

centrifuge and desalted using Top-Tip C18 tips (Glygen). A portion

of each sample was used to determine peptide concentration with

Pierce Quantitative Colorimetric Peptide Assay. The samples were

dried completely in a vacuum centrifuge and stored at -80°C.
LC-MS/MS analysis

Each dried peptide sample was dissolved at 0.1 mg/mL in 0.05%

trifluoroacetic acid with 3% (vol/vol) acetonitrile. Ten mL of each

sample was injected into an Ultimate 3000 nano UHPLC system

(Thermo Fisher Scientific). Peptides were captured on a 2-cm

Acclaim PepMap trap column and separated on a heated 50-cm

column packed with ReproSil Saphir 1.8 mm C18 beads (Dr. Maisch

GmbH). The mobile phase buffer consisted of 0.1% formic acid in

ultrapure water (buffer A) with an eluting buffer of 0.1% formic acid

in 80% (vol/vol) acetonitrile (buffer B) run with a linear 60-min

gradient of 6–30% buffer B at a flow rate of 300 nL/min. The

UHPLC was coupled online with a Q-Exactive HF-X mass

spectrometer (Thermo Fisher Scientific). The mass spectrometer

was operated in the data-dependent mode, in which a full-scan MS

(from m/z 375 to 1,500 with a resolution of 60,000) was followed by

MS/MS of the 15 most intense ions (30,000 resolution; normalized

collision energy - 28%; automatic gain control target (AGC) - 2E4,

maximum injection time - 200 ms; 60sec exclusion].
LC-MS data processing

The raw files were searched directly against the human,

bacterial, fungal and viral Uniprot databases with no redundant

entries, using Byonic (Protein Metrics) and Sequest search engines

loaded into Proteome Discoverer 2.3 software (Thermo Fisher

Scientific). MS1 precursor mass tolerance was set at 10 ppm, and

MS2 tolerance was set at 20 ppm. Search criteria included a static

carbamidomethylation of cysteines (+57.0214 Da) and variable

modifications of oxidation (+15.9949 Da) on methionine residues

and acetylation (+42.011 Da) at the N terminus of proteins. The

search was performed with full trypsin/P digestion, allowing a

maximum of two missed cleavages on the peptides analyzed from

the sequence database. The false-discovery rates of proteins and

peptides were set at 0.01. All protein and peptide identifications

were grouped, and any redundant entries were removed. Unique

peptides and unique master proteins were reported.
Label-free quantitation analysis

All data were quantified using the label-free quantitation node

of Precursor Ions Quantifier through the Proteome Discoverer v2.3

(Thermo Fisher Scientific). For the quantification of proteomic
frontiersin.org
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data, the intensities of peptides were extracted with initial precursor

mass tolerance set at ten ppm, minimum number of isotope peaks

as 2, maximum DRT of isotope pattern multiplets – 0.2 min, PSM

confidence FDR of 0.01, with hypothesis test of ANOVA, maximum

RT shift of 5 min, pairwise ratio-based ratio calculation, and 100 as

the maximum allowed fold change. The abundance levels of all

peptides and proteins were normalized using the total peptide

amount normalization node in the Proteome Discoverer. For

calculations of fold-change between the groups of proteins, total

protein abundance values were added together, and the ratios of

these sums were used to compare proteins within different samples.
Metagenomic sequencing

Within seven days of obtaining signed informed consent from

the patients, baseline stool samples were collected before or after the

first ICI infusion. On the day of collection, the samples were frozen

at -80°C until they were separated and sequenced. We utilized 100

mg stool sample in ZR Bashing Bead Lysis Tubes with

ZymoBIOMICS 96 MagBead DNA kit for entire DNA extraction,

followed by 40 minutes of continuous bead beating and 1 minute of

centrifugation at 10,000 x g. 200:l supernatant was shaken for 10

minutes with 25:l ZymoBIOMICSTM MagBinding Beads. After

removing the supernatant from the tubes and placing them on a

magnetic rack, 500:l ZymoBIOMICSTM MagBinding Buffer was

added to each sample and stirred for 1 minute. The beads were

pelleted and washed twice for 1 minute each with 500:l of

ZymoBIOMICSTM MagWash 1 and 900:l of ZymoBIOMICSTM

MagWash 2. The beads were dried for 10 minutes at 55°C before

being eluted in 50 l RNAse/DNAse-free water. The DNA

concentration was determined using a Qubit fluorimeter.

According to the manufacturer's recommendations, 65 ng of

each sample was utilized as input for library preparation by the

KAPA HyperPlus kit, with size selection for 200bp peak fragment

size (TapeStation 2200, High Sensitivity D1000 ScreenTape®). The

samples were sequenced on the NextSeq500 platform using

2x150bp read pairs and 10M read pairs.
Microbial taxonomic profiling

The readings were adaptor-trimmed and quality-filtered to achieve

a mean Q-score of 30 or above. FastQC was used to run a quality

check, and it passed each sequence quality score per base N content

and per adapter content. (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc). Kraken2 (version 2.0.8) (45) and the MiniKraken2

database were utilized for taxonomic assignment. The output files

were combined into a data matrix using the combine kreports.py

tool from KrakenTools (v1.2). The read counts were normalized

using the smallest sample as the minimum depth and inclusion

criteria of at least one read in at least one sample per taxon. A

considerable proportion of the readings had been rendered as

unclassified (mean=0.58, SD=0.086). For statistical analysis, the

findings were stratified by taxa. Taxa that did not contribute at
Frontiers in Immunology 05
least 0.01 percent of overall abundance in the entire cohort were

eliminated from the study prior to rarefaction. In subsequent

analyses, only taxa from the domains Bacteria and Archaea were

included; all viral and eukaryotic taxonomic units were omitted.

The centered log-ratio (CLR) transformation method was used to

further normalize rarefied abundance implemented in sci-kit-bio

(46). CLR-transformation transforms sample vectors based on the

logarithm of the ratio between the individual elements and the

geometric mean of the vector.
Machine learning models

Using the scikit-learn (1.1.2) python (3.10.6) package, multiple

Random Forest (RF) models with stratified five-fold cross-

validation were developed for binary classification. Binary

classifications of PFS (long vs. short), PD-L1 (high vs low), and

chemotherapy (naive vs. treated) were employed as independent

targets. Individual models were trained using datasets from specific

human and bacterial metabolites. Both datasets were used singly

and in combination. The optimal RF model was identified based on

its hyperparameters. The evaluation of these hyperparameters was

conducted at grid points representing combinations of

hyperparameters, chosen within specific intervals. At each

gridpoint, the median of the mean AUC (Area Under the Curve)

scores from cross-validation was calculated, and the model

exhibiting the highest median value was selected as the final

model. The primary hyperparameters targeted for optimization

were the forest's number of trees, trees' maximum depth, and the

minimum number of samples necessary for splitting an internal

node. The best set of hyperparameters was determined based on the

AUC score and ROC (Receiver Operating Characteristic) curve,

which were assessed after the stratified 5-fold cross-validation.

Bayesian Additive Regression Trees (BART) was implemented

using the dbarts package in R to classify patients into Long vs.

Short PFS based on host urine EV protein abundances. The model

was trained using a prior distribution to control complexity and

avoid overfitting. Posterior probability estimates were generated,

and model performance was assessed via AUC-ROC, posterior

inclusion probabilities, and partial dependence plots. Leave-one-

out cross-validation (LOO-CV) was performed using the loo

package to estimate predictive accuracy. Feature importance was

determined based on posterior inclusion probabilities, and non-

linear effects were visualized with partial dependence plots

(PDPs). All analyses were conducted in R 4.x with ggplot2

for visualization.
Data preprocessing, pathway- and
statistical analyses

We used the Shapiro-Wilk test to decide which statistical tools

were applicable to the dataset. Accordingly, non-parametric tests

were used in our research. In order to examine the relationships

between the protein abundances and the PFS values, multiple
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Spearman's correlation tests were executed, and results were

displayed on Volcano plots. To explore differentially abundant

proteins in distinct patient groups (short vs. long PFS, CHT-naive

vs. CHT-treated, and PD-L1 high vs. PD-L1 low), Wilcoxon rank-

sum (WRS) tests were performed. Proteins with the 10 most

significant p-values in every patient group were displayed in bar

charts. We excluded the proteins with fewer measurement data

points than a given threshold (20).

Pathway analyses were performed separately from the human

and bacterial protein pool narrowed down to include proteins only

with significant correlation with PFS (in months) (r(s) > [0.3], p <

0.05), or significantWRS test between patients with short vs long PFS.

Only proteins which hadmore than 20 data points were included. For

human pathway analyses, the Reactome and Gene Ontology (GO)

databases were utilized, and data was generated with the WebGestalt

software package. Over-representation (ORA) analysis was used to

determine enrichment ratios and false discovery rate (FDR) for every

pathway. For bacterial pathway analyses, the UniProt ID mapping

tool was used to translate ascension numbers to bacterial gene IDs.

Next, the FUNAGE-Pro functional analysis pipeline was used (47) to

perform gene enrichment analyses based on the Kyoto Encyclopedia

of Genes and Genomes (KEGG). Benjamini–Hochberg multiple

testing correction was applied for all pathway analyses to calculate

the final p-values.

For multivariate Cox-proportional hazard regression, the

analysis was two-sided, with a significance threshold of=0.05. The

predictive value of all urine proteins was tested with confounders'

gender, chemotherapy, PD-L1 IHC expression, the presence of

COPD, and BMI (see Table 1). Harrel's C-index was calculated to

assess the quality of fit of our multivariate model that performed

above 0.7 (fair) in all analyses.

Principal Component Analysis (PCA) was performed on

human and bacterial proteins pooled, which had more than 20

data points, correlated significantly with PFS (r(s) > [0.3], p < 0.05),

or exhibited a significant WRS test between patients with short vs

long PFS. Then, the first two principal components were utilized for

clustering the patients with the K-means clustering algorithm. The

created clusters are displayed on scatter plots, and we visualized the

clusters by multiple clinical properties of the patients.
Results

Our patient cohort included 33 advanced-stage lung cancer

patients treated with anti-PD1 ICI. There were 22 patients with long

PFS and 11 patients with short PFS. N=15 patients received ICI

first-line (CHT-naive) and n=18 subsequent-line (CHT-treated)

(Table 1). Figure 1A shows the study design in a flowchart.
Human urine EV proteins correlate with
PFS and biological pathways

For baseline analyses, the follow-up measurements on urine

samples (n=17) were excluded. LC/MS analysis revealed 6183
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proteins in urine EV samples. The proteins were derived from

multiple species; thus, by utilizing the NCBI Taxonomy database,

we divided the proteins into four taxon-related categories: human

(n=3513), bacterial (n=2647), fungal (n=19), and viral (n=4). Due to

the low number of fungal and viral metabolites detected in our

screen, we were not able to analyze proteins from these taxonomic

units. First, we analyzed Spearman's correlation between the relative

abundances of all sequenced human proteins in baseline urine

samples and PFS in months (Figure 1B). Here, we found that

multiple proteins show association with PFS (r(s)>|0.3|, p<0.05,

n=191), including BPIFB2, F11R, WDR62, MPP5, FCGBP and

TFF3 that a significant positive correlation; while TMEM176B,

TNC, RAB4B, CD74, NOMO3, ARG1 and PINK1 had a

significant negative correlation. Next, we performed WRS tests and

ROC analyses for all urine protein proteins, comparing patients

according to short-term PFS (≤6 months) and long-term PFS (>6

months), PD-L1 IHC expression [high (>50%) vs low ≤50%)] and

the line of ICI (CHT-naive vs CHT-treated). From the 3513 human

proteins, 186 showed differential abundance (p<0.05) according to

PFS groups, with 101 being significantly more abundant in patients

with short PFS and 85 in patients with long PFS.

For the interpretation of biological pathways, we used Over-

Representation Analysis (ORA) and the Reactome and GO

biological processes databases (Figures 1C, D). Affinity

propagation was utilized to eliminate redundant pathways.

Supplementary Figure 1 shows all pathway results without

filtering algorithms. Human urinary EV proteins associated with

long PFS constituted pathways in connection with general immune

function and innate immunity. However, proteins associated with

short PFS contributed to highly specific pathways, including the

Endosomal/Vacuolar pathway, Complement cascade, COPI-

mediated anterograde transport (Reactome), Nucleobase-

containing small molecule biosynthetic process, and nucleoside

trisphosphate metabolic process (GO biological process).

Neutrophil degranulation was present in the proteomic profiles of

both patient groups, but a much higher enrichment with lower FDR

was detected in patients with short PFS.
Top differentially abundant human urine EV
proteins in patients with short- and long-
term progression-free survival

We aimed to highlight the top 10 abundant metabolites according

to PFS (Figure 2A). Figure 2B shows the top 10 abundant proteins in

patients with short vs. long PFS plotted against Spearman's

correlation coefficient and ROC AUC. Considering all 3 statistical

measurements, MPP5, IGKV6-21, and ADGRG6 showed the

strongest association with long PFS, while TNC, NID1, LMAN2,

andNUTF2 with short PFS. Cox hazard regression was performed for

top 10 abundant proteins in patients with short- and long PFS, where

MPP5, IGKV6-21, NT5E and KRT27 were significant positive

predictors of PFS, and LMAN2, NUTF2, NID1, TNC, IGF1, BCR,

GPHN and PPBP were significant negative predictors of PFS

(Figure 2A, Table 2). Supplementary Figures 2A, B show the top 10
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abundant proteins in CHT-naive and CHT-treated patients, and PD-

L1 high and PD-L1 low patients.

To reveal whether the relative abundance of top PFS-related

human proteins changed during IT, we compared baseline vs.

follow-up urine samples on a sub-cohort of patients with long

PFs (n=17, Supplementary Figure 3). Only the abundance levels of

BCAS1 and KRT27 were significantly altered (decreased) in the

follow-up samples compared to baseline. We could obtain follow-

up samples from only 2 patients with short PFS, so we could not

perform further statistical analysis for this group.
Gut microbial signatures correlate with
urine EV bacterial protein abundance

A total of n=2647 bacterial proteins were detected in urine EV

samples annotated taxonomically with NCBI databases. The
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abundance fraction of bacterial per total urine EV proteins is

significantly higher in patients with long PFS (vs. short PFS,

Figure 3A) and in CHT-naive (vs. CHT-treated, (Figure 3B)

patients, however, there is no significant difference according to

PD-L1 expression (Figure 3C). A significant difference between

patients with short and long PFS was similarly detectable in PD-L1

low and PD-L1 high subgroups (Figure 3D). These results suggest

that patients with long PFS exhibit a higher amount of circulating

bacterial components that can be detected from urine samples.

Shotgun metagenomics was performed on stool samples of a sub-

cohort of n=23 patients (16 with long PFS and 7 with short PFS) to

correlate the bacterial signature of the gut with the urine EV bacterial

proteome. In the gut microbiome, phyla Firmicutes, Actinobacteria,

and Spirochetes were overrepresented in patients with short PFS, and

Verrucomicrobia was overrepresented in patients with long PFS

(Supplementary Figure 4). Genera Akkermansia, Bacteroides,

Barnesiella, Escherichia, Parabacteroides, and Paraprevotella were
FIGURE 1

Correlation of the human urine EV proteome with progression-free survival and biological pathways. (A) Illustrated flowchart shows the study design,
cohorts, and experimental procedures. (B) The volcano plot displays urine EV proteins according to their correlation with PFS in months. Spearman's
correlation coefficient is shown in the X axis and the corresponding -log10 (p-value) in the Y axis. Non-significant proteins are grey; those showing
significant positive correlation (p<0.05) with PFS are green, and those showing significant negative correlation are red. The dotted line indicates
p<0.05-, the dashed line indicates p<0.01 threshold. (C, D) Pathway analyses using the Reactome and GO biological process databases were
performed with ORA from whole exome datasets. Only proteins with significant correlation with PFS (in months) (r(s) > [0.3], p < 0.05), OR significant
WRS test between patients with short vs long PFS were included. For multiple testing, Benjamini-Hochberg adjustment was used; False Discovery
Rate (FDR) is indicated with color tone and labels in the horizontal bar charts. The enrichment ratio is displayed on the X-axis. Affinity Propagation
was used to eliminate redundant pathways, and FDR-values were considered significant with p<0.1.
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overrepresented in patients with long PFS, and Bifidobacteria and

Streptococcus were overrepresented in patients with short PFS

(Supplementary Figure 4). Previously, a more comprehensive

metagenomic analysis of a sizeable patient cohort (n=62) showed

similar findings regarding long and short PFS-associated key bacterial

taxa (30)

Proteins in the urinary EV bacterial proteome were associated

with taxa according to their relative abundance. The majority of

identified proteins derive from Escherichia coli (49%), Klebsiella

oxytoca (13%), and Citrobacter freundii (12%), from which E. coli

proteins were significantly more abundant in patients with long PFS

(compared to short PFS, Figure 3E). We detected 4 more taxa with

identified urine proteins above 1% of total bacterial protein

abundance: Bacil lus subtilis , Pseudomonas aeruginosa,

Pseudoalteromonas piscicida and Enterococcus faecalis. Urine EV

proteins for B. subtillis, P. piscicida, and E. faecalis were significantly

more abundant in patients with short PFS compared to long PFS

(Figure 3F). The abundance of urine EV proteins was assessed

according to their fraction of total bacterial EV protein abundance

(Figures 3G–I, L). We also evaluated the taxonomical origin of

bacterial urine proteins concerning phyla and classes. We found

that Proteobacteria- and Firmicutes- derived proteins are

significantly more abundant in patients with long PFS (p<0.001,

and p=0.001, respectively) compared to patients with short PFS
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(Supplementary Figure 5A). At class level, Gammaproteobacteria

(p<0.001), Desulfitobacteriia (p=0.016), and Bacilli (p=0.005)

showed significantly increased abundance in patients with long

PFS compared to short PFS (Supplementary Figure 5B)

When evaluating gut metagenomic abundance of the same taxa,

we revealed that abundance of E. coli and E. faecalis were similarly

increased in patients with long PFS compared to short PFS

(Figures 3J, K). Furthermore, the gut metagenomic abundance

and urine EV protein abundance of these two species both

showed significant positive correlation. This suggests that

bacterial urine proteins associated with these taxa originated from

the gut microbiome (Figures 3M, N). B. subtilis and P. piscicida

were not detected in the metagenomic data, so their urinary EV

proteins might originate from a biological compartment other than

the gut microbiome.
The bacterial urine EV proteome in the
context of progression-free survival

Spearman's rank correlation was used for the association of

relative abundances of all sequenced bacterial proteins in baseline

urine EV samples and PFS in months (Figure 4A). We found that

multiple bacterial proteins showed association with PFS (r(s)>|0.3|,
FIGURE 2

Top human urine EV proteins according to PFS. (A) Bar charts show relative abundances of the top 10 proteins associated with long or short PFS
according to the Wilcoxon rank-sum (WRS) test. The y axis indicates proteins and their corresponding abundance levels in PFS groups, X-axis shows
normalized abundance on a logarithmic scale. The vertical bar on the right displays the hazard ratio (HR) for proteins with a significant multivariate
Cox regression (p<0.05) regarding PFS. (B) P-values generated by the WRS test (X-axis) for the top 10 long and short PFS-associated EV proteins
plotted against their Spearman's correlation coefficient (Y-Axis), where the color code (blue vs. red) indicates the corresponding PFS group, circle
size indicates AUC from corresponding ROC analysis, and circle filling the p-values for Spearman's correlations. *p < 0.05, **p < 0.01, ***p < 0.001.
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p<0.05, n=31), including ompK36 (Outer membrane porin,

analogous to E. coli OmpF), ileS (Isoleucine-tRNA ligase), osmE

(Osmotically-inducible putative lipoprotein), bamD (Outer

membrane protein assembly factor) and yifE (UPF0438 protein)

had a significant positive correlation; while ftsY (Signal recognition

particle receptor), CYQ93_08500 (Beta-lactamase of Acinetobacter

baumannii), metH (Methionine synthase), EYY78_19430 (Cyclic

diguanylate phosphodiesterase) and omp_C1 (outer membrane

porin C) had a significant negative correlation. WRS test

demonstrated that from the 2647 bacterial proteins, 96 showed

differential abundance (p<0.05). According to PFS groups, only 19

showed significantly increased abundance in patients with short

PFS and 77 in patients with long PFS. Based on Spearman’s

correlation and differential expression, we identified a total of 137

PFS-associated bacterial proteins.

Figure 4B shows the phylogenetic origin of PFS-associated

bacterial proteins in urine EV samples. 63% of long PFS-

associated proteins and 36% of short PFS-associated proteins

were derived from E. coli. Gene enrichment analysis using the

FUNAGE-Pro functional analysis pipeline (47) was used to reveal

gene enrichment according to cellular compartments (GO) and
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biological pathways (KEGG). We found that cytoplasmic bacterial

proteins were significantly overrepresented compared to proteins

from other prokaryotic cell compartments (p=0.008, Figure 4C).

Pathway analysis using the KEGG database revealed that none of

the pathways were significantly enriched from short PFS-associated

proteins. In contrast, multiple pathways showed significant

enrichment from long PFS-associated proteins, including

Glycolysis/Gluconeogenesis (p<0.001), Two-component system

(p<0.001), ABC transporters (p=0.004) and Aminoacyl-tRNA

synthesis (p=0.004) among others (Figure 4D).

The top 10 abundant bacterial urine EV proteins are displayed

in every patient group according to PFS (Figure 4E), the line of ICI

(Supplementary Figure 2C) and PD-L1 IHC expression

(Supplementary Figure 2D). While the majority of long PFS-

associated bacterial proteins showed an origin of E. coli, short

PFS-associated proteins originated from multiple different

taxonomic groups, ybiv (Cof-type HAD-IIB family hydrolase)

being the only E. coli protein (Figure 4E). Figure 4F shows the

top 10 abundant EV proteins in patients with short vs. long PFS

plotted against Spearman's correlation coefficient and ROC AUC.

OmpK36, IleS, and ftsN (Cell division protein of E. coli) showed the
TABLE 2 Cox hazard regression for top 10 abundant human EV proteins in patients with long PFS and short PFS.

Covariate b SE Wald P Exp(b) 95% CI of Exp(b)

LONG PFS

FASN -2,57E-01 2,39E-01 1,1546 0,2826 0,7737 0,4857 to 1,2325

BCAS1 -0,02044 0,0587 0,1212 0,7277 0,9798 0,8738 to 1,0986

KPRP -0,1887 0,1503 1,578 0,2091 0,828 0,6177 to 1,1099

MPP5 -0,6451 0,2074 9,6722 0,0019 0,5246 0,3501 to 0,7861

IGKV6_21 -0,6841 0,238 8,2641 0,004 0,5046 0,3172 to 0,8025

LPA -0,1042 0,1032 1,0205 0,3124 0,901 0,7368 to 1,1018

NT5E -0,3733 0,1525 5,9924 0,0144 0,6885 0,5114 to 0,9269

ADGRG6 -0,6089 0,3298 3,4099 0,0648 0,5439 0,2859 to 1,0347

VCAN -0,1765 0,1236 2,0394 0,1533 0,8382 0,6586 to 1,0666

KRT27 -0,4539 0,1805 6,3222 0,0119 0,6351 0,4467 to 0,9031

SHORT PFS

LMAN2 0,2518 0,1064 5,6019 0,0179 1,2863 1,0453 to 1,5828

NUTF2 0,4416 0,1518 8,4623 0,0036 1,5552 1,1567 to 2,0910

NID1 0,4917 0,1997 6,065 0,0138 1,6351 1,1078 to 2,4134

TNC 0,375 0,1265 8,7832 0,003 1,455 1,1369 to 1,8622

MGAT1 -0,4245 0,2419 3,0807 0,0792 0,6541 0,4082 to 1,0482

COX4I1 0,1813 0,1145 2,5073 0,1133 1,1988 0,9589 to 1,4987

IGF1 0,04917 0,02275 4,6722 0,0307 1,2504 1,0048 to 1,4980

BCR 0,366 0,1363 7,2133 0,0072 1,442 1,1055 to 1,8810

GPHN 0,4636 0,1654 7,8578 0,0051 1,5898 1,1515 to 2,1949

PPBP 0,4236 0,1537 7,598 0,0058 1,5275 1,1320 to 2,0613
Bold: Significant at p<0.05.
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FIGURE 3

Characterization of the urine EV bacterial proteome in the context of the gut microbiome. Bar charts show the bacterial fraction of total EV protein
abundance in urine samples comparing patients with short- and long PFS (A), CHT-naive with CHT-treated patients (B), and patients with high vs
low PD-L1 IHC expression (C). A significantly higher fraction of the urine EV proteome was of bacterial origin in patients with long PFS vs short PFS
[p=0.0161, (B)] and in CHT-naive patients vs CHT-treated [p=0.202, (B)]. The increased fraction of bacterial urine EV proteins in patients with long
PFS were also present in PD-L1-low (p=0.0381) and high (p=0.0426) subgroups (D). There was no significant difference between PD-L1-low and
PD-L1-high patients [p=0.1171, (C)]. The highest fraction of bacterial urine EV proteins was of Escherichia coli origin [49.3%, (E)], with a significantly
higher fraction in patients with long vs short PFS [p=0.0451, (G)]. Two more species were represented above 10% of the total bacterial proteome:
Klebsiella oxytoca and Citrobacter freundii, but none of them exhibited significant difference according to PFS (E). Bacillus subtilis [p=0.0003, (I)],
Pseudoalteromonas piscicida [p=0.0487, (L)] and Enterococcus faecalis [p=0.0107, (H)] exhibited significantly increased fraction of their bacterial
proteome in patients with short PFS (compared to long PFS), but all contributed to the total bacterial urine EV proteome below 10% (F). The gut
metagenomic abundance of E. coli significantly differed in patients with long vs. short PFS [p=0.0276, (J)], but not in the case of E. faecalis
[p=0.6828, (K)]. Still, the gut metagenomic abundance of both E. coli (r=0.647, p=0.0027) and E. faecalis (r=0.603, p=0.008) showed a strong
significant positive correlation with its corresponding urine protein EV abundance (M, N). *p < 0.05, ***p < 0.001.
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strongest association with long PFS and CYQ93_08500,

N479_15405 (Uncharacterized protein from Pseudoalteromonas

luteoviolacea), omp_C1, and SAMN04488695 (Gram positive

anchoring domain-containing protein) with short PFS, derived
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from the 3 statistical analyses. Moreover, multivariate Cox hazard

regression showed that ompK36, seqA, fbp (Fructose-1,6-

bisphosphatase class 1), TW85_14145 (Histidine kinase from

Marinomonas sp. S3726) and ftsnN were significant independent
FIGURE 4

Correlation of the bacterial urine EV proteome with PFS, taxonomy, and molecular function. Top bacterial urine EV proteins according to PFS.
(A) The volcano plot displays bacterial urine EV proteins according to their correlation with PFS in months. Spearman's correlation coefficient is
shown on the X-axis and the corresponding -log10 (p-value) on the Y-axis. Non-significant bacterial proteins are grey; those showing significant
positive correlation (p<0.05) with PFS are green, and those showing significant negative correlation are red. The dotted line indicates p<0.05-, the
dashed line indicates p<0.01 threshold. (B) Stacked bar charts show the phylogenetic composition of long (n=104) vs short (n=33) PFS-associated
bacterial EV proteins. (C) Using these 137 proteins, pathway analysis was carried out with the FUNAGE-Pro pipeline. The GO cellular component
database was used to determine that cytoplasmic proteins (both long and short PFS-associated) were more enriched in the urine EV proteome than
proteins from other compartments. Colorized squares represent individual proteins. Color coding for taxa is shown in panel (B, D). Panel (D) shows
enriched metabolic pathways from long PFS-associated proteins according to the KEGG database. The X-axis represents [-log]p-value with
Benjamini–Hochberg multiple testing correction. (E) Bar charts show relative abundances of the top 10 and 9 proteins associated with long or short
PFS according to Wilcoxon rank-sum (WRS) test (There were only 9 bacterial proteins with a significant WRS p-value differentially abundant in
patients with short PFS). The Y-axis indicates proteins and their corresponding abundance in PFS groups; X-axis shows normalized abundance on a
logarithmic scale. The vertical bar on the right displays the hazard ratio (HR) for proteins with a significant multivariate Cox regression (p<0.05)
regarding PFS. (F) P-values generated by the WRS test (X-axis) for the top 10 long and short PFS-associated bacterial proteins plotted against their
Spearman's correlation coefficient (Y-axis) are shown in panel (E), where color code (blue vs. red) indicates the corresponding PFS group, circle size
indicates AUC from corresponding ROC analysis, and circle filling the p-values for Spearman's correlations. *p < 0.05, **p < 0.01.
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predictors of long PFS, whereas CYQ93_08500, SAMN04488695

and N479_15405 were significant independent predictors of short

PFS (Figure 4E, Table 3).

We compared baseline vs follow-up urine EV samples in the

context of the bacterial proteome. From long PFS-associated

proteins, only the abundance of seqA increased significantly in

follow-up samples. In contrast, from short PFS-associated

proteins, the abundance of DT376_25325 (Uncharacterized

protein from Pseudomonas aeruginosa), surA (Chaperone

SurA from Pseudomonas amygdali), and TO64_10645 (DeoR

family transcriptional regulator from Citrobacter freundii)

showed a significant increase, and ompC_1 showed a

significant decrease in follow-up samples compared to baseline

(Supplementary Figure 6).
Principal component analysis and machine
learning approach

PCA and machine learning approach was used to establish an

integrated model of human and bacterial urine EV protein profiles.

First, PCA was performed merging human and bacterial proteins
Frontiers in Immunology 12
exhibiting significant correlation with PFS (r(s)>|0.3|, p<0.05, n=191),

where k-means clustering revealed 3 main clusters, plotting the first

two PCs (Figures 5A, B). Supplementary Figure 7 shows human and

bacterial urine EV proteins with the greatest variation among clusters.

In Cluster 1, patients with long PFS, subsequent line ICI, low PD-L1

expression, and female gender were overrepresented, whereas Cluster

2 consisted of patients with long PFS and no COPD. Also, patients

with first-line ICI-treatment and CHT-naivety were overrepresented

in this cluster. Cluster 3 included the highest number of patients with

short PFS, where male gender and high BMI (>30 kg/m2) were also

overrepresented (Figure 5C).

Random Forest (RF) machine learning approach was used with

5-fold cross-validation to verify the relevance and robustness of our

predictive human and bacterial EV proteome profile in the context

of PFS, chemotherapy, and PD-L1 expression. The top 20 human

urine proteins gave a performance with an AUC of 0.89 and an

accuracy of 95% when predicting short vs long PFS. Top bacterial

proteins performed fairly, but were inferior to human proteins with

an AUC of 0.74 and an accuracy of 91%. When combining both

proteome signatures, the model reached an outstanding AUC of

0.93 with an accuracy of 95% (Figure 5D). Front-line CHT status

(CHT-treated vs CHT-naive) was predicted with only moderate
TABLE 3 Cox hazard regression for top 10 (Long PFS) and 9 (Short PS) abundant bacterial EV proteins in patients with long PFS and short PFS.

Covariate Bacterial Species b SE Wald P Exp(b) 95% CI of Exp(b)

LONG PFS

lpp Escherichia coli -0.249 0.1496 2.7702 0.096 0.7796 0.5823 to 1.0437

ydgA Escherichia coli -0.4966 0.2737 3.2916 0.0696 0.6086 0.3569 to 1.0378

ompK36 Klebsiella pneumoniae -2.0643 0.9133 5.1084 0.0238 0.1269 0.0214 to 0.7533

seqA Escherichia coli -0.2007 0.08705 5.3139 0.0212 0.8182 0.6904 to 0.9696

ileS Escherichia coli -0.3214 0.1833 3.0744 0.0795 0.7251 0.5072 to 1.0367

upp Citrobacter freundii -0.1001 0.1133 0.7804 0.377 0.9047 0.7254 to 1.1285

fbp Citrobacter freundii -1.0897 0.4679 5.4237 0.0199 0.3363 0.1350 to 0.8375

TW85_14145 Marinomonas sp. S8726 -0.2721 0.1273 4.5685 0.0326 0.7618 0.5944 to 0.9764

ftsN Escherichia coli -0.1758 0.0841 4.3693 0.0366 0.8388 0.7119 to 0.9883

yifE Escherichia coli -0.2967 0.1628 3.3189 0.0685 0.7433 0.5411 to 1.0211

SHORT PFS

yugU Bacillus subtilis 0.05441 0.04942 1.2122 0.2709 1.0559 0.9589 to 1.1627

DT376_25325 Pseudomonas aeruginosa 0.1759 0.1207 2.1262 0.1448 1.1924 0.9424 to 1.5087

CYQ93_08500 Acinetobacter baumanii 0.3515 0.1353 6.7466 0.0094 1.4212 1.0916 to 1.8503

ybiV Escherichia coli 0.1595 0.09888 2.601 0.1068 1.1729 0.9672 to 1.4223

ompC_1 Citrobacter koseri -0.04425 0.03773 1.3753 0.2409 0.9567 0.8888 to 1.0298

SAMN04488695_10979 Proteiniclasticum ruminis 0.3302 0.1291 6.5436 0.0105 1.3912 1.0816 to 1.7893

TO64_10645 Citrobacter freundii 0.02446 0.1498 0.02665 0.8703 1.0248 0.7651 to 1.3725

N479_15405 Pseudoalteromonas luteoviolaceae 0.605 0.3082 3.853 0.0497 1.8313 1.0040 to 3.3404

surA Pseudomonas amygdali 0.08778 0.3437 0.06523 0.7984 1.0918 0.5585 to 2.1341
Bold: Significant at p<0.05.
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performance using either human (AUC=0.75) or bacterial proteins

(AUC=0.68) (Figure 5D’). The model performed well in predicting

PD-L1 status (high vs low) when using human proteins

(AUC=0.86), but only moderately when using bacterial proteins

(AUC=0.7) (Figure 5D”). Supplementary Figure 8 shows associated

confusion matrices for the 5-fold cross validation and the RF

algorithm for every tested binary parameter.
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Bayesian Additive Regression Trees (BART), an ensemble

model, was selected as an additional non-linear Bayesian

validation method for the RF model to ensure robustness and

consistency in classification performance. BART, unlike RF,

incorporates posterior probability distributions, enabling

probabilistic classification and uncertainty estimation. We applied

BART to capture non-linear protein interactions affecting PFS
FIGURE 5

PCA and machine learning approach. (A) Principal component analysis (PCA), including PFS-associated human and bacterial EV proteins, revealed 3
main patient clusters (A–C). The scree plot shows identified principal components (PCs) and their contribution in explaining the variance in our data.
The first two PCs were utilized for clustering patients with the K-means clustering algorithm, generating 3 main clusters [silhouette score: 0.498,
(B)]. (C) Panel C shows the clinicopathological characteristics of the 3 patient clusters. (D-D”) Results of the Random Forest (RF) machine learning
algorithm using 5-fold cross-validation are shown in panels. In all settings, the top 20 differentially abundant human or bacterial proteins were used
to run the training and validation datasets. In predicting short vs long PFS, top human proteins performed superiorly (AUC=0.89, F1 = 0.93,
Accuracy=95%), top bacterial proteins performed fairly (AUC=0.74, F1 = 0.85, Accuracy=91%), and using both the top human and bacterial proteins
yielded an outstanding result (AUC=0.93, F1 = 0.95, Accuracy=95%). Human and bacterial EV protein profiles predicted CHT status with an AUC of
0.75 (F1 = 0.74, Accuracy=70%) and with an AUC of 0.68 (F1 = 0.73, Accuracy=77%), respectively. A combined dataset (human + bacterial proteins)
reached an AUC of 0.77 (F1 = 0.78, Accuracy=75%). PD-L1 status (high vs low) was predicted with an AUC of 0.86 (F1 = 0.79, Accuracy=77%) using
only the top human proteins and with an AUC of 0.7 (F1 = 0.56, Accuracy=47%) using only the top bacterial proteins. The combined dataset reached
an AUC of 0.84 (F1 = 0.79, Accuracy=73%). (E) Posterior Probability Distribution Plot shows BART-derived probability estimates for Long (blue) and
Short (orange) PFS groups. The X-axis represents the posterior probability of Long PFS, while the Y-axis indicates density. The red dashed line (0.5
threshold) separates predicted Long PFS patients (>0.5). Long PFS cases cluster near 1, while Short PFS cases are more spread out. (F) Partial
Dependence Plots (left panel) illustrate how protein abundance (X-axis) influences the model-predicted probability of Long PFS (Y-axis), while the
Feature importance plot (right panel) ranks genes by posterior inclusion probability (X-axis).
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classification and to validate RF’s predictive performance in a

Bayesian framework. This approach helps assess reproducibility

and mitigates overfitting risks in a small dataset (n=33). BART

supports RF’s findings with 78.6% accuracy and an AUC-ROC of

0.84. Its high recall (86.0%) indicates strong sensitivity in

identifying Long PFS patients, while precision (84.7%) suggests

some misclassification in borderline cases. Despite this, BART

confirms the human 20-protein signature’s predictive power,

reinforcing RF’s results. Furthermore, BART provides posterior

probability estimates, unlike RF, which only gives deterministic

classifications. Figure 5E shows the posterior probability

distribution for the model, where the Long PFS group clusters

near 1, showing high classification confidence, while the Short PFS

group is more dispersed, indicating greater uncertainty but minimal

overlap, suggesting strong model discrimination. According to

model’s feature importance analysis, IGKV6-21 was the strongest

discriminator, frequently included in BART, while FASN, LMAN2,

NUTF2, VCAN and IGF1 also show non-linear effects. The

dependence plots suggest threshold-driven relationships, where

specific abundance levels markedly impact prediction rather than

following a simple linear trend (Figure 5F).
Discussion

ICI is the standard of care therapy in NSCLC. Still, only about

20-30% of patients experience durable benefit from ICI treatment.

A noninvasive assessment of circulating biomarkers such as urinary

EV proteins is an innovative approach to identifying ICI-related

prognostic and predictive biomarkers. In the current study, we

analyzed the baseline urine EV proteome of 33 ICI-treated patients

and identified n=3513 human and n=2647 bacterial proteins. 186

human- and 96 bacterial proteins showed differential abundance

(p<0.05) according to PFS. Our analyses revealed that an increased

bacterial to human urine EV protein ratio and an increased E. coli

protein ratio (to total bacterial protein abundance) is associated

with long PFS. We also included a subgroup of 23 patients with fecal

metagenomic analysis and found that specific gut bacteria were

correlated with urine fractions of related proteins. Using

multivariate testing, we identified the most important host and

bacterial urinary EV proteins showing the strongest association

with long or short PFS and examined whether their abundance

changes during the course of ICI treatment on a sub-cohort of 17

long-term survivor patients.

Gene enrichment and pathway analysis of the host urine EV

proteome revealed significant enrichment of the Endosomal/

Vacuolar pathway, Complement cascade, and COPI-mediated

anterograde transport in Short PFS patients, based on Reactome

database. The complement system is implicated in NSCLC

progression, with anaphylatoxin receptor signaling and

membrane attack complex formation promoting tumor

development and metastasis (48–50). Complement proteins may

serve as predictive plasma biomarkers (51). Dysregulation of the

endosomal recycling pathway is a known hallmark of cancer

progression (52). COPI-mediated transport, crucial for ER-Golgi
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trafficking, is highly conserved and associated with tumorigenesis

(53, 54).Regarding GO database pathways, the upregulation of

nucleobase-containing small molecule biosynthetic processes and

nucleoside trisphosphate metabolic processes is expected and

suggests that a high rate of tumor cell turnover may imprint on

the urinary EV proteome, particularly in the context of aggressive

malignant proliferation. The same GO pathways were found to be

enriched in hepatocellular carcinoma (55) and breast cancer (56).

Interestingly, the interpretation of metabolic pathways of

nucleoside-synthesis is not limited to cancer cell proliferation but

might also have implications for cancer immunity that can be

exploited to improve immunotherapies (57).

Multivariate Cox-regression showed that human urine EV

proteins MPP5, IGKV6-21, NT5E and KRT27 had the strongest

association with long PFS; while LMAN2, NUTF2, NID1, TNC,

IGF1, BCR, GPHN and PPBP had the strongest association with

short PFS. Immunoglobulin Kappa Variable 6-21 (IGKV6-21) is the

V region of the variable domain of immunoglobulin light chains

that participate in antigen recognition produced by plasma cells. It

has been described in a hemato-oncological setting in light-chain

myelomas (58), while in solid tumors its elevated expression was

only reported in necrotic endometrial tumors (59). The prominence

of IGKV6-21 in the Long PFS group could indicate an active

humoral immune response, potentially contributing to improved

outcomes. In contrast, NT5E, or CD73, has been widely implicated

in cancer as an adenosine-generating immune checkpoint (60),

expressed on cancer-associated fibroblasts with a controversial role:

a negative prognostic factor in head and neck carcinoma (61) and

colorectal cancer (60), but a positive prognostic factor in lung and

gastric cancers (62). KRT27 contributes to the structural integrity of

epithelial cells through the assembly of keratin intermediate

filaments, while MPP5 plays a key role in maintaining cell

polarity. To date, these proteins they have not been associated

explicitly to ICI-response in any malignancies, however MPP5’s

role was recently demonstrated in liver cancer as a potential tumor

suppressor (63).

L-type lectin LMAN2 impedes exosomal release in the

exosomal-Golgi pathway (64) and is linked to unfavorable

prognosis in HER2+ breast cancer (61). NUTF2, a GDP-binding

protein, is involved in nucleocytoplasmic transport and correlates

with cell proliferation, EMT markers, and upregulation in multiple

cancers (65). NID1, another EMT marker, is essential for metastasis

and chemoresistance in ovarian cancer and claudin-low cancers (66,

67). TNC promotes angiogenesis, invasion, metastasis, and T-cell

immobilization in tumors (68, 69). Also, TNC was reported as a

negative prognostic factor in lung cancer, regulating EMT,

intratumoral immunosuppression, and was a plasma biomarker

for pancreatic cancer but unreported in urine (70, 71). Elevated

IGF1 is linked to increased risk of thyroid, colorectal, breast,

prostate, and lung cancer (72–74). BCR, an ABL1 fusion partner

in CML, is altered in lung adenocarcinoma and other cancers (75,

https://www.aacr.org/professionals/research/aacr-project-genie/).

GPHN is associated with chromosomal instability in colon cancer,

but no lung cancer-related studies exist (76). PPBP and its

chemokine CXCL7 influence tumor biology via CXCR1/2 binding
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and were proposed as early lung and gastric cancer biomarkers (57,

77, 78). Brocco et al. (28) similarly studied ICI-treated NSCLC

patients, where they identified multiple plasma-derived EV proteins

that overlap with our Short-PFS-related EV protein signature,

including TNC, NID1, IGF1, and PPBP, highlighting the potential

of urinary EV protein as a viable, non-invasive alternative for

biomarker discovery in NSCLC immunotherapy response, that

might facilitate home-based monitoring of ICI response, should

suitable point-of-care diagnostic technologies be developed.

Microbiota generates a variety of peptides, proteins, and

metabolites that influence host health and pathophysiological

functions. Moreover, pathogen-associated molecular patterns

(PAMPs) are unique to microbes critical for immune cell

activation. (79). Protein components of microbiota can also pass

through the gut barrier and enter circulation. To date, the urine

proteome of bacterial origin was only studied in the context of

urinary infections, renal diseases, and urogenital cancers (80, 81),

but not in the context of non-urinary cancers. We revealed that an

increased bacterial/host protein ratio in the urine EVs is more

frequent in patients with long PFS and that the abundance of E. coli

and E. faecalis proteins in the urine EVs positively correlates with

PFS and their gut metagenomic abundance. The association

between E. coli proteins in urinary EVs and improved PFS in

NSCLC aligns with prior findings that E. col i , even

intratumorally, predicts better ICI outcomes (82), possibly due to

immune modulation or microbial adjuvanticity. Notably, whether

E. coli translocation is a driver or a consequence of heightened ICI

efficacy remains unresolved (83), warranting further investigation

into its mechanistic role in lung cancer immunotherapy. The fact

that purely the increased presence of bacterial proteins in the urine

extracellular vesicles is predictive to immunotherapy response is

intriguing and might be associated with gut permeability that

depends on multiple factors, including genetic and environmental

(84). Bacterial gene enrichment analysis showed that cytoplasmic

bacterial proteins are overrepresented over the proteins from other

prokaryotic compartments. This means that bacterial EVs not only

contain outer membrane proteins but also cytosolic components,

likely incorporated through passive entrapment during vesicle

formation or selective sorting. These cytosolic proteins may play

roles in quorum sensing, biofilm formation, and microbial

communication, highlighting the functional complexity of

bacterial EV cargos (85). Furthermore, bacterial pathways such as

Glycolysis/Gluconeogenesis, Two-component system, ABC

transporters, and Aminoacyl-tRNA synthesis are significantly

overrepresented in patients with long PFS. However, no

characteristic bacterial pathways were identified based on short

PFS-associated proteins. Among the most reliable predictors of long

PFS, Porin proteins ompk36 from K. pneumoniae and Omp_C1

from E. coli were identified as key structures in antibiotic resistance

(86, 87), while seqA was shown to be crucial in E. coli DNA

replication. Fructose-1,6-bisphosphatase class 1 (Fbp) and ftsN

are all essential components of bacterial metabolism and cell wall

synthesis (88, 89). To date, none of these proteins have been

identified as potential plasma or urine biomarkers in cancer. Of
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note, due to the incompleteness and redundancy of bacterial protein

data, certainty of several protein matches are never 100%.

Moreover, given that Gram-negative bacteria actively shed outer

membrane vesicles, their proteins may be overrepresented in

urinary EVs, whereas Gram-positive bacterial EVs could be

underdetected due to structural constraints, highlighting a

potential bias in microbial EV composition. Altogether, the

presence of microbial EV proteins in urine suggests a potential

link between the gut-lung microbiome (90) axis and ICI response,

thus, we strongly recommend further experimental validation to

ascertain the predictive power of the bacterial proteins identified in

our study.

Random forest machine learning model supported the

reliability of our key human urine EV proteins, with an

outstanding performance (AUC=0.89) and accuracy (95%), while

bacterial EV proteins performed fairly in predicting PFS

(AUC=0.74). This may be explained by the fact that there was no

solid bacterial proteomic signature for patients with short PFS. Of

note, key human proteins also performed well in predicting PD-L1

status (high vs. low, AUC=0.86). To confirm the predictive power of

our best-performing protein signature, namely human EV proteins

predicting PFS, we added a non-linear Bayesian method tailored to

our small dataset and small number of analyzed features included:

BART further validated our findings with comparable performance

metrics to our RF model.

Limitations of this study include the relatively small sample size,

particularly in the exploratory follow-up cohort; however, the

primary focus was on baseline urinary EV proteome differences

between responders and non-responders, and the follow-up data

serve only for hypothesis-generating. Also, we cannot prove

causality in the case of altered host or bacterial urine EV

proteome relative to immunotherapy response. Further limitation

is the absence of a healthy control group, therefore urine EV role in

a broader biological context could not be assessed in our study.

Validity of multiparameter machine learning models is frequently

limited by overfitting, which we mitigated with 5-fold cross

validation and the inclusion of non-linear Bayesian model to

confirm the predictive power of human EV proteins in PFS

groups. Still, future studies with a greater sample size,

independent validation cohort and experimental validation are

needed to confirm our findings.
Conclusion

With multivariate tests we established a host-derived protein

profile that predicted ICI outcomes with an AUC of 0.89 and an

accuracy of 95% using the Random Forest algorithm. We also

showed that an increased ratio of bacterial proteins in the urine

extracellular vesicles was associated with long PFS, including an

increased ratio of E. coli proteins. Furthermore, we found strong

correlations between urine EV protein abundance and gut

metagenomic abundance in the case of multiple bacteria. To our

knowledge, this is the first study to identify the clinically
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predictive urine proteome in NSCLC patients treated with anti-

PD1 ICI.
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