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As a core mechanism regulating intracellular protein homeostasis, the dynamic

equilibrium between ubiquitination and deubiquitination profoundly impacts the

functionality and fate of target proteins. The Ovarian tumor domain (OTU) family,

a vital subclass of deubiquitinating enzymes, comprises 16members that mediate

ubiquitin binding and hydrolysis through their characteristic OTU domain. Recent

years have witnessed growing interest in OTU family members in oncology and

immunology research. This review comprehensively elucidates the core

mechanisms by which OTU members regulate tumor-associated signaling

networks via substrate-specific deubiquitination. On one hand, they directly

govern tumor cell proliferation, metastasis, and apoptosis by modulating the

stability of key substrates. On the other hand, they orchestrate tumor progression

through dynamic regulation of inflammatory intensity, immune response

dura t ion , and immune evas ion mechan i sms wi th in the tumor

microenvironment (TME), thereby constructing a multidimensional regulatory

network in tumor development. These findings not only unveil the pivotal role of

OTU family members in tumorigenesis and immune modulation but also

establish a theoretical foundation for developing novel anti-tumor therapeutics

targeting deubiquitination processes. Notably, OTUs emerge as high-potential

therapeutic targets with high translational relevance for refining precision-

guided tumor-immunotherapy integration strategies.
KEYWORDS

OTU family, deubiquitinating enzymes, tumorigenesis, immune regulation,
ubiquitination-deubiquitination balance
Introduction

Protein ubiquitination is a significant post-translational modification process that

denotes the covalent attachment of ubiquitin to specific lysine residues of a target protein

via an enzymatic reaction. During this procedure, the ubiquitin-activating enzyme (E1) first

forms the ubiquitin-acyl acylase complex by activating the ubiquitin molecule. Second, the

activated ubiquitin is transferred to the ubiquitin-conjugating enzyme (E2), forming the
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ubiquitin-E2 complex. Then, ubiquitin ligase (E3) is responsible for

recognizing specific target proteins and transferring ubiquitin from

E2 to lysine residues of the target protein. Ultimately, the ubiquitin

on the target protein can further bind to other ubiquitin molecules

to form polyubiquitin chains, which are usually a hallmark of signal

transduction or degradation (1) (Figure 1). Protein ubiquitination is

essential in protein degradation, signal transduction, DNA repair,

and immune response, and the reason for its functional diversity is

the variety of ubiquitination types, categorized as mono-

ubiquitination and polyubiquitination. Generally, the

polyubiquitin chains are formed by seven lysine residues (K6,

K11, K27, K29, K33, K48, and K63) and one N-terminal Met1

(2). Of these, the K48 polyubiquitin chains (K48-Ub) are the most

prevalent form, which usually symbolizes that the protein is about

to be degraded by the proteasome, whereas the K63 polyubiquitin

chains (K63-Ub) are typically implicated in signaling and DNA

repair, etc., and is not directly engaged in the degradation of

proteins (3). These various types of ubiquitination mechanisms

permit the cell to precisely regulate protein function, reflecting the

sophisticated intracellular regulatory network.

Deubiquitinases (DUBs) are a class of proteases that reverse

protein ubiquitination by specifically removing ubiquitin molecules

from substrate proteins, thereby regulating their stability, activity,

and biological functions. As critical regulators of the ubiquitin-

proteasome system (UPS), DUBs modulate cellular processes such

as proliferation, differentiation, apoptosis, and stress responses

through the removal or editing of ubiquitin chains. Dysregulation

of DUB activity is closely associated with tumorigenesis and cancer

progression (4). Based on their catalytic domain features, DUBs are

categorized into five major families: Ubiquitin-specific proteases

(USP), Ubiquitin C-terminal hydrolases (UCH), Machado-Joseph

disease proteases (MJD), Ovarian tumor proteases (OTU), and

JAMM/MPN metalloproteases. Members of these families exhibit

marked functional heterogeneity in cancer contexts (5).

Taking OTUB1 (from the OTU family) and USP7 (from the

USP family) as examples, their mechanisms in tumorigenesis and

therapeutic targeting diverge significantly. OTUB1 drives

malignancy by mediating tumor immune evasion, promoting cell

migration, and regulating tumor grading-associated signaling

pathways (e.g., in glioma) (6); USP7 predominantly facilitates

oncogenesis by stabilizing oncoproteins (e.g., in hepatocellular
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carcinoma) (7), enhancing tumor cell proliferation (e.g., in non-

small cell lung cancer) (8), and suppressing tumor suppressor

activity (e.g., p53) (9). This functional divergence informs distinct

therapeutic strategies: interventions targeting OTUB1 prioritize

immunomodulation and migration inhibition, whereas USP7-

focused therapies aim to restore tumor suppressor function and

block pro-proliferative signaling (10).

To date, research on the OTU family is rapidly evolving,

revealing significant potential in disease onset, progression, and

treatment. Thus in this review, we describe comprehensively the

roles of OTU family members in oncology and immunity, including

the functions of OTUs in tumorigenesis, tumor stemness,

ferroptosis, DNA repair, chemo- and radiotherapy, clinical

relevance, inflammatory response, autoimmunity, anti-viral

immunity, and anti-tumor immunity.
Essential characteristics of the OTUs

The OTU family comprises DUBs that regulate protein stability

and function by removing ubiquitin modifications. These enzymes

are integral to diverse cellular processes, including signaling, cell

cycle control, immune responses, and stress adaptation. To date, 16

OTU deubiquitylases have been identified, classified into four

subfamilies: (a) the OTUB subfamily (OTUB1 and OTUB2); (b)

the OTUD subfamily (OTUD1, YOD1/OTUD2, OTUD3, OTUD4,

OTUD5/DUBA, OTUD6A, and OTUD6B); (c) the A20-like

subfamily (TNFAIP3/A20, OTUD7A/Cezanne2, OTUD7B/

Cezanne, ZRANB1/TRABID, and VCPIP1); (d) the OTULIN

subfamily: OTULIN/FAM105B and OTULINL/FAM105A) (11–

13). All members harbor a conserved OTU domain (OTUD)

responsible for catalytic activity, although OTULINL lacks

catalytic triad residues. Most OTU enzymes also contain auxiliary

domains (e.g. , UBDs) that refine substrate specificity

(14) (Figure 2).

Interestingly, various OTU family members exhibit obvious

disparities in specificity against the eight ubiquitin linkage types. At

low concentrations, the six OTUs preferentially cleave only one

ubiquitin chain (OTUD7A/OTUD7B-K11, OTUB1/OTUD4-K48,

OTUD1-K63, and OTULIN-Met1); the four OTUs cleave two

ubiquitin chains (OTUD3-K6/K11, TNFAIP3/VCPIP-K11/K48,
FIGURE 1

Diagram of ubiquitination and deubiquitination mechanisms.
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and phosphorylated OTUD5-K48/K63); and four OTUs (OTUB2,

OTUD2, OTUD6A, and ZRANB1) cleaved three or more chains

preferentially (14). Elevated enzyme concentrations expand

substrate promiscuity, but Met1 linkage hydrolysis remains

uniquely dependent on OTULIN (14). These activities enable

OTUs to regulate both proteasomal degradation and non-

degradative signaling, positioning them as critical players

in tumorigenesis.

Members of the OTU family, particularly OTUB1, rely not only

on their deubiquitinase activity but also engage in non-canonical

mechanisms to participate in tumorigenesis and progression. For

example, (a) Ubiquitin transfer blockade: In multiple myeloma,

OTUB1 interacted with the E2 enzyme UBE2D3 to inhibit

ubiquitination of the transcription factor c-Maf, stabilizing its

expression and promoting tumor cell survival (15). (b) Direct

target protein binding: OTUB1 suppressed ubiquitination of

proteins (e.g., HIF-1a and RACK1) through non-catalytic

binding, thereby driving tumor progression (16, 17). (c)

Pho s pho r y l a t i o n - d ep end en t f un c t i on a l sw i t c h i n g :

Phosphorylation of the Tyr26 residue in OTUB1 enabled its

interaction with the cell cycle regulator p27, modulating p27
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stability and cell cycle progression (18). The non-canonical

mechanisms of the OTU family expand the functional landscape

of DUBs in cancer, offering novel avenues for the development of

precision anticancer strategies.
OTUs in tumorigenesis, progression
and metastasis

Members of the OTU superfamily are pivotal in carcinogenesis

and progression, with their roles varying between oncogenic and

tumor-suppressive capabilities depending on the type of cancer and

the function of the substrate proteins (Figure 3).
Breast cancer

In breast cancer (BC), OTUD5, YOD1, OTUD6A, OTUD7B,

ZRANB1, and TNFAIP3 were characterized as carcinogenic drivers.

Specifically, OTUD5 mediated the deubiquitination of Yes-

associated protein (YAP), leading to increased YAP expression in
FIGURE 2

Structural characteristics of OTU family members. OTU domain, ovarian tumor domain; UIM, ubiquitin-interacting motif; UBX-like, ubiquitin
regulatory X-like; UBA-like, ubiquitin-associated-like; NLS, nuclear localization signals; ANK, ankyrin motif; PIM, PUB interacting motif; LDB, linear
diubiquitin binding; RMB, required for membrane binding.
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THP-1-derived macrophages. Overexpression of YAP in M2

macrophages promoted triple-negative breast cancer (TNBC)

progression both in vitro and in vivo (19). Similarly, YOD1

facilitated the deubiquitination of Cyclin dependent kinase 1

(CDK1), resulting in its upregulation, which enhanced the

proliferation, migration, and invasion of TNBC cells (20). The

study revealed that in breast cancer, OTUD6A stabilized DNA

topoisomerase 2 binding protein 1 (TopBP1) by inhibiting its K48-

Ub (21). OTUD7B’s deubiquitination and ubiquitin-binding

functions enabled EGFR to evade cellular degradation (22), while

ZRANB1 bound to and deubiquitinated EZH2, stabilizing it (23).

Additionally, TNFAIP3 promoted epithelial-mesenchymal

transition (EMT) in TGF-b1-induced breast cancer cells by

facilitating multiple monoubiquitinations of Snail (24). Together,

these processes enhanced cell proliferation, migration, and

malignancy in breast lesions.

However, OTUD1 and OTUD3 could curb the progression of

breast cancer. For example, OTUD1 weakened the tumor response

to TGF-b by removing ubiquitin from SMAD7, thereby inhibiting

breast cancer proliferation (25). OTUD3 effectively inhibited the

proliferation and induced apoptosis of breast cancer cells by directly

deubiquitinating and stabilizing p53 (26). Inversely, OTUD3

deficiency activated the AKT signaling pathway and propagated

the transformation and metastasis of breast cancer cells (27).
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Hepatocellular carcinoma

In hepatocellular carcinoma (HCC), OTUB2, OTUD3, and

OTUD5 stabilized the expression of PJA1 (28), ACTN4 (29), and

SLC38A1 (30) by deubiquitination, respectively, which facilitated

the proliferation and metastasis of HCC. Interestingly, OTUB1

reduced the K1-Ub of RACK48 through its non-classical

inhibition of ubiquitination activity, thereby stabilizing RACK1

protein levels in HCC cells (17). YOD1, a key regulator of the

Hippo pathway, stabilized ITCH and potentiated ITCH-mediated

ubiquitination and degradation of LATS1/2, which resulted in

elevated YAP/TAZ levels (31, 32). Both of these ultimately

exacerbated the progression of HCC.

However, both OTUD7B and TNFAIP3 can exert anti-tumor

effects by inhibiting the NF-kB signaling pathway in HCC (33, 34).

Additionally, TNFAIP3 restrained the onset of EMT in HCC cells

by diminishing Twist1 expression (34, 35).
Lung cancer

In lung cancer, OTUB1 triggered lung cancer development by

inhibiting RAS monoubiquitination (36); OTUB2 stabilized U2AF2

through the AKT/mTOR signaling pathway to promote the
FIGURE 3

Role of OTU family members in tumor progression. The red font represents OTUs exerting an oncogenic effect in specific cancers, while the green
font is for an inhibitory effect.
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Warburg effect and tumorigenesis (37); and OTUD3 stabilized

GRP78 to augment the malignancy (38). These play a crucial

driving role in the progression of lung cancer.

Conversely, OTUD1 and OTUD5 deubiquitinated and

stabilized KLF4, FHL1, and PTEN, respectively, which effectively

suppressed the progression of non-small cell lung cancer (NSCLC)

(39–41). Furthermore, silencing TNFAIP3 promoted lung cancer

invasion and proliferation (42).
Ovarian cancer

OTUB1 drove ovarian cancer (OV) progression by stabilizing

FOXM1 via cleavage of K48-Ub of FOXM1 (43). Whereas OTUB2

acted as a tumor suppressor in OV, mechanistically, OTUB2

silencing destabilized SNX29P2, which subsequently prevented

the degradation of HIF-1a. Elevated HIF-1a activated CA9

transcription and drove OV progression via promoting

glycolysis (44).
Bladder cancer

OTUB1 promoted bladder cancer (BLCA) progression by

deubiquitinating and stabilizing ATF6 in response to endoplasmic

reticulum stress (45). In addition, OTUD5 can activate the mTOR

signal ing pathway and fac i l i ta te BLCA progress ion .

Mechanistically, OTUD5 deubiquitinated and stabilized RNF186,

which further led to the degradation of sestrin2, an inhibitor of the

mTOR signaling pathway (46).
Endometrial cancer

OTUB2 contributed to endometrial cancer (EC) progression by

regulating the PKM2-mediated PI3K/AKT signaling pathway (47).

Furthermore, TNFAIP3 impeded ERa protein degradation through

deubiquitinating enzyme activity, which enhanced estrogen-driven

EC cell proliferation (48).
Gastric cancer

Knockdown of OUTLIN, a gastric cancer (GC) biomarker,

suppressed GC cell viability and metastasis (49). Chronic

Helicobacter pylori infection, a major contributing factor to

gastric carcinogenesis, induced TNFAIP3 to suppress caspase-8

activity through promoting K63-linked deubiquitination of

procaspase-8 during infection, thereby reducing apoptotic

cell death in infected cells (50, 51). Furthermore, TNFAIP3

was shown to promote gastric cancer cell proliferation,

migration, and invasion by stabilizing Snail and ZEB1

proteins (52).
Frontiers in Immunology 05
Pancreatic cancer

YOD1 and OTUD7B were highly expressed in pancreatic

cancer (PC) tissues and could propagate the proliferation and

metastasis of PC cells (53, 54). Specifically, OTUD7B enhanced

the EGFR and MAPK signaling pathways (54).
Colorectal cancer

In colorectal cancer (CRC), OTUB1 and OTUD6A promoted

tumor growth by stabilizing b-catenin (55) and Drp1 (56),

respectively. However, silencing OTUD3 enhanced the

proliferation and migration of CRC cells (57).
Esophageal cancer

OTUB1 and OTUB2 potentiated esophageal squamous cell

carcinoma (ESCC) proliferation and metastasis by regulating the

stability of Snail and YAP1/TAZ proteins, respectively (58, 59).
Other cancers

In various cancer types, OTU family members exhibit various

oncogenic mechanisms. In brief, certain OTU members were

oncogenic in specific cancers, such as OTUB1 in glioma (6), head

and neck squamous cell carcinoma (HNSCC) (60), oral squamous

cell carcinoma (OSCC) (61), and papillary thyroid carcinoma

(PTC) (62); OTUB2 in intrahepatic cholangiocarcinoma (ICC)

(63) and cervical cancer (64); OTUD4 in glioblastoma (GBM)

(65); OTUD6A in prostate cancer (66); OTUD6B in laryngeal

squamous cell carcinoma (67) and multiple myeloma (68);

TNFAIP3 in glioma (69) and melanoma (70).

In contrast, other OTU members exert anti-cancer effects in

specific cancers, such as YOD1 in HNSCC (71) and cervical cancer

(72); OTUD1 and OTUD6B in clear cell renal cell carcinoma

(ccRCC) (73, 74); TNFAIP3 in nasopharyngeal carcinoma

(NPC) (75).

Overall, OTU family members manifest diverse and complex

roles in cancer biology, offering promising targets for therapeutic

strategies and deeper insights into cancer mechanisms.
Dual role of OTUs in specific cancers

The dual roles of OTU family members in specific cancers

present intriguing mechanistic complexities, exemplified by OTUB1

in breast cancer, OTUD7B in lung cancer, and TNFAIP3 in

CRC (Figure 4A).

Notably, OTUB1 exhibits context-dependent functional duality

in breast cancer progression. Karunarathna U et al. (76)
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demonstrated that OTUB1 stabilized the oncogenic transcription

factor FOXM1 by removing K48-Ub, thereby enhancing

proliferation and epirubicin resistance in MCF-7 cells.

Paradoxically, Zhao Y et al. (77) revealed that OTUB1 suppressed

tumorigenic properties in 4T1 cells through a non-catalytic

inhibition of CCN6 ubiquitination, ultimately impairing cell

migration, proliferation, and viability. These opposing effects

highlight the cell type-specific regulatory mechanisms of OTUB1

in breast cancer.

In lung cancer, OTUD7B displays multifaceted roles in lung

cancer pathogenesis with divergent clinical implications. Pang Z et al.

(78) correlated elevated OTUD7B expression with poor prognosis in

lung adenocarcinoma tissues; Lin DD et al. (79) further showed that

OTUD7B promoted in vitro proliferation and in vivo tumorigenicity

of NCI-H358 cells via the AKT/VEGF pathway. In contrast, Sun C

et al. (80) reported that OTUD7B exacerbated hyperthermia-induced

cytotoxicity in A549 and CALU-3 cells by amplifying Smac-

dependent mitochondrial dysfunction, while Zhang B et al. (81)
Frontiers in Immunology 06
identified its tumor-suppressive role in impeding LCL161-induced

A549 and H1299 cells invasion and migration through TRAF3

deubiquitination-mediated NIK suppression. These findings suggest

microenvironment-dependent functional switching of OTUD7B.

In CRC, TNFAIP3 exhibits paradoxical regulatory effects in

colorectal carcinogenesis. Shao L (82) utilized TNFAIP3fl/fl villin-

Cre APCmin/+ genetic mouse model to demonstrate its tumor-

suppressive role in restricting Wnt signaling and suppressing colon

tumorigenesis. Conversely, Liu J et al. (83) observed TNFAIP3

overexpression in human CRC tissues and adenomatous polyps,

where it attenuated p53 expression in HEK293 cells, suggesting a

potential oncogenic contribution to polyp malignancy. This duality

underscores the need for context-specific evaluation of TNFAIP3 in

CRC progression.

The observed functional duality of OTU family members in

cancer pathogenesis arises from three interconnected mechanistic

layers: substrate-specific modulation, signaling pathway plasticity,

and therapeutic context dependency. Primarily driven by their
FIGURE 4

Relationship of OTU family members to tumor characteristics. (A) Dual role of OTUs in specific cancers. (B) OTUs maintain cancer stem cell-like
properties. (C) OTUs regulate tumor ferroptosis. (D) OTUs participate in DNA repair. (E, F) OTUs are involved in tumor chemotherapy and
radiotherapy. The red font represents OTUs exerting an oncogenic effect in specific cancers, while the green font is for an inhibitory effect.
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context-dependent substrate engagement, OTUs can selectively

stabilize oncoproteins (e.g., FOXM1) while destabilizing tumor

suppressors (e.g., CCN6) through precise ubiquitin chain editing,

creating opposing biological outcomes within the same cancer type.

This functional dichotomy is further amplified by their ability to

differentially regulate critical signaling hubs—such as simultaneously

modulating NF-kB activation through TRAF3 deubiquitination while

suppressing Wnt/b-catenin signaling via APC complex stabilization

—effectively rewiring tumor cell fate decisions. Furthermore, OTUs

establish dynamic feedback loops in drug response pathways,

exemplified by their capacity to confer chemoresistance through

drug target stabilization (e.g., epirubicin resistance via FOXM1

protection) while sensitizing cells to targeted therapies by

enhancing pro-apoptotic signaling (e.g., Smac-mediated

mitochondrial dysfunction). These multilayered regulatory

mechanisms, operating through spatial-temporal control of

ubiquitin code interpretation, ultimately dictate the paradoxical

tumor-promoting versus tumor-suppressing phenotypes observed

across cancer subtypes.
OTUs in cancer therapy and patient
prognosis

Currently, some OTUs have been reported to possess roles in

preserving the cancer stemness and ferroptosis properties, which

are intimately implicated not only in tumor aggressiveness and

recurrence but also in the treatment and prognosis of patients.
OTUs-mediated cancer stem cell
properties

Cancer stem cells (CSCs) are characterized by their high

metastatic potential, tumor initiation abilities, and capabilities for

self-renewal, differentiation, and drug resistance traits similar to

normal stem cells. Recent studies have emphasized the critical role

that some OTU members play in maintaining CSC characteristics

by regulating core transcription factors such as SLC7A1, YAP,

ASK1, and SOX9 (Figure 4B).

Specifically, OTUB1 stimulated glioma cell stemness by

stabilizing the SLC7A11 protein to suppress ferroptosis (84).

Additionally, OTUB1 and OTUB2 served as pivotal components

in maintaining cancer stemness and promoting metastasis via

deubiquitination and stabilization of YAP proteins in gastric and

colon cancer, respectively (85, 86). Multi-omics screening has

identified that OTUD1 stabilized ASK1 by recruiting it in a

deubiquitinase-independent manner, which activated the

downstream JNK signaling pathway to maintain ovarian cancer

stem cells (87). Interestingly, ALDH-positive breast cancer stem

cells (BCSCs) were reduced in TNFAIP3 knockout in BCSCs,

possibly since TNFAIP3 facilitated the growth of ALDH-positive

BCSCs in part through the FGFR1/MEK/ERK pathway (88).

ZRANB1 modulated SOX9 stability in CRC cells by diminishing
Frontiers in Immunology 07
its ubiquitination, which in turn potentiated the SOX9-mediated

USP22/Wnt/b-catenin pathway to uphold CRC stemness

characteristics (89). In GBM, TNFAIP3 and OTULIN maintained

the stemness and self-renewal capacity of GBM stem-like cells

(GSCs) (90, 91). Specifically, preferential expression of OTULIN

in GSCs restricted linear ubiquitination on STAT3 and drove

persistent STAT3 signaling (91).

Overall, OTU members have been shown to provide a critical

role in the sustainment of CSC properties via the regulation of

cellular signaling pathways and core transcription factors. Several

studies have illustrated that CSC properties can significantly confer

drug resistance in cancer cells, which seriously affects tumor

response to treatment and patient prognosis. Thus, the OTU

family may hold a pivotal position in chemo- or radiotherapy

resistance in tumors.
OTUs in Ferroptosis

Ferroptosis is a type of programmed cell death, distinct from

apoptosis and necrosis, characterized by iron-dependent

accumulation of lipid peroxides. Research has shown that in

cancer, ferroptosis can inhibit the growth of tumor cells.

Therefore, inducing ferroptosis in cancer cells may be a novel

anti-cancer therapeutic strategy, and OTUs influence tumor

progression by modulating the stability of ferroptosis-related

proteins (Figure 4C).

SLC7A11, also known as xCT, is a transporter protein that

influences glutathione (GSH) synthesis, a vital anti-oxidant, by

regulating intracellular cysteine levels. In many malignancies,

upregulation of SLC7A11 expression contributes to tumor cell

resistance to ferroptosis, which promotes tumor growth,

metastasis, and drug resistance. Currently, several OTU family

members, such as OTUB1 (84, 92) and OTUD5 (93), can

positively regulate the protein stability of SLC7A11, thereby

inhibiting ferroptosis. Interestingly, the deubiquitinase ZRANB1

was identified as the E3 ligase of SLC7A11 to degrade it, which

suppressed GSH synthesis and led to lipid peroxidation and

elevated ferroptosis (94).

In addition to that, OTUs can govern ferroptosis in tumor cells

via other pathways. For instance, OTUB1 inhibited ferroptosis by

improving GPX4 protein stability and reducing intracellular

reactive oxygen species (ROS), which in turn promoted gastric

cancer metastasis (95). In contrast, OTUD1, OTUD4, and

TNFAIP3 could induce the genesis of ferroptosis. Specifically,

OTUD1 facil itated TFRC-mediated iron transport via

deubiquitination and stabilization of IREB2, causing ROS

production and increased ferroptosis in CRC (96). OTUD4

potentiated ferroptosis in ICC and ccRCC by regulating the

stability of NCOA4 protein and RBM47/ATF3 axis, respectively

(97, 98). In A549 lung cancer cells, TNFAIP3 exhibited a significant

induction of ferroptosis (99).

In short, ferroptosis represents a promising prospect for

extensive research in cancer therapy, but additional clinical trials
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and studies are necessary to gain insight into its mechanisms

and applications.
OTUs in DNA repair

DNA repair is a fundamental cellular process aimed at restoring

damaged DNA to its normal state. However, cancer cells often

exploit this mechanism to survive chemotherapy and thus evade

treatment. Recent studies have emphasized the critical role of

several OTU members in DNA repair (Figure 3D). In lung

cancer, for example, OTUB1 stabilized the CHK1 protein through

deubiquitination, enhancing the cell’s ability to repair DNA and

aiding cancer cell survival (100). In endometrial cancer, OTUB2

promoted Rad51 expression via the YAP/TAZ pathway, supporting

homologous recombination repair and protecting cells from drugs

like cisplatin (101). Additionally, OTUB2 regulated L3MBTL1 at

DNA break sites by counteracting RNF8, optimizing DNA repair

pathways (102). TNFAIP3, which was highly expressed in invasive

breast cancer, increased the efficiency of error-free DNA

homologous recombination and diminished error-prone non-

homologous DNA end-joining, which stabilized the genome and

conferred resistance to DNA damage (103). These data indicate that

OTUs exert effects on DNA repair by regulating protein stability

and influencing the choice of repair mechanism, etc.
OTUs in chemotherapy

Chemotherapy attacks cancer cells by interfering with their

DNA replication, repair, and cell division. Many studies have

pointed out that the expression level of OTUs was related to the

efficacy of chemotherapy. Comparatively, it was identified that the

majority of OTUs conferred chemoresistance to tumor cells, while a

smal l percentage of OTUs sensi t ized tumor cel ls to

chemotherapy (Figure 4E).

Currently, members of OTUs were reported to both promote

resistance and sensitization in specific cancers. In breast cancer, for

instance, OTUB1, YOD1, OTUD5, OTULIN, TNFAIP3, and

ZRANB1 drove chemoresistance, whereas OTUD1 and OTUD3

were sensitized to chemotherapy. Specifically, OTUB1

deubiquitinated and stabilized FOXM1, thereby conferring

epirubicin resistance (76). YOD1 positively regulated CDK1

stability and drove cisplatin and paclitaxel resistance (20).

OTUD5 inhibited ferroptosis by stabilizing SLC7A11, thereby

diminishing paclitaxel susceptibility (104). OTULIN enhanced

doxorubicin resistance by activating the Wnt/b-catenin pathway

(105, 106).TNFAIP3 could confer tamoxifen resistance (107).

ZRANB1 was implicated in radioresistance and PARPi resistance,

such as olaparib and tarazoparib, by modulating the stability of

NBS1 and upregulation of the MRN complex (108). On the

contrary, OTUD1 rendered TNBC cells sensitive to doxorubicin

by up-regulating P16 expression (109). OTUD3 overexpression
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significantly enhanced the responsiveness of MCF-7 cells to

paclitaxel (110). In lung cancer, OTUD7B facilitated osimertinib

resistance in lung adenocarcinoma cells through PIK3C3

stabilization and PIK3C2A transcription (111). However, OTUD1

conferred erlotinib susceptibility in NSCLC by repressing the

nuclear translocation of YAP1 (112).OTUD5 knockdown also

potentiated resistance to doxorubicin and cisplatin in NSCLC

cells (113).

Members of OTUs were also reported to confer chemotherapy

resistance in specific cancers. In CRC, for example, OTUB2 and

TNFAIP3 confer cisplatin resistance to CRC cells (114, 115). In

BLCA, OTUB1 and OTUD6A potentiated BLCA resistance to

cisplatin and gemcitabine by deubiquitinating and stabilizingb-
catenin and CDC6, respectively (116, 117). In OSCC, OTUB1

induced cisplatin resistance by suppressing ferroptosis (118).

Furthermore, TNFAIP3 enhanced the resistance of GBM and

acute myeloid leukemia (AML) cells to O6 alkylating agents and

daunorubicin, respectively (119, 120).

Surely, OTUs were reported to be sensitized to chemotherapy in

specific cancers. Such as in HCC, OTUD3 and TNFAIP3 rendered

HCC cells responsive to sorafenib by antagonizing the integrative

stress response (ISR) and binding to HSP90, respectively (121, 122).

In SW1990 pancreatic cancer cells, overexpression of TNFAIP3

increased chemosensitivity to gemcitabine (123).

In view of the fact that many OTUs confer chemoresistance to

tumor cells, the future is dedicated to the study of OTU inhibitors as

candidates for targeted therapy. Meanwhile, combining OTU

inhibitors with other means, such as radiotherapy and

immunotherapy, may improve therapeutic efficacy.
OTUs in radiotherapy

Radiotherapy suppresses the growth of cancer cells by directly

destroying their DNA with high-energy radiation, which is mainly

applied for localized tumor control. OTUs impact the efficacy of

radiotherapy by regulating cellular response mechanisms, DNA

repair and ferroptosis, and other mechanisms (Figure 4F).

Currently, OTUB1, OTUD6A, and OTUD7B were reported to

be engaged in resistance to radiotherapy. Mechanistically, OTUB1

inhibited radiation-induced cellular ferroptosis, which triggered

radiotherapy resistance in NPC (124). Furthermore, OTUB1 and

OTUD6A deubiquitinated and stabilized CHK1 and TopBP1,

which regulated DNA damage and repair and promoted radiation

resistance in lung and breast cancer, respectively (21, 100).

Analogously, OTUD7A interacted with OTUD7B to promote

OTUD7B recruitment of Rap80/BRCA1-A, Rad18, and 53bp1,

which enhanced cellular resistance to ionizing radiation, and

DNA damage repair (125).

On the contrary, high expression of OTUD4, OTUD5, and

TNFAIP3 could enhance the sensitivity of cancer cells to

radiotherapy. Specifically, OTUD4 sensitized NSCLC cells to

radiotherapy through ATM/CHK2/P53 signaling and suppressed
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1544341
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2025.1544341
homology-directed repair of ionizing radiation-induced DNA

double-strand breaks (126). OTUD4-mediated GSDME

deubiquitination also enhanced radiosensitivity in NPC by

inducing pyroptosis (127). Furthermore, OTUD5 overexpression

enhanced the sensitivity of cervical cancer cells to radiotherapy

(128), whereas TNFAIP3 knockdown decreased the sensitivity of

NPC cells to radiotherapy (129).

Collectively, OTUs influence the efficacy of radiotherapy

through a variety of mechanisms, emerging as valuable targets in

cancer research and treatment. Inhibitors or agonists targeting

OTUs can potentially improve the efficacy of radiotherapy in

specific cancers.
Clinical significance of OTUs

Numerous studies have shown that members of the OTU family

exhibited significant differences in clinical expression between

cancerous tissues and normal tissues. The expression levels of

some members were associated with TNM stage or lymph node

metastasis or shortened overall survival in cancer patients,
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indicating a poor prognosis. For instance, OTUB1 in glioma (6),

CRC (130), GC (131), and HCC (132); OTUB2 in BC (133);

OTUD2 in NSCLC (134); TNFAIP3 in BC (135, 136) and

ESCC (137).

In contrast, other OTU family members were positively

observed to be linked to patients’ overall and disease-free survival.

In HCC, for example, decreased OTUD7B expression was related to

increased tumor volume, presence of satellite nodules, vascular

invasion, and early recurrence (138, 139). In pancreatic ductal

adenocarcinoma (PDAC), TNFAIP3 expression was positively

correlated with tumor differentiation, TNM stage, and patient

survival, suggesting a potential anti-cancer role (140). Reduced

expression of ZRANB1, a favorable factor, in HCC tissues and cell

lines, facilitated tumor recurrence and metastasis (141).

To broaden our understanding of the expression patterns of

OTU family members in tumors and their association with patient

prognosis, we conducted a pan-cancer analysis utilizing The Cancer

Genome Atlas (TCGA) database, providing a comprehensive

landscape of OTUs’ expression and prognostic relevance

(Figure 5). Through these studies, we can notice that the

expression patterns of OTUs family proteins in various cancers
FIGURE 5

Differential expression and prognostic value of OTU family members in cancer and normal tissues using the TCGA pan-cancer cohort.
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are closely related to the biological behaviors of tumors and the

clinical prognosis of patients, providing important biomarkers for

cancer diagnosis, treatment, and prognostic assessment.
OTUs participate in the host immune
response

Recent studies have shown that the role of the OTUs family of

proteins in the body’s immune system has received increasing

attention. For instance, certain OTUs possess crucial roles in the

differentiation, proliferation, and functional maintenance of T and
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B cells. Moreover, they can also influence the inflammatory

response and anti-viral immune response by governing the NF-

kB and interferon pathways, respectively (Figure 6).
OTUs participate in the body’s immune
response by regulating the differentiation
and development of immune cells

The innate immune system serves as the body’s rapid first-line

defense against invading pathogens, with type I interferon (IFN-I)

production constituting a central protective mechanism in this
FIGURE 6

Functions of OTUs in immunity. OTUs are involved in innate and adaptive immune responses, inflammation and autoimmunity, and anti-viral and
anti-tumor immune responses.
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initial response. Research has identified OTUD5 and OTUD6A as

potent suppressors of IFN-I generation, establishing their roles as

negative regulators of innate immunity (142, 143). Notably, while

Met1-linked ubiquitin chains (M1-Ub) were crucial for amplifying

innate immune signaling, the deubiquitinating enzyme OTULIN

counteracted this process by selectively dismantling M1-Ub chains,

thereby restraining excessive inflammatory activation (144).

OTUs also maintain the homeostasis of a portion of innate

immune cells. In NK cells, for example, TNFAIP3 controlled NK

cell homeostasis by regulating mTOR activity to prevent its

spontaneous death (145). Dendritic cells (DCs), an antigen-

presenting cell (APC), link innate and adaptive immune

responses. OTUB1 and TNFAIP3 restrained p38MAPK and NF-

kB activation, respectively, which prevented DCs hyper-activation

under homeostatic conditions (146–148).

In adaptive immunity, OTUs mediate the stability and activity of

key proteins linked to immune cells by removing the ubiquitin chain.

In B cells, for instance, OTUD7B deubiquitinated TRAF3 and

prevented its degradation, thereby hindering aberrant nonclassical

NF-kB activation (149). Also, TNFAIP3 was reported to be a negative

regulator of NF-kB signaling, which impeded B cells’ hyper-

activation to maintain immune homeostasis (150). Importantly,

OTUD7B promoted T cell activation by deubiquitinating and

activating Zap70, a central mediator of TCR proximal signaling

(151). Regulatory T cells (Treg), essential for maintaining immune

tolerance, are also activated by NF-kB transcription factor. In the

thymus, TNFAIP3 deficiency dominated differentiation over Treg

cells owing to enhanced NF-kB activation, but silencing TNFAIP3 in

DCs dampened Treg cells activation (152, 153). Conversely,

TNFAIP3 overexpression in DCs led to the development of

tolerogenic DCs, which facilitated the induction of Treg cells (154).

All of these provide a promising potential in the treatment of

inflammatory and autoimmune diseases.
OTUs-mediated inflammatory response
and autoimmunity

Investigations have indicated that distinct OTUs family

proteins exert either anti-inflammatory or pro-inflammatory

responses, e.g., OTUD1, OTUD7B, OTULIN, and TNFAIP3

function as anti-inflammatory, whereas the contrary is true for

OTUD5 and ZRANB1.

In OTUD1-/- mice, inflammation was augmented in models of

inflammatory bowel disease, acute hepatitis, and sepsis.

Mechanistically, OTUD1 inhibited inflammation by cleaving K63-

Ub from RIPK1 and NF-kB, respectively, thereby dampening NF-

kB signaling pathway transduction (155, 156). Analogously,

OTUD7B and OTULIN attenuated NF-kB activation by

selectively removing K63-Ub and M1-Ub on NF-kB, respectively,
thereby inhibiting inflammation induced by TNF receptor (TNFR)

signaling (157–159). TNFAIP3, also a negative regulator of NF-kB
signaling, predominantly used its zinc finger structural domain 7

(ZF7) to curb inflammatory signaling. Additionally, TNFAIP3
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negatively regulated immune response gene 1 (IRG1) expression

at the transcriptional level (160, 161).

In radiation pneumonitis (RIP), OTUD5 upregulated by USP11

acclimated endothelial cell inflammation through the STING

signaling pathway (162). In inflammatory bowel disease, OTUD5

was significantly overexpressed and increased TNF-a release (163).

Mechanistically, OTUD5 interacted with MyD88 and cleaved its

K11-Ub, which enhanced MyD88 oligomerization and

subsequently promoted Myddosome formation, activation of NF-

kB and MAPK signaling, and inflammatory cytokine production

(164). Furthermore, ZRANB1 deletion in DCs inhibited Toll-like

receptor (TLR)-induced expression of IL12 and IL23, which

impaired inflammatory T cell differentiation and protected mice

from autoimmune inflammation (165).

Consistent with the aforementioned results, OTUB1, OTUD1,

and TNFAIP3 restricted the development of autoimmune diseases

through anti-inflammatory responses. Specifically, OTUB1

deficiency exhibited an aberrantly activated phenotype in B cells,

causing B cell proliferation, antibody, and IL-6 hyper-production,

and lupus-like autoimmunity (166). OTUD1 prevented excessive

interferon production-induced autoimmune disease by removing

K63-Ub on Lys98 of IRF3, thereby dampening IRF3 nuclear

translocation and transcriptional activity, which blocked RIG-I-

like receptor signaling (167). Furthermore, TNFAIP3 ablation in

DCs altered T-cell and B-cell homeostasis, which primarily

promoted the progression of autoimmune liver disease (168).
OTUs-mediated anti-viral immune
response

RIG-I-like receptor (RLR) pathway activates downstream

signaling primarily through recognition of viral RNA, which,

involves the participation of multiple molecules including, but not

limited to, RIG-I, MAVS, TRAF3, and IRF3, and ultimately

facilitates interferon-mediated anti-viral immune responses.

OTUs, as deubiquitinases, regulate these pivotal molecules in

post-transcriptional modifications, thereby impacting on the

organism’s anti-viral immunity.

RIG-I is an intracellular pattern recognition receptor that

recognizes viral 5’triphosphate RNA and double-stranded RNA.

During influenza A virus (IAV) infection, OTUB1 activated RIG-I

via a dual mechanism of K48-Ub hydrolysis and formation of an

E2-repressive complex with UBCH5c, which stimulated the RIG-I

signaling cascade and the anti-viral response (169).

The adaptor protein MAVS binds to activated RIG-I and

further triggers a series of signal transduction events, such as

recruitment of the TRAF family and activation of the

transcription factor IRF3. YOD1 and OTUD3 abrogated the

formation of prion-like aggregates of MAVS by interacting with

MAVS and cleaving K63-Ub, leading to attenuation of IRF3 and

IFN-b production (170, 171). Additionally, OTUD1 up-regulated

E3 ubiquitin ligase Smurf1 expression via deubiquitination, which

increased the degradation of MAVS and the MAVS/TRAF3/TRAF6
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signalosome (172, 173). Yet, viral infection induced an IRF3/7-

dependent up-regulation of OTUD4, which bound to MAVS to

remove K48-Ub, thereby maintaining MAVS stability and

promoting innate anti-viral signaling (174).

TRAF3 interacts with MAVS, contributing to signaling and

enhancing the downstream anti-viral response. OTUB1 was

recruited to TRAF3 by Scavenger receptor A (SRA) and HSCARG

to negatively regulate its protein stability, which counterbalanced

anti-viral innate immunity (175, 176).

IRF3 was identified as a key regulator of interferon production.

Currently, several OTU proteins have been reported to negatively

regulate the protein abundance of IRF3, including OTUB1 (177),

OTUD1 (178), OTUD7B (179), OTULIN (180), and TNFAIP3

(181, 182). Mechanistically, OTUD1 caused the dissociation of IRF3

from the promoter region of the target gene by cleaving K6-Ub

from IRF3, without disturbing its protein stability, dimerization,

and nuclear translocation (178). In addition, OTUD7B promoted

the degradation of IRF3 by removing K63-Ub at the IRF3 Lys7

residue (179). Interestingly, IRF3 activates another interferon-

independent anti-viral pathway termed the RIG-I-induced

apoptotic pathway (RIPA). OTULIN suppressed RIPA by

deubiquitinating IRF3 to prevent its mitochondrial translocation

(180). Nevertheless, OTUD6B positively modulated the IRF3-

mediated anti-viral immune response by stabilizing IRF3 protein

abundance via hydrolysis of K33-Ub on IRF3 Lys315 residue (183).

In addition, cyclic GMP-AMP synthase (cGAS) behaves as a major

DNA sensor and initiates DNA-stimulated innate immune responses.

OTUD3 was reported to stabilize and potentiate cGAS enzyme activity,

which facilitated the anti-DNA viral immune response (184).

The RLR pathway initiates antiviral immunity by detecting viral

RNA through a RIG-I/MAVS/TRAF3/IRF3 signaling cascade to

drive interferon production, while OTUs dynamically fine-tune this

response via spatiotemporal regulation of post-translational

modifications. These enzymes establish bidirectional control

networks across RLR signaling nodes through targeted

deubiquitination, providing molecular precision for antiviral

immune modulation. Furthermore, OTUs play dual roles in

antibacterial immunity, as structurally and pharmacologically

elucidated by Dirk Schlüter et al. (185). Pathogens evade immune

surveillance by secreting OTU-mimicking effector proteins that

hijack the host ubiquitination system through specific ubiquitin

chain hydrolysis, thereby suppressing NF-kB-mediated

inflammatory responses and attenuating chemokine or cytokine

storms. Conversely, host OTUs like TNFAIP3 maintain immune

homeostasis via dynamic regulation of signaling pathways,

particularly through negative feedback modulation of the NF-kB
cascade to balance protective immunity and inflammatory control.
Role of OTUs in the tumor
microenvironment and immune
escape

The tumor microenvironment (TME) describes the

sophisticated landscape of cells, signaling molecules, and stroma
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surrounding tumor cells, which contributes to tumourigenesis,

progression, and therapeutic response. As deubiquitinases, OTU

family proteins exert an influential role in tumor progression and

immune escape by regulating intracellular ubiquitination levels,

which affects the tumor microenvironment and immune

cell function.
OUTs-mediated anti-tumor immunity in
TME

In TME, partial OTUs attenuated anti-tumor immunity by

dampening CD8+ T-cell function. For instance, OTUB1 was

recruited to the membrane mediated by IL-15, which restrained

the ubiquitin-dependent activation of AKT and thus inhibited the

activation of CD8+ T and NK cells (186). In the B16 mouse

melanoma tumor model, TNFAIP3 silencing in DCs resulted in

an augmented amount of tumor-specific cytotoxic T cells (187); in

AML, TNFAIP3 depletion in AML-DCs potentiated autologous

cytolysing T cell (CTL)-specific killing of progenitor AML cells via

the NF-kB pathway (188). Likewise, adoptively transferred anti-

tumor CD8+ T cells harboring a deletion of TNFAIP3 enhanced

IFN-g and TNF-a production and reduced PD-1 expression, which

exhibited superior anti-tumor activity in vivo (189, 190).

On the contrary, YOD1 and OTUD1 positively regulated CD8+

T cells. Specifically, YOD1 prevented CD8+ T cell exhaustion by

inactivating the YAP/b-catenin pathway in HCC (191). OTUD1

facilitated the release of damage-associated molecular patterns

(DAMPs), which in turn recruited tumor-responsive T cells and

curbed colon cancer progression (96).

Tregs, tumor-associated macrophages (TAMs), and DCs

collectively form a dynamic immunosuppressive network within

the TME, collaboratively driving tumor immune evasion. Although

the mechanistic roles of these cells have been partially elucidated, the

regulatory functions of OTUs in modulating their activities remain

underexplored. For instance, recent studies demonstrate that

TNFAIP3 silencing dampened infiltration of Treg cells and

myeloid-derived suppressor cells (MDSCs), while the numbers of

dendritic cells and macrophages remained unaffected (187, 192). This

finding underscores the potential therapeutic value of targeting OTUs

to remodel the immunosuppressive TME.

Overall, OTUs serve a complicated role in TME, and further

investigations could provide insights into their functions and

mechanisms, thus shedding new light on tumor prevention

and treatment.
OTUs influence the efficacy of
immunotherapy via the regulation
of immune checkpoints

Immune checkpoints work as regulators of the immune system,

and immunotherapy can be applied to combat cancer by

strengthening the immune response through the regulation of

these immune checkpoints.
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PD-L1, a crucial immune checkpoint protein, is up-regulated in

tumor cells to evade surveillance by the immune system, preventing

T cells from effectively recognizing and attacking the tumor.

Currently, certain OTUs stabilize PD-L1 expression to propagate

tumor immune escape. In the A549 lung cancer and 4T1 breast

cancer mouse models, OTUB1 knockdown significantly enhanced

the anti-tumor immune response of mice. Mechanistically, OTUB1

attenuated tumor immunity in NSCLC and breast cancer by

cleaving the K48-Ub of PD-L1 to prevent degradation of PD-L1

via the ERAD pathway (193, 194). Consistent with this, analogous

phenomena were observed in OTUB2 in NSCLC and OTUD3 in

diffuse large B-cell lymphoma (DLBCL) (195, 196). Nevertheless,

TNFAIP3 was controversial in regulating PD-L1 expression. Guo

W et al. (197) suggested that TNFAIP3 knockdown significantly

down-regulated PD-L1 expression in melanoma A375 and A2958

cells. However, Zou J et al. (198) noted that as the concentration of

TNFAIP3 plasmid transfected in MDA-MB231 and A375 cells

increased, the abundance of PD-L1 decreased. Breitenecker K

et al. (199) also showed that PD-L1 was highly expressed in

TNFAIP3 knockout in lung adenocarcinomas. Further

investigations are required concerning the role of TNFAIP3 in

regulating the expression of PD-L1.

In addition to their core regulatory functions, various OTUs

participate in tumor immune regulation by specifically modulating

key immune checkpoint molecules. Specifically, OTUD1 enhanced

FGL1 stability through deubiquitination, which mediated immune

escape and progression of metastatic colorectal cancer (200).

OTUD4 deubiquitinated CD73 to offset the ubiquitination of

TRIM21, causing CD73 stabilization to suppress the immune

response in breast cancer (201). TNFAIP3 suppressed STC1

phosphorylation at Thr86 by GSK3b to alleviate STC1 protein

degradation, which promoted immune evasion in colorectal

cancer (202). ZRANB1 could stabilize the entire chromosome,

and its inhibition prevented autophagic degradation of cGAS to

further stimulate the cGAS/STING innate immune pathway.

ZRANB1 inhibition facilitated anti-tumor immune surveillance

and was sensitive to anti-PD-1 therapy (203). Notably, these

regulatory mechanisms provide novel directions for developing

combination immunotherapy strategies targeting OTUs.

The OTU family proteins profoundly shape the tumor immune

microenvironment through diverse molecular mechanisms, offering

novel targeted strategies to enhance the efficacy of immune

checkpoint inhibitors. For example, in DLBCL, the OTUD3

inhibitor Rupatadine competitively bond to OTUD3 to block PD-

L1 deubiquitination, promoting its proteasomal degradation,

thereby alleviating PD-1/PD-L1-mediated immune suppression

and enhancing anti-tumor T-cell activity (196). In TNBC, ST80

disrupted OTUD4-dependent stabilization of CD73, reducing

immunosuppressive adenosine levels, reactivating CD8+ T-cell

function, and reversing resistance to anti-PD-L1 therapy (201).

Additionally, in ESCC, all-trans retinoic acid (ATRA) suppressed

the Snail signaling pathway by inducing OTUD6B expression,

synergistically improving responses to anti-PD-1 therapy (204).

Collectively, these studies highlight the potential of OTU family

members as “immune regulatory hubs”. Targeted modulation of
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specific OTU proteins may achieve multi-layered synergies with

existing immunotherapies, though further elucidation of their

substrate specificity and dynamic regulatory networks is required

to mitigate potential antagonistic risks.
Directions and challenges for future
research

The OTU family deubiquitinases play pivotal roles in

tumorigenesis, immune evasion, and tumor microenvironment

remodeling by regulating ubiquitination modification networks.

Recent studies have uncovered their diverse functions in tumor

proliferation, metastasis, and therapy resistance. For instance,

OTUB1 promoted NPC progression by regulating ferroptosis and

radioresistance (124), while OTUD3 and OTUD4 impaired anti-

tumor immune responses by stabilizing PD-L1 and CD73,

respectively (196, 201). These findings position OTU family

members as emerging therapeutic targets, yet their functional

complexity and clinical translation challenges require

systematic resolution.

Modern cancer research demonstrates an integrated innovation

chain spanning from molecular mechanisms to clinical translation

in the context of interdisciplinary convergence. At the molecular

regulatory level, functional exploration of the OTU deubiquitinase

family has opened new avenues for targeted therapies. For example,

OTUB1 has emerged as a hotspot for small-molecule inhibitor

design through its Asn45/Arg86 hydrogen-bond network (205),

while the OTUD3 inhibitor OTUDin3 significantly suppresses

NSCLC progression by targeting the S1 ubiquitin-binding site

(206). Epigenetic regulation mechanisms, such as FTO-mediated

m6A modification, further reveal OTUB1’s critical role in

conferring radiotherapy resistance in NPC (124). These

discoveries are driving the integration of single-cell multi-omics

technologies with spatial metabolomic imaging to map the dynamic

regulatory landscape of OTU enzymes within tumor immune-

metabolic networks.

In therapeutic strategy development, structure biology-based

precision designs (e.g., PROTAC degraders) and combination

therapies—such as ST80 enhancing TNBC immunotherapy by

disrupting the OTUD4-CD73 complex (201) and crizotinib

suppressing NSCLC via targeting the OTUB1/pSTAT3 axis (207)—

are overcoming functional redundancy challenges, while the

combined use of ERRa inhibitors and metabolic modulators

underscores the necessity of multi-target interventions (208).

Concurrently, diagnostic and therapeutic innovations continue to

advance. For instance, tumor-associated macrophages (TAMs) are

associated with distant tumor metastasis and poor prognosis (209),

while dynamic imaging of TAMs based on a two-step click chemistry

protocol enables real-time visualization of breast cancer progression

(210), while copper-based nanomaterials integrate diagnostic

functions with photothermal/electromagnetic synergistic

therapeutic capabilities through heterostructure doping (211, 212).

Additionally, low-frequency rotating magnetic fields significantly

inhibit breast cancer metastasis by disrupting F-actin
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polymerization (213). These technologies synergize with physical

microenvironment modulation tools like ionizing radiation and

ultrasound, forming a three-dimensional therapeutic network.

At the clinical translation level, biomarker stratification (e.g.,

the FTO-OTUB1 axis in NPC prognosis) and adaptive clinical trial

designs (e.g., basket trials for OTUD3-high DLBCL) may improve

precision. Dynamic monitoring techniques (e.g., ctDNA analysis)

enable real-time tracking of therapeutic responses and

compensatory pathway activation. However, vigilance is required

regarding potential immune homeostasis disruption risks

associated with OTU-targeted therapies. The deep integration of

traditional medicine and modern technology is exemplified by the

synergistic interplay between herbal formulations—which exert

systemic regulatory effects in cancer management—and

mesenchymal stem cell-derived exosomes that modulate

mitochondrial gene functions (214–216). These approaches,

c omb i n e d w i t h e x e r c i s e - i n d u c e d t umo r immun e

microenvironment reprogramming and immunotherapy, establish

a multi-tiered defense framework (217). Artificial intelligence

further enriches early screening by uncovering associations

between craniofacial genes and cancer susceptibility (218).

Current research is advancing toward magnetic field-

nanomaterial synergy platforms and imaging-guided dynamic

monitoring systems, with a focus on integrating physical

interventions, metabolic reprogramming, and gene-editing

technologies to achieve a closed-loop precision therapy spanning

OTU molecular network regulation to systemic immune activation.

This evolution marks a comprehensive transformation in oncology

toward a spatiotemporal dynamic regulation paradigm.

In conclusion, OTU family research is shifting from single-

target exploration to multidimensional network analysis. By

integrating structural biology, computational modeling, and

clinical big data, future research may develop OTU-based

molecular subtyping strategies for personalized treatment,

synergizing with existing immunotherapies. However, overcoming

functional complexity, optimizing inhibitor specificity, and

ensuring clinical safety remain pivotal for translational

breakthroughs. Advances in this field could redefine the

landscape of cancer immunotherapy, offering novel strategies to

improve patient outcomes.
Conclusions

Collectively, OTU family members performs critical roles in

tumorigenesis and immunomodulation. In the present review, we

illustrated that OTUs can modulate multiple signaling pathways
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through deubiquitination, thereby affecting tumor growth,

migration, and apoptosis. Alternatively, OTUs were able to

influence the intensity and duration of the immune response and

promote tumorigenesis and progression in the TME by regulating

the inflammatory response and immune escape mechanisms.

Hence, an in-depth investigation of the specific mechanisms of

the OTU family and their roles in tumor and immunity will be

significant for the development of novel anti-tumor

therapeutic strategies.
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