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Construction of a stromal cell-
related prognostic signature
based on a 101-combination
machine learning framework for
predicting prognosis and
immunotherapy response in
triple-negative breast cancer
Fanrong Li1†, Congnan Jin1†, Yacheng Pan1†, Zheng Zhang1†,
Liying Wang2, Jieqiong Deng1, Yifeng Zhou1,2*,
Binbin Guo1* and Shenghua Zhang1,2*

1Department of Genetics, School of Basic Medical Sciences, Suzhou Medical College of Soochow
University, Suzhou, China, 2Jiangsu Clinical Medicine Research Institute, The First Affiliated Hospital of
Nanjing Medical University, Nanjing, China
Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype

with limited therapeutic targets and poor immunotherapy outcomes. The tumor

microenvironment (TME) plays a key role in cancer progression. Advances in

single-cell transcriptomics have highlighted the impact of stromal cells on tumor

progression, immune suppression, and immunotherapy. This study aims to

identify stromal cell marker genes and develop a prognostic signature for

predicting TNBC survival outcomes and immunotherapy response.

Methods: Single-cell RNA sequencing (scRNA-seq) datasets were retrieved from

the Gene Expression Omnibus (GEO) database and annotated using known

marker genes. Cell types preferentially distributed in TNBC were identified

using odds ratios (OR). Bulk transcriptome data were analyzed using Weighted

correlation network analysis (WGCNA) to identify myCAF-, VSMC-, and Pericyte-

related genes (MVPRGs). A consensus MVP cell-related signature (MVPRS) was

developed using 10 machine learning algorithms and 101 model combinations

and validated in training and validation cohorts. Immune infiltration and

immunotherapy response were assessed using CIBERSORT, ssGSEA, TIDE, IPS

scores, and an independent cohort (GSE91061). FN1, a key gene in the model,

was validated through qRT-PCR, immunohistochemistry, RNA interference,

CCK-8 assay, apoptosis assay and wound-healing assay.

Results: In TNBC, three stromal cell subpopulations—myofibroblastic cancer-

associated fibroblasts (myCAF), vascular smooth muscle cells (VSMCs), and

pericytes—were enriched, exhibiting high interaction frequencies and strong

associations with poor prognosis. A nine-gene prognostic model (MVPRS),

developed from 23 prognostically significant genes among the 259 MVPRGs,

demonstrated excellent predictive performance and was validated as an

independent prognostic factor. A nomogram integrating MVPRS, age, stage,
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and tumor grade offered clinical utility. High-risk group showed reduced immune

infiltration and increased activity in tumor-related pathways like ANGIOGENESIS

and HYPOXIA, while low-risk groups responded better to immunotherapy based

on TIDE and IPS scores. FN1, identified as a key oncogene, was highly expressed

in TNBC tissues and cell lines, promoting proliferation and migration while

inhibiting apoptosis.

Conclusion: This study reveals TNBC microenvironment heterogeneity and

introduces a prognostic signature based on myCAF, VSMC, and Pericyte

marker genes. MVPRS effectively predicts TNBC prognosis and immunotherapy

response, providing guidance for personalized treatment. FN1 was validated as a

key oncogene impacting TNBC progression and malignant phenotype, with

potential as a therapeutic target.
KEYWORDS

triple-negative breast cancer, machine learning, prognosis, immunotherapy,
tumor microenvironment
1 Introduction

Breast cancer is the most commonly diagnosed cancer among

women worldwide and remains one of the leading causes of cancer-

related mortality in women (1). According to International Agency

for Research on Cancer (IARC), the global incidence of breast

cancer reached 2.3 million new cases in 2022 (2). Breast cancer is

characterized by significant heterogeneity at both pathological and

molecular levels, leading to differences in pathogenesis, risk factors,

therapeutic responses, and prognosis (3). Among breast cancer

subtypes, TNBC is a highly aggressive form characterized by the

lack of estrogen receptor (ER), progesterone receptor (PR), and

human epidermal growth factor receptor 2 (HER2), accounting for

approximately 15-20% of all breast cancer cases (4). Moreover,

TNBC exhibits a high degree of molecular heterogeneity and can be
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further classified into multiple molecular subtypes based on gene

expression profiles, each with distinct biological characteristics,

disease progression patterns, and treatment sensitivities (4, 5).

Compared to other subtypes, TNBC is often associated with a

higher histological grade, a strong tendency for recurrence and

metastasis, and the absence of effective therapeutic targets, limiting

treatment options to surgery, chemotherapy, and radiotherapy (6).

For advanced or metastatic TNBC patients, however, chemotherapy

is usually insufficient, with most patients eventually developing

chemoresistance. The development of chemoresistance in TNBC

patients may be closely linked to the tumor microenvironment

(TME) (7).

Advances in single-cell transcriptomics have provided a

valuable tool for studying the tumor microenvironment. The

TME is composed of tumor cells, stromal cells, immune cells,

secreted factors, extracellular matrix, and other components (8),

all of which are critical to cancer initiation and progression (9).

These components interact through signalling pathways and cell-

cell interactions to influence tumor progression and treatment

responses (10). Recent studies have highlighted the importance of

stromal cells in tumor progression, particularly myCAF, VSMC,

and pericyte (11–17). Myofibroblasts play multifaceted roles within

tumors, primarily supporting tumor growth and immune

suppression. They provide support to tumor cells by secreting

growth factors and ECM proteins, thereby promoting tumor

proliferation and migration. Myofibroblasts also suppress

antitumor immune responses by secreting immunosuppressive

factors such as TGF-b and IL-11, and through metabolic

regulation, rendering the TME immunosuppressive (18). VSMC

normally maintain vasoconstriction and regulate blood flow.

However, under pathological conditions, they undergo phenotypic

switching to a proliferative and synthetically active state,
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contributing to vascular remodelling and neointimal hyperplasia

(19). This phenotypic change parallels tumor behavior, as VSMC

within the TME can promote tumor angiogenesis and ECM

remodeling, thus providing support for tumor growth and

nutrient supply, and playing a key role in tumor progression.

Pericytes are also known to contribute to tumor angiogenesis and

the establishment of an immunosuppressive environment (13, 20).

Under physiological conditions, pericytes are connected to

endothelial cells through N-cadherin and local adherent plaques,

which facilitate intercellular signaling. This interaction helps

maintain vascular wall homeostasis and ensures the normal

function of the microcirculation (21). Moreover, most pericyte-

endothelial cell communication relies on a paracrine mechanism.

For example, endothelial cells promote pericyte recruitment and

coverage through the PDGF-B/PDGFR-b axis, maintaining

vascular stability and regulating vascular maturation (22, 23).

However, in the tumor microenvironment, the interaction

between pericytes and ECs undergoes significant changes, leading

to vascular abnormalities. For example, Perrot found that the

elevated concentration of prostaglandin E2 (PGE2) in the TME

downregulates N-cadherin through the prostaglandin E receptor

EP-4 and EP-1 pathways. This weakens pericyte-EC adhesion,

disrupts their interactions, and destroys vascular barrier integrity,

thereby facilitating tumor cell entry into the circulatory system and

promoting the development of hematogenous metastasis in

malignant tumors (21). Zhang et al. found that the expression of

Rho guanine nucleotide exchange factor 37 (ARHGEF37) is

increased in hepatocellular carcinoma (HCC), directly activating

Cdc42 in cancer cell pseudopodia. This promotes extrahepatic

invasion of HCC cells, disrupts endothelial-pericyte interactions,

and ultimately contributes to the development of HCC lung

metastasis (24). Additionally, Yi Lu et al. found that in HCC,

hypoxia-induced PDGF-B production activates hepatic stellate

cells (specialized pericytes in the liver), enabling their interaction

with endothelial cells and thereby promoting tumor angiogenesis

(25). These aberrant vessels generate hypoxic microenvironments,

promoting immune tolerance and reducing the effectiveness of

chemotherapy (13, 26). These stromal cells collectively regulate

tumor invasion, angiogenesis, and immune suppression within the

TME, impacting TNBC prognosis and response to immunotherapy.

Therefore, marker genes associated with myCAF, VSMC, and

pericyte may have significant roles in predicting prognosis and

immunotherapeutic response in patients. However, there remains a

lack of systematic studies focusing on stromal cell-related genes

in TNBC.

Given the strengths of bulk RNA-seq in capturing larger sample

sizes and extensive clinical information, combined with the high

resolution of single-cell transcriptomics, an increasing number of

studies are integrating both approaches to analyze tumor

heterogeneity (27), develop risk models, and construct

nomograms to predict patient outcomes, providing new clinical

treatment methods for cancer (28). In this study, we obtained

scRNA-seq data, microarray data, and RNA-seq data for TNBC

patients from the GEO and The Cancer Genome Atlas (TCGA)

databases. We first conducted a comprehensive analysis of the
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scRNA-seq data to map the TME and identify marker genes for

cell populations. Using single-sample gene set enrichment analysis

(ssGSEA) and WGCNA, we identified 259 marker genes associated

with myCAF, VSMC, and pericytes. Subsequently, we employed a

novel machine learning framework involving 10 machine learning

algorithms and 101 model combinations to construct a consensus

MVPRS. We validated the prognostic value of the model in both

training and validation cohorts through Kaplan-Meier survival and

area under the curve (AUC) analyses.

Furthermore, we investigated the relationship between MVPRS

and immune infiltration status, as well as response to immune

checkpoint inhibitor (ICI), exploring potential biological processes

associated with poor prognosis in TNBC linked to MVPRS. We also

developed a nomogram incorporating clinical pathological features

to assist in predicting patient outcomes in clinical practice. By

constructing this model, our study provides a theoretical foundation

for understanding the pathophysiology of TNBC and offers

opportunities for personalized prognosis prediction and

immunotherapy. The overall workflow of the study is illustrated

in Figure 1.
2 Methods and materials

2.1 Clinical sample collection

TNBC tissue samples and corresponding pair-matched adjacent

normal tissue samples, which were obtained from patients

underwent tylectomies at the Affiliated Hospital of Soochow

University, were snap-frozen in liquid nitrogen immediately after

resection. Before surgery, none of these patients received anti-

cancer treatment, including chemotherapy,radiotherapy or

immunotherapy. This study was approved by the Ethics

Committees of Soochow University.
2.2 Data collection

ScRNA-seq data of breast tissue were obtained from the GEO

database, with accession number GSE161529. Additionally, two

independent microarray datasets retrieved from the GEO database

were GSE58812 and GSE76250. FPKM normalized transcriptomic

tumor data of TNBC were obtained from the TCGA database.

Furthermore, clinical information for 112 TNBC patients

was downloaded from the UCSC Xena platform (https://

xenabrowser.net/). To ensure data quality and model robustness,

we performed rigorous data cleaning. Survival analysis (such as Cox

regression and Kaplan-Meier analysis) relies on key variables like

survival time and event status. Missing these essential key data

could affect the reliability of the analysis and the accuracy of

statistical inference. Therefore, we excluded samples with missing

survival time or event status. Additionally, to prevent data

duplication from interfering with model training, we removed

duplicate samples, ensuring dataset independence and improving
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the model’s generalizability. During model training, we further

evaluated the data distribution and found that only two patients

had a survival time of less than one year, both of whom were alive,

representing no event occurred. Since survival analysis relies on a

sufficient number of events (eg: death) to compute hazard ratios

(HR) and the C-index, the extremely small number of short-term

survivors could compromise the model’s stability in 1-year survival

prediction. To address this, we excluded samples with a follow-up
Frontiers in Immunology 04
time of less than 200 days, ensuring the model’s discriminative

power and predictive accuracy across different time scales. Finally,

we retained 104 TNBC samples from the GSE58812 dataset for

constructing the prognostic feature model, while 96 TNBC samples

from the TCGA-TNBC dataset were retained for model validation

(Supplementary Table S1). Moreover, we collected transcriptomic

data and corresponding clinical information from patients treated

with anti-PD1 and anti-CTLA4 therapies from the GEO database
FIGURE 1 (Continued)
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FIGURE 1 (Continued)

Flowchart of this study. This study workflow is based on multi-omics data integration analysis, aiming to explore key cell subpopulations in the
TNBC microenvironment, identify their characteristic genes, construct a related prognostic signature, and comprehensively evaluate its clinical
value, immune microenvironment association, immunotherapy response, and functional pathways. The research workflow consists of the following
six main modules: Module 1 (Data Collection): RNA-seq, scRNA-seq data, and gene sets were obtained from the TCGA, GEO, and MSigDB
databases to provide data support for subsequent analyses. Module 2 (Identification of Key Cell Subpopulations): This module analyzes key cell
subpopulations in the TNBC microenvironment using single-cell transcriptome data. By integrating cell communication analysis and prognostic
analysis, it identifies cell types with potential biological functions. Module 3 (MVPRS Prognostic Model Construction): Differential analysis, weighted
gene co-expression network analysis (WGCNA), and univariate Cox analysis were integrated to identify characteristic genes of key cell
subpopulations. Machine learning algorithms were then used to construct the MVPRS prognostic signature model. Module 4 (Clinical Value
Evaluation of MVPRS): The application value of MVPRS in TNBC prognosis prediction was evaluated through ROC curves, Kaplan-Meier survival
analysis, cox regression analysis, and nomogram scoring system. Its clinical applicability was compared by using C-index and validated by using
decision curve analysis (DCA). Module 5 (Relationship Between MVPRS, Immune Infiltration, and Immunotherapy Response): The role of MVPRS in
immune infiltration, the anti-tumor immune cycle, immune checkpoint gene expression, and immunotherapy response was analyzed to assess its
potential value in tumor immune regulation. Module 6 (Mechanistic Exploration of MVPRS): HALLMARK pathway analysis, Venn diagram-based key
gene screening, and molecular and cellular experiments were combined to further validate the functions of MVPRS-related genes and reveal their
potential mechanisms.

Li et al. 10.3389/fimmu.2025.1544348
(accession number GSE91061) to explore the value of MVPRS in

predicting immunotherapy response.
2.3 Single-cell RNA-seq data processing

We analyzed the scRNA-seq data using the R package Seurat

(version 4.3.0) (29). To perform high-quality filtering, we removed

genes detected in fewer than three cells and filtered cells by selecting

those with gene counts between 100 and 6000, mitochondrial RNA

content below 50%, and hemoglobin proportion (percent_hb) less

than 5%. Subsequently, all mitochondrial and ribosomal genes were

removed (Supplementary Figure S1). The data were then

normalized using the Normalization function. Highly variable

genes were selected using the FindVariableGenes function, setting

the nFeature parameter to 3000, based on average expression and

dispersion thresholds. These highly variable genes were then scaled

using the ScaleData function, followed by principal component

analysis (PCA) using the RunPCA function. Graph-based Louvain

clustering was performed on the top 20 principal components (PCs)

using the FindClusters function, with a clustering resolution

parameter (Res) set to 1.0. The FindAllmarker function was used

with the Wilcoxon test and Bonferroni correction for p-values to

identify cluster-specific marker genes. Subsequently, cell identities

were authenticated based on known cell marker genes. T cells were

identified using CD3D and CD3E as marker genes, while NK cells

were identified using NCAM1, GNLY, NKG7, and KLRD1. Stromal

cells were identified based on DCN, COL1A1, COL1A2, LUM,

PDGFRA, and PDGFRB, whereas Plasma B cells were identified

using MZB1 and IGHG4. Myoepithelial cells were identified using

KRT14 and ACTA2, and Myeloid cells were identified based on

CD68, CD163, LYZ, SPP1, CST3, LST1, C1QC, C1QA, and

TREM2. Epithelial cells were identified using CD24, EPCAM,

KRT19, KRT7, KRT8, and KRT18, while Endothelial cells were

identified using PECAM1, VWF, ENG, CDH5, and PLVAP. Finally,

CD20+ B cells were identified based on MS4A1 and CD79A.

Uniform Manifold Approximation and Projection (UMAP) was

applied for visualization. For annotating cell subpopulations, we

used the same dimensionality reduction and clustering methods,

while batch correction for “orig.ident” was performed using the
Frontiers in Immunology 05
Harmony package (version 1.2.1). The characteristic genes for each

subcluster are provided in the Supplementary Table S2-

Supplementary Table S5.
2.4 Single-sample gene set enrichment
analysis

Single-sample Gene Set Enrichment Analysis (ssGSEA) is a

widely used method for quantifying the enrichment of a specific

gene set within an individual sample. The ssGSEA score for each

sample reflects the degree of systematic upregulation or

downregulation of a particular gene set within that sample. In

this study, to identify marker genes of different cell types in the

tumor microenvironment (TME), we used the FindAllMarkers

function in the Seurat package to calculate highly expressed genes

for each cell cluster. For each cluster, we selected genes with p_value

< 0.05 and the top 100 ranked by avg_log2FC as marker genes.

These marker genes were then used in the ssGSEA method to

calculate the abundance of these cell types in each TNBC sample.

Next, we used the surv_categorize function to group patients based

on the optimal cutoff value and devided them into high-risk and

low-risk groups. Kaplan-Meier (KM) survival analysis was then

performed using the survminer package, and the log-rank test was

applied to compare survival curves between the high and low

abundance groups to determine the statistical significance of

survival differences between the two groups.

Additionally, with the same method, we calculated the MVP

(myCAF-VSMC-Pericyte-marker genes) score for each TNBC

sample by using the marker genes of myCAF, VSMC, and

Pericytes as the gene set.
2.5 The tissue distribution of TME cell
subsets

The OR can be used to quantify the relative enrichment of a

specific cell cluster in a particular tissue (30). Specifically, we used

2×2 contingency tables and performed Fisher’s exact test to assess

differences in the abundance of each cell type across different
frontiersin.org
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subtypes, and calculated odds ratios (ORs) to reflect the direction

and magnitude of these abundance differences. Meanwhile, the

Benjamini-Hochberg method was applied to adjust for multiple

testing and effectively control the false discovery rate (FDR). An OR

value greater than 1.5 indicates that the cell cluster tends to be

distributed in the specific tissue, while an OR value less than 1.5

suggests a lower tendency for distribution in that tissue. To describe

the distribution preferences of cell clusters across different tissues,

we used the OR as the measurement metric.
2.6 Cell-cell communication analysis

The R package CellChat is used to infer, visualize, and analyze

cell-cell communication within scRNA-seq data, enabling the

description of interactions between ligands, receptors, and their

cofactors. This method leverages a curated ligand–receptor

interaction database and applies a mass action law-based model

to compute communication probabilities. The calculation is based

on the product of ligand gene expression in sender cells and

receptor gene expression in receiver cells, simulating the binding

dynamics of ligand–receptor interactions. To enhance confidence in

the communication inference, CellChat performs permutation

testing for each ligand–receptor pair to exclude false positives due

to random expression, yielding statistically significant p-values. To

explore the interaction frequency and intensity among different cell

types in the microenvironment of TNBC patients, as well as

potential communications between these cell types, we used

CellChat to analyze the ligand-receptor interactions among

different cells.
2.7 Gene ontology enrichment analysis

To explore the biological functions associated with specific cell

clusters or gene sets, we conducted Gene Ontology (GO)

enrichment analysis. GO enrichment analysis includes three

aspects: Biological Processes (BP), Molecular Functions (MF), and

Cellular Components (CC), which are used to systematically

identify significantly enriched gene functional categories (31). We

referred to the methodological study by Yu et al., 2012 (32), and

selected the R package clusterProfiler to perform GO enrichment

analysis on the target gene set. Specifically, we first used the bitr()

function to convert gene symbols (SYMBOL) to ENTREZ IDs to

ensure compatibility with the GO database. Then, we conducted

enrichment analysis using the enrichGO() function, covering the

BP, MF, and CC categories. The p-value threshold was set at 0.05,

and the q-value threshold was also set at 0.05, with Benjamini-

Hochberg (BH) correction applied to control the false discovery rate

(FDR) and ensure statistical reliability. During the result processing

stage, we used the setReadable() function to convert ENTREZ IDs

back to gene symbols to enhance the biological interpretability of

the results. Additionally, we utilized barplot(), dotplot(), and ggplot

() functions for the visualization of enrichment analysis results,
Frontiers in Immunology 06
clearly presenting the enrichment characteristics of key

functional pathways.
2.8 Gene set enrichment analysis

We used the ssGSEA method from the R package GSVA to

calculate the MVP score for each TNBC sample, and classified the

samples into high-risk and low-risk groups based on the median

value of all samples’ scores. Subsequently, differential gene analysis

between the high-risk and low-risk groups was conducted using the

limma package. To identify potential signaling pathways associated

with this feature, we calculated the GSEA scores for 50 tumor-

related signaling pathways. Furthermore, to reveal the biological

processes (BP) involved in the different risk subgroups, we used the

R package clusterProfiler to perform GSEA analysis on the GO_BP

gene sets (c5.go.v7.5.1.symbols.gmt) between the two risk groups.

Annotation information for Hallmark and GO_BP gene sets can be

downloaded from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). The database version is

v2024.1, updated in August 2024. It remains widely used in

biological research and continuously provides authoritative

reference data for gene set enrichment analysis. This study is

based on the latest gene set information provided by MSigDB to

ensure the accuracy and timeliness of signaling pathway analysis.
2.9 Weighted correlation network analysis

WGCNA is a systematic biological approach used to

characterize gene association patterns across different samples,

effectively identifying highly co-expressed gene sets (33, 34). In

this study, we utilized the ssGSEA algorithm to calculate the MVP

activity score for each TNBC sample and used it as the phenotypic

data for WGCNA analysis. To identify co-expression modules

significantly associated with MVP scores, we applied WGCNA to

TNBC microarray gene expression data. Specifically, we first

selected highly variable genes to remove low-expression or low-

variance genes that could affect network construction. Next, we

ensured data quality by computing the clustering relationships

among samples, identifying and then removing samples with

potential outliers. After removing abnormal samples, we

proceeded with network construction and module identification.

To determine the optimal soft threshold, we used the

pickSoftThreshold function and set b = 3 to ensure that the

network conformed to the scale-free topology. We then

constructed a weighted gene co-expression network, calculated

gene similarity, and applied hierarchical clustering to group genes

into different co-expression modules. To refine module

identification, we further used the dynamic tree-cutting algorithm

for module segmentation and merged them based on module

similarity, ultimately identifying four major modules. Finally, we

conducted module-phenotype association analysis by calculating

the correlation between each module and the MVP score, selecting

the module with the highest correlation for further analysis.
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2.10 Construction of prognostic signature
by integrative machine learning
approaches

We applied univariate Cox regression analysis to the GSE58812

dataset to identify MVP genes with potential prognostic

significance. Using GSE58812 as the training set and TCGA-

TNBC as the validation set, we constructed a survival prediction

model. A total of ten machine learning methods were employed,

covering linear Cox regression, regularization techniques, ensemble

learning, dimensionality reduction, and nonlinear modeling,

ensuring model comprehensiveness and robustness. These

methods included Lasso, Ridge, stepwise Cox, CoxBoost, random

survival forest (RSF), elastic net (Enet), partial least squares

regression Cox (plsRcox), supervised principal components

(SuperPC), generalized boosted regression modeling (GBM), and

survival support vector machine (survival-SVM). Among them,

Lasso, Ridge, and Elastic Net were primarily used for feature

selection and dimensionality reduction in high-dimensional data.

CoxBoost, RSF and GBM enhanced predictive performance

through ensemble learning. As dimensionality reduction methods,

SuperPC and plsRcox reduced noise, while survival-SVM identified

complex nonlinear patterns. This multi-method integration strategy

contributes to optimizing feature selection, improving model

generalization, and enhancing survival prediction accuracy.

In the training set, we applied 101 different combinations of the

ten algorithms and performed feature selection and model

construction within a 10-fold cross-validation framework. We

evaluated all constructed models by calculating their C-index in

both the training and validation sets. The models were ranked based

on their average C-index for predictive performance, and we

ultimately selected the algorithm combination that demonstrated

robust performance and clinical translational potential. Based on

this selection, we used CoxBoost + Elastic Net for feature selection

and risk signature modeling. First, we optimized the penalty

parameter of CoxBoost using the optimCoxBoostPenalty function

and determined the optimal number of boosting steps (stepno)

through cross-validation (cv.CoxBoost) to identify survival-related

variables. The model generated a set of non-zero coefficients,

indicating that these variables were significantly associated with

survival outcomes and were selected for further analysis. Next, we

applied Elastic Net (a = 0.5) for further variable selection. The

optimal regularization parameter (lambda = 0.06943276) was

determined through cross-validation, extracting significant

variables and ultimately constructing a multivariable Cox

proportional hazards model. This led to the identification of a

prognostic signature for predicting overall survival in TNBC

patients, referred to as the MVP-related signature (MVPRS).
2.11 Survival analysis and construction of a
predictive nomogram

Based on the median MVPRS risk score, we divided the samples

in both the training and validation sets into high-risk and low-risk
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groups. Subsequently, we used the R package survminer to perform

Kaplan-Meier curve analysis to assess the differences in OS between

the high-risk and low-risk groups (p < 0.05). Additionally, the

timeROC package was used for ROC curve analysis to evaluate the

predictive sensitivity and specificity of MVPRS for OS in TNBC

patients. However, during model training, we observed that only

two patients had an overall survival of less than one year, and both

were censored (i.e., no events occurred). This data distribution

could affect model stability and reduce the accuracy of short-term

survival predictions. Since timeROC analysis relies on an adequate

number of short-term survival events to ensure effective

differentiation between positive and negative cases, the current

dataset was insufficient for reliable ROC calculations. Therefore,

we selected 3-year, 5-year, and 7-year time points for analysis and

compared the area under the curve (AUC) of MVPRS with other

clinical characteristics. We also performed univariate and

multivariate Cox regression analyses on the TCGA-TNBC dataset

to determine whether MVPRS is an independent prognostic factor

for the survival of TNBC patients. To enhance the prognostic

accuracy and predictive capability of the model, we constructed a

nomogram that integrates MVPRS and clinical characteristics to

quantify the expected survival of TNBC patients. Finally, the

discrimination and accuracy of the nomogram were evaluated

using ROC curves and the C-index, and decision curve analysis

(DCA) was used to assess its net clinical benefit.
2.12 Analysis of the association between
MVPRS and cell infiltration in the TNBC
tumor microenvironment

The tumor microenvironment (TME) refers to the surrounding

microenvironment in which tumor cells exist. It is primarily

composed of tumor cells and various cellular components, including

immune cells, tumor-associated fibroblasts, bone marrow-derived

inflammatory cells, stromal tissue, and blood vessels. Additionally, it

contains signaling molecules such as cytokines, chemokines, and the

extracellular matrix (ECM). This complex ecosystem plays a critical

role in tumor initiation, progression, immune evasion, and

therapeutic response. To assess the association between MVPRS

and cell infiltration in the TME of TNBC, we used ssGSEA to

calculate the characteristic scores of TME cells in TNBC patients.

To validate the reliability of the ssGSEA results, we further applied the

CIBERSORT algorithm to quantitatively analyze the infiltration levels

of 22 types of immune cells (35).
2.13 Obtaining anti-cancer immunity cycle
scores

The anti-cancer immunity cycle is a key component of cancer

immunotherapy, involving seven steps: the release of cancer antigens

(Step 1), cancer antigen presentation (Step 2), initiation and

activation of the immune response (Step 3), trafficking of immune

cells to the tumor (Step 4), infiltration of immune cells into the tumor
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(Step 5), recognition of cancer cells by T cells (Step 6), and killing of

cancer cells (Step 7) (36). These seven steps together constitute the

anti-cancer immunity cycle. We obtained activity scores for these

seven anti-cancer immune steps for the TCGA-TNBC samples from

the Tracking Tumor Immunophenotype (TIP) platform (http://

biocc.hrbmu.edu.cn/TIP/index.jsp).
2.14 TIDE analysis and evaluation of ICI
therapy response

We used the Tumor Immune Dysfunction and Exclusion

(TIDE) analysis method to evaluate tumor immune escape

mechanisms and predict responses to ICI therapy (37). Gene

expression data from patients were input into the TIDE online

platform to assess their immune escape scores and further explore

the association with MVPRS. We used the Immunophenoscore

(IPS) algorithm to predict the response to ICI therapy. This

algorithm calculates the IPS score using machine learning based

on unbiased gene expression of representative cell types, with higher

IPS scores indicating a better response to immunotherapy. The IPS

scores for the TCGA-TNBC patient samples were obtained from the

Cancer Immunome Atlas (TCIA) database (https://tcia.at/home).
2.15 RNA extraction and Quantitative real-
time polymerase chain reaction

Total RNA was extracted using an RNA extraction reagent

(RC101-01, Vazyme) following the manufacturer’s instructions.

The concentration and purity of the extracted RNA were

measured using a NanoDrop 2000 spectrophotometer.

Subsequently, total RNA was reverse transcribed into cDNA

using a reverse transcription kit (R312-01, Vazyme) according to

the reaction conditions specified in the kit’s protocol. Real-time

quantitative PCR (RT-qPCR) was performed using a SYBR Green

dye system (Q111-02, Vazyme) on an ABI 7500 Fast Real-Time

PCR System (Applied Biosystems, USA). The primers used for

qRT-PCR were as follows:

FN1: Forward primer: 5’-GCTGCACATTGCCTGTTCTG-3’,

Reverse primer: 5’-TCCTACAGTATTGCGGGCCA-3’.

GAPDH: Forward primer: 5’-GATTCCACCCATGGCA

AATTC-3’, Reverse primer: 5’-CTGGAAGATGGTGATGG

GATT-3’.
2.16 Cell cultures

The TNBC cell line MDA-MB-231 was purchased fromWuhan

PriCellaLife Technologies and authenticated using short tandem

repeat (STR) profiling. The cells were cultured in high-glucose

DMEM (PM150210, Pricella) supplemented with 10%(v/v) fetal

bovine serum (16000044, Gibco™) and 1%(v/v) penicillin-

streptomycin solution (10 kU/mL penicillin and 10 mg/mL

streptomycin, PB180120, Pricella). All cells were maintained at
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37°C in a 5%(v/v) CO2 incubator. The culture medium was

replaced regularly, and cells were passaged using 0.25% trypsin-

EDTA(w/v) solution (25200056, Invitrogen).
2.17 RNA interference

The small interfering RNAs (siRNAs) used in the experiment

were synthesized by AnZhen BioMed (Suzhou) and specifically

targeted FN1. Transfections were performed using Lipofectamine™

3000 Transfection Reagent (L3000015, Thermofisher) according to

the manufacturer’s protocol, with a final siRNA concentration of 75

nM. After transfection, cells were cultured for the specified duration

based on experimental requirements to assess gene knockdown

efficiency. The siRNA target sequences for FN1 used in this study

were as follows:

siFN1#1:

Sense: 5’-CUGCUCCAAGAAUUGGUUUTT-3’

Antisense: 5’-AAACCAAUUCUUGGAGCAGTT-3’

siFN1#2:

Sense: 5’-CAGCACAACUUCGAADUAUTT-3’

Antisense: 5’-AUAAUUCGAAGUUGUGCUGTT-3’

siFN1#3:

Sense: 5’-UGGUUGUAUCAGGACUUAUTT-3’

Antisense: 5’-AUAAGUCCUGAUACAACCATT-3’

NC:

Sense: 5’-UUCUCCGAACGUGUCACGUTT-3’

Antisense: 5’-ACGUGACACGUUCGGAGAATT-3’.
2.18 Immunohistochemistry

Paraffin-embedded tissue samples were sectioned into 4 mm
thick slices. The slices underwent antigen retrieval by heating in a

pressure cooker for 15 ~ 20 minutes with 0.01 M citrate buffer to

break aldehyde bonds formed during fixation. The samples were

then incubated overnight at 4°C with a specific FN1 antibody

(1:500, GB15091, Servicebio). The next day, the sections were

incubated with an HRP-conjugated secondary antibody (goat

anti-mouse IgG-HRP, G1214, Servicebio) at room temperature

for 30 minutes, followed by staining with DAB chromogenic

reagent (K5007, Dako) according to the manufacturer’s

instructions. Finally , the sections were observed and

photographed under a microscope.
2.19 Cell proliferation assay

Cell proliferation was assessed using the Cell Counting Kit-8

(K1018, APExBIO). The cells were seeded at a density of 1000 cells

per well in a 96-well plate, with 100 µL of complete culture medium

added to each well. Absorbance at 450 nm was measured at 0 and 48

hours using SpectraMax® iD5 (Molecular devices, USA). One hour

before measurement, 10 µL of CCK-8 reagent was added to each
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well and mixed thoroughly. Three replicates were performed for

each sample.
2.20 Wound-healing assay

We assessed cell migration ability using a wound healing assay.

MDA-MB-231 cells transfected with FNI siRNA or NC siRNA were

seeded in 6-well plates. Once the cells reached 90% confluence, a

sterile 200 µL pipette tip was used to create a clean, straight scratch

in the cell monolayer at the center of each well. For data integration

and collection, the wound healing process was observed at 0 and 48

hours, and the gap between the edges of the wound was evaluated by

randomly selecting three fields of view under an inverted

microscope. Wound width and healing were analyzed using

ImageJ software(version 1.52). Each experiment was repeated

three times.
2.21 Flow cytometry analysis of apoptosis

Cell apoptosis was analyzed using Annexin V-fluorescein

isothiocyanate (FITC)/propidium iodide (PI) double staining.

MDA-MB-231 cells were collected 48 hours after siRNA

treatment, washed twice with pre-chilled PBS, and then stained

according to the instructions of the Annexin V-FITC/PI double

staining kit (C1383L, Beyotime). The cells were resuspended in

binding buffer and incubated with Annexin V-FITC and PI at room

temperature for 15 minutes, protected from light. After staining,

apoptosis was assessed using a flow cytometer (BD FACSCanto II),

and the apoptotic cells were analyzed with FlowJo software

(version 10.8.1).
2.22 Statistical analysis

All statistical analyses were performed using R software (version

4.3.0) and appropriate packages. The Wilcoxon test was used as a

non-parametric method to estimate the differences between two

non-normally distributed variables. Kaplan-Meier survival analysis

and log-rank tests were conducted using the R package survival to

compare OS between different subgroups. Spearman correlation

analysis was used to examine the relationship between the risk score

and immune cell infiltration. The qRT-PCR results were analyzed

using Student’s t-test. Unless otherwise specified, statistical

significance was set at P value < 0.05.
3 Results

3.1 The breast cancer microenvironment
atlas

Based on scRNA-seq data from GSE161529, we obtained gene

expression profiles for 204,332 cells from 34 surgical tissue samples
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from 34 patients. These samples included 13 normal tissues, 11 ER-

positive subtype tumors, 6 HER2-positive subtype tumors, and 4

TNBC subtype tumors. After quality control to ensure good gene

coverage, consistent read ranges, and low mitochondrial content, a

total of 197,867 cells were retained for further analysis.

First, we performed PCA on the top 3,000 variable genes for

dimensionality reduction, followed by graph-based clustering to

determine 48 cell clusters. These cell clusters were annotated using

known marker genes. We identified eight major cell groups

(Figure 2A, B, Supplementary Figure S2A), including epithelial

cells (N = 115,168), stromal cells (N = 23,008), endothelial cells

(N = 10,352), myoepithelials cells (N = 1,616), T/NK cells (N =

22,866), myeloid cells (N = 12,790), plasma B cells (N = 4,025), and

CD20+ B cells (N = 3,584), as well as an additional unclassified cell

population (N = 4,458). The heatmap of cell type-specific marker

gene expression shows a clear gradient in transcriptional expression

levels across different cell populations, further validating the

accuracy of the cell annotation results (Supplementary Figure S2B).

Further subgroup annotation was performed on the T/NK cell

groups, stromal cells, myeloid cells, and B cells. For T/NK cells, we

identified a total of eleven subgroups, including CD4_CXCL13,

CD4_HSPA1A, CD4_Tem, CD4_Treg, CD8_STMN1, CD8_Teff,

Tact_IFI6, and NK cells, as well as two undefined subgroups and

one subgroup co-expressing both T cell and B cell markers, which is

likely to represent doublets (Figure 2A, Supplementary Figure S2C,

Supplementary Table S2). Stromal cells were divided into nine

subgroups, including myCAF, iCAF, apCAF, pericyte, VSMC,

EMT-like CAF, NAF, and two undefined fibroblast subgroups

(Figure 2A, Supplementary Figure S2D, Supplementary Table S3).

Myeloid cells were classified into seven subgroups: macrophage,

monocyte, cDC1, cDC2, cDC3, pDC, and mast cell (Figure 2A,

Supplementary Figure S2E, Supplementary Table S4). B cells were

subdivided into three subgroups, including plasma cells, memory B

cells, and naive B cells (Figure 2A, Supplementary Figure S2F,

Supplementary Table S5).
3.2 Identification of key cell types in TNBC
based on cell distribution, communication
and their prognostic associations

The composition of the tumor microenvironment varied

significantly across tissues from different patients. To distinguish

the microenvironmental differences between TNBC and normal

tissues as well as other breast cancer subtypes, we analyzed the

tissue distribution characteristics of the previous 28 clearly defined

cell populations. The OR analysis revealed that VSMC, myCAF,

pericyte, CD8_STMN1, cDC2, CD4_CXCL13, and NK cells showed

significant preferential distribution in TNBC. In contrast, cDC3,

endothelial cells, NAF, CD8_Teff, and monocyte were primarily

enriched in normal tissues. ER-positive samples were enriched with

EMT-like CAF, memory B cells, myoepithelial cells, and mast cells,

whereas iCAF, apCAF, Tact_IFI6, and naive B cells were mainly

found in HER2-positive tumor samples (Figure 3A and

Supplementary Table S6).
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FIGURE 2

Comprehensive single-cell transcriptomic analysis of TME cell types in breast cancer. (A) UMAP visualization of single-cell RNA sequencing data
from breast cancer samples, showing the distribution and clustering of distinct cell types within the tumor microenvironment. The central region
displays the clustering distribution of major cell types, including Myeloid cells, T_NK cells, CD20+ B cells, Plasma B cells, Epithelial cells, Stromal
cells, and Undefined cell populations. The segmented annotations in the outer ring indicate the classification of major cell types. The circular color
bar represents the correspondence between cell types and sample tissue sources. Surrounding the plot from left to right are the subpopulation
classifications of Stromal cells, T_NK cells, Myeloid cells and B cells. The color legend on the right indicates that “Tissue” is used to differentiate
samples from different sources: ER, HER2, Normal, and TNBC, while “Cluster” is used to distinguish the clustering of major cell types. (B) The dot
plot illustrates the expression levels of marker genes across major cell types in the single-cell RNA sequencing data. The X-axis represents the
marker genes of each cell type, while the Y-axis denotes different cell types. The dot size (pct.exp) indicates the proportion of cells within each
cluster expressing the gene, whereas the color intensity (Average Expression) reflects the gene’s average expression level.
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To e v a l u a t e t h e impo r t a n c e o f t h e s e c e l l s i n

microenvironmental interactions, we performed cellular

communication analysis using the CellChat software and ranked

the cell populations based on the number of communications. The

analysis showed that the top ten cell populations were iCAF,

myCAF, pericyte, endothelial cells, VSMC, myoepithelial cell,

EMT-like CAF, macrophage, cDC2, and cDC3 (Figure 3B). In the

analysis of cellular interactions between TNBC and normal tissues,
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we further compared differences in interaction frequency

(Figure 3C) and interaction strength (Figure 3D). Interaction

frequency and strength respectively reflect the number of

communication events occurring between different cell types and

the intensity of signal transmission during cell communication. The

results showed that in TNBC tissues, iCAF, EMT-like CAF,

myCAF, endothelial cells, myoepithelial cells, pericytes and

VSMC exhibited increased interaction frequency with other cells
FIGURE 3 (Continued)
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Identification of crucial cell types in the TME of TNBC. (A) Heatmap showing distribution preferences of cell types across different tissues in the
breast cancer. The X-axis represents different breast cancer subtypes, while the Y-axis represents different cell types. The color bar indicates the OR
value, and the color intensity reflects the abundance differences of various cell types across the four tissue types. (B) The bar chart displays the 10
most active cell types in cell communication within the tumor microenvironment. The X-axis shows the top 10 cell types ranked by total
communication events, while the Y-axis represents the total number of cell-cell communication in the tumor microenvironment. (C) The heatmap
illustrates changes in cell-cell communication frequency in TNBC tissue compared to normal tissue. The X-axis represents signal-receiving cell
types, while the Y-axis represents signal-sending cell types. The color indicates the changing trend of cell interactions: red signifies an increase in
communication frequency in TNBC compared to normal tissue for a specific cell type, whereas blue indicates a decrease. The colored bar chart at
the top represents the total signal input for each receiving cell type, while the colored bar chart on the right represents the total signal output for
each sending cell type. (D) The heatmap illustrates changes in cell-cell communication intensity in TNBC tissue compared to normal tissue. The X-
axis represents signal-receiving cell types, while the Y-axis represents signal-sending cell types. The color indicates the trend in interaction intensity:
red signifies an enhanced signal transmission effect in TNBC compared to normal tissue for a specific cell type, whereas blue indicates a weakened
effect. The colored bar chart at the top represents the total signal input for each receiving cell type, while the colored bar chart on the right
represents the total signal output for each sending cell type. (E-H) The Kaplan-Meier survival curves evaluate the prognostic significance of myCAF,
VSMC, Pericytes, and CD8_STMN1 cell abundance in TNBC patients. The X-axis represents survival time from diagnosis (in days), while the Y-axis
indicates the probability of patients remaining alive at a given time point. The Strata grouping is represented by red and blue curves, which
correspond to patient groups with high and low abundance of the respective cell type. The shaded area denotes the 95% confidence interval (CI)
for survival probability.
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in the TME (Figure 3C), indicating that these cells engaged in more

extensive communication within the TNBC microenvironment,

contributing to an overall more active signal transmission. In

contrast, apCAF and NAF related interaction frequency showed a

significant decrease. Further analysis of interaction strength

revealed that iCAF, myCAF, pericytes, EMT-like CAF, and

VSMC also exhibited enhanced interaction strength with other

cells. This suggests that these cells not only participate in more

frequent communication events but may also influence TNBC

microenvironment dynamics through more potent signal

transmission. These findings indicate that these cells may play a

crucial regulatory role in TNBC, influencing tumor initiation and

progression. Given the advantages of bulk RNA-seq data in terms of

larger sample sizes and richer clinical information, we performed

prognostic analysis to further evaluate the clinical significance of

these cell infiltrations in TNBC samples based on the results of cell

type analysis. Using ssGSEA, we calculated the signature scores for

the previous cell types in TNBC patients (Supplementary Table S8).

The results showed that a high abundance of myCAF, VSMC, and

pericyte in TNBC tumors was associated with poor survival

prognosis, whereas a high abundance of CD8_STMN1, cDC2,

CD4_CXCL13, and NK cells was associated with better survival

prognosis (Figures 3E-H, Supplementary Figure S3A-C).

Integrating the findings from tissue distribution characteristics,

cell communication, and prognostic analysis suggests that

myCAF, VSMC, and pericyte may have an important impact on

the initiation and progression of TNBC.
3.3 Identification of Key Modules and MVP-
Related Genes in Bulk RNA-seq

We performed differential gene expression (DEG) analysis for

these three cell groups (Figure 4A) and Gene Ontology (GO)

enrichment analysis (Figure 4B; Supplementary Table S9). In the

myCAF cell population, we detected biological processes associated

with extracellular matrix organization and connective tissue

development. On the other hand, VSMC exhibited distinct GO
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features, showing enrichment in muscle contraction and

development processes. Pericytes were significantly enriched in

processes related to vascular diameter maintenance and

regulation, endothelial development, and arterial morphogenesis,

which were associated with vascular formation and stabilization.

Additionally, pericytes also showed contractility, being enriched in

features of muscle contraction and development. These results

further confirmed their cellular identities and their functional

specificity in tumor stroma remodelling, muscle contraction, and

vascular formation and stabilization (38–40).

The ssGSEA algorithm is commonly used to evaluate changes in

biological processes and pathway activity in individual samples. In

this study, we used the ssGSEA algorithm to obtain MVP scores for

each TNBC sample, which were subsequently used as phenotypic

data for WGCNA analysis. To identify the modules significantly

associated with MVP scores, we applied WGCNA analysis to the

GSE58812 dataset. After excluding outlier samples, a co-expression

network was constructed based on 768 MVP-related DEGs, with a

soft threshold power of 3 chosen to ensure a scale-free network

(Figure 4C, Supplementary Figure S3D-E). Ultimately, four

modules were obtained (Figure 4D). Our findings indicated that

the MEblue module and the MEturquoise module were closely

related to MVP scores in bulk RNA-seq with correlation coefficients

of 0.68 and 0.72, respectively (Figure 4E).

Moreover, scatter plots of gene significance (GS) versus module

membership (MM) for the blue and turquoise modules showed

significant correlations (Figures 4F, G), suggesting that the genes

within these modules may have important MVP-related functions.

A total of 259 genes were ultimately identified in the two modules,

referred to as MVPRGs, which were considered the marker genes

most relevant to myCAF, pericyte, and VSMC populations at both

the bulk and single-cell transcriptomic levels (Supplementary

Figure S3F, Supplementary Table S10).

The GO enrichment results for MVPRGs illustrated that they

were significantly enriched in multiple biological processes (BPs),

including extracellular matrix organization, extracellular structure

organization, wound healing, and blood coagulation, indicating that

MVPRGs play an important role in tissue repair, extracellular

matrix construction, vascular homeostasis, and mediating cell-
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matrix interactions (Figure 4H). Regarding cellular components

(CCs), MVPRGs were significantly enriched in collagen-containing

extracellular matrix, focal adhesion, and actin filament bundles,

highlighting their key role in extracellular matrix construction and

cell adhesion. For molecular functions (MFs), MVP genes were

significantly enriched in extracellular matrix structural

components, actin binding, and integrin binding, implying that

these genes are essential for maintaining cytoskeletal integrity and

mediating cell-matrix interactions (Supplementary Table S11).

Subsequently, we performed univariate Cox regression analysis

on the 259 MVP genes, identifying 23 genes with significant

prognostic value, which were then used for further model

construction (Figure 4I).
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3.4 Construction of prognostic signature
based on ensemble machine learning

To construct the consensus MVP-related signature (MVPRS),

we used a combination of 101 machine-learning algorithms to

analyze the 23 prognostic genes identified from the univariate

Cox regression analysis. The GSE58812 dataset was used as the

training set, while the TCGA-TNBC dataset served as the validation

set, with detailed patient clinical characteristics summarized in

Supplementary Table S1. Using a tenfold cross-validation

framework, we fitted 101 predictive models to the training set and

calculated the concordance index (C-index) for both training and

validation sets (Figure 5A).
FIGURE 4 (Continued)
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Identification of the myCAF-VSMC-Pericyte related genes. (A) Volcano plot highlights marker genes of three stromal cell populations (myCAF,
VSMC, and Pericyte), with Top 10 genes labeled. The X-axis represents three types of stromal cells, while the Y-axis represents the average log2 fold
change value, where higher values indicate a greater upregulation of genes. Each dot represents a gene, and the color of the dot indicates the
significance threshold: red denotes significantly differentially expressed genes, while blue represents genes with no significant differential
expression. (B) Gene Ontology Enrichment Analysis of myCAF, VSMC and Pericyte with their marker genes. The X-axis represents three types of
stromal cells, while the Y-axis lists significantly enriched biological processes (BP). The dot size (Count) indicates the number of genes enriched in
each pathway, with larger dots representing a greater number of enriched genes in the processes. The dot color (p.adjust) represents statistical
significance, where a deeper color indicates a higher enrichment significance of the GO term. (C) WGCNA gene hierarchical clustering dendrogram.
The X-axis represents all input genes, while the Y-axis indicates the hierarchical clustering height, reflecting the similarity in gene expression
patterns. Different colored modules represent distinct co-expression gene modules, where genes with similar expression patterns are grouped into
the same module. (D) Module-trait correlation heatmap and dendrogram. This figure displays the correlation between modules and key traits (MVP).
The hierarchical clustering dendrogram at the top illustrates the clustering relationships among co-expression gene modules and their association
with trait information (MVP). Similar modules are clustered into the same branch. The branch length represents the correlation between modules,
with shorter branches indicating more similar expression patterns among modules. The color of the heatmap at the bottom represents the
correlation strength, where red indicates a strong positive correlation and blue indicates a strong negative correlation. Each row corresponds to a
co-expression gene module, while the rightmost column represents the trait information (MVP) of the samples. (E) Module-trait correlation
heatmap. The X-axis represents trait information (MVP), while the Y-axis lists the co-expression gene modules identified by WGCNA (MEbrown,
MEblue, MEturquoise, and MEgrey). The heatmap color indicates the strength of the correlation between modules and the trait. The numerical
values display the correlation coefficient and p-value, with the value in parentheses representing the p-value, indicating statistical significance. (F, G)
The scatter plots illustrate the correlation between module membership (MM) and gene significance (GS) in the blue (F) and turquoise (G) modules.
The X-axis represents module membership (MM). It indicates how central a gene is within the module. This is measured by its correlation with the
module characteristic gene. The Y-axis represents gene significance (GS), reflecting the correlation between the gene and the phenotype (MVP). A
higher GS value indicates a stronger correlation between gene expression levels and the studied phenotype variable (MVP). Cor represents the
correlation between MM and GS, where a higher cor value suggests that key genes in the module not only occupy a central position within the
module (high MM value) but are also highly associated with the clinical phenotype under study (high GS value). The p-value represents statistical
significance. (H) GO enrichment analysis of MVPRGs in Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories.
The X-axis lists significantly enriched GO terms in the GO enrichment analysis. The Y-axis represents the number of genes enriched in each GO
term. Colors differentiate the three GO categories: BP, CC, and MF. (I) Forest plot of univariate cox regression analysis results. This plot presents the
survival relevance of MVPRGs. The left side lists gene names. The p-value measures the statistical significance of the gene’s association with survival
risk, indicating whether its expression significantly impacts patient survival. The hazard ratio (HR) quantifies the relationship between gene
expression and survival risk. HR > 1 suggests a risk factor and higher expression is associated with poorer survival outcomes. HR < 1 indicates a
protective factor and higher expression correlates with better survival outcomes.

Li et al. 10.3389/fimmu.2025.1544348
Among the 101 models, we selected the top five predictive models

based on their average C-index, ultimately constructed using either

the Random Survival Forest (RSF) algorithm or the Gradient

Boosting Machine (GBM) algorithm. Although these five models

performed well in the training set, the top four models exhibited poor

performance in the validation set, with a C-index below 0.6. These

models showed a marked performance discrepancy between the

training and validation sets, indicating a potential risk of overfitting,

and were therefore excluded. Additionally, the fifth model

demonstrated limited discriminatory ability in the validation set, as

the survival differences between high- and low-risk groups did not

reach statistical significance. Therefore, we excluded these models that

were overly fitted to the training set from further consideration. Next,

we focused on the Enet[alpha=0.1], CoxBoost+Enet[alpha=0.1], and

CoxBoost+Enet[alpha=0.5] models, as these three models

demonstrated good predictive performance in both the training and

validation sets. However, the Enet[alpha=0.1] model included a total

of 15 genes, while the CoxBoost+Enet[alpha=0.1] and CoxBoost

+Enet[alpha=0.5] models included 10 and 9 genes, respectively,

while still achieving comparable predictive efficacy (Figure 5A).

Given that fewer genes are preferable when the C-index differences

are marginal, we determined that the model constructed using the

CoxBoost+Enet[alpha=0.5] method was a highly accurate predictive

model closely associated with MVP genes (Figure 5A). Additionally,

we added time-dependent ROC (timeROC) analysis for different

models to provide a more comprehensive evaluation. The results

showed that the CoxBoost + Enet [a = 0.5] model demonstrated good

ROC curve (AUC) performance at years 3, 5, and 7 in both the
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training and validation sets (Supplementary Figure S4), further

confirming its robust predictive capability.

In this study, we applied CoxBoost combined with Elastic Net (a
= 0.5) for feature selection and ultimately constructed a multivariable

Cox proportional hazards model, identifying a final set of nine genes

(Figures 5B-E, Supplementary Table S12). Based on this model, we

calculated risk scores for patients and stratified them into high-risk

(MVPRS > median) and low-risk (MVPRS ≤ median) groups

according to the median value. Notably, as risk scores increased,

the number of deceased patients also gradually increased (Figure 5F).

Additionally, in both the training and validation sets, patients in the

high-risk group had a significantly shorter overall survival (OS)

compared to those in the low-risk group (Figures 5G, H).

Furthermore, an in-depth check of the origins of these nine

genes revealed that C1S is primarily derived from myCAF, WFDC1

mainly from VSMC and ISCU. PLS3 is from both myCAF and

VSMC. NOTCH3 and TBX2 are predominantly expressed in

Pericytes and VSMC, while JUN, UQCRQ and FN1 are found

across myCAF, VSMC, and Pericyte, covering all three stromal cell

subpopulations (Supplementary Figure S5). Although not all three

subpopulations contribute genes equally, our feature selection

strategy for constructing the MVPRS model was based on the

overall marker gene set of myCAF, VSMC, and Pericytes, rather

than a common gene set shared by all three. Given that this model

remains effective in predicting TNBC prognosis and reflects the

functional roles of key stromal cells within the tumor

microenvironment (TME), we retained the MVPRS designation

to highlight its broad association with stromal cell populations.
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3.5 Evaluation of the MVPRS model with
the development and validation of a
clinical nomogram
The ROC curve analysis indicated that, in the training set, the

AUC for MVPRS reached 0.788, 0.866, and 0.865 at 3-year, 5-year,

and 7-year intervals, respectively. In the validation set, the AUC
Frontiers in Immunology 15
values were 0.694, 0.706, and 0.828, respectively (Figures 6A, B).

These results demonstrated the strong discriminative power of

MVPRS. Moreover, we compared the AUC of MVPRS with other

clinical characteristics, including age, tumor, node, metastasis and

stage. The results demonstrated that the AUC of MVPRS

outperformed those of the other clinical characteristics (Figure 6C).

Additionally, we evaluated the prognostic value of MVPRS

compared to four other risk scores, including those proposed by
FIGURE 5 (Continued)
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FIGURE 5 (Continued)

A consensus MVPRS was constructed and validated through an integrative procedure based on machine learning (A) A total of 101 prediction
models were developed using a tenfold cross-validation framework, and the C-index for each model was subsequently calculated across all
validation datasets. The Y-axis represents model names, with each row corresponding to a model combination. The color bar labeled ‘Cohort’
distinguishes the data source used in the model (Test and Train). The C-index value, ranging from 0 to 1, indicates the discriminative ability of the
model for survival prediction, with higher values representing better predictive performance. On the right, a further comparison is provided between
selected models in terms of their C-index mean and the number of feature genes. (B) Coefficient path plot for the CoxBoost model. This plot
illustrates the changes in regression coefficients of different genes during the CoxBoost training process as the number of boosting iterations
increases. The X-axis represents the number of iterations (0–100), indicating the model optimization process. The Y-axis represents the regression
coefficients, reflecting the magnitude and direction of each gene’s impact on survival risk. (C-D) Visualization analysis of elastic net regression in the
GSE58812 cohort, including optimal l selection (C) and regression coefficient paths (D). In (C), the X-axis represents the logarithm of the
regularization parameter l, while the Y-axis shows the partial likelihood deviance. The lowest point of the curve corresponds to the optimal l value,
indicating the model’s best generalization ability at this l value. In (D), the X-axis represents the normalized path of the L1 penalty function, and the
Y-axis represents the regression coefficients of genes. The curves illustrate the selection process of different genes as they are gradually filtered
during regularization. (E) Bar plot showing key genes selected by stepwise cox regression and their regression coefficients. The X-axis represents
the regression coefficients, while the Y-axis lists the nine key genes selected in the Cox regression model. Colors differentiate gene types: red
indicates genes associated with increased survival risk, while blue represents genes linked to reduced survival risk. (F) Risk score and survival status
distribution of patients in the GSE58812 cohort. The top plot shows the distribution of patient risk scores, where the X-axis represents patient IDs,
and the Y-axis indicates individual risk scores. Colors distinguish between the high-risk group (red) and the low-risk group (blue). The bottom plot
displays the distribution of overall survival time and survival status. The X-axis remains consistent with the top plot, representing patient sample IDs,
while the Y-axis indicates overall survival time in years. Colors differentiate survival status: red represents deceased patients, while blue represents
surviving patients. (G, H) The Kaplan-Meier survival curves illustrate survival differences between MVPRS high- and low-risk groups in the training
(G) and testing (H) cohorts. The X-axis represents follow-up time (days), while the Y-axis indicates the proportion of surviving patients at different
time points. Strata grouping is shown with red and blue curves representing the high-risk and low-risk groups, respectively. The shaded area
denotes the confidence interval (CI) for survival probability in each group.
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Yang X et al., Sun XR et al., Li XF et al., Zhang JG et al., in predicting

TNBC patient outcomes (41–44). Our findings indicated that the

AUC of MVPRS for predicting 3-year, 5-year, and 7-year survival

was significantly higher than that of the other four risk models

(Figure 6D-F). These results highlighted the outstanding predictive

accuracy of MVPRS in forecasting the prognosis of TNBC patients.

To evaluate whether MVPRS serves as an independent

prognostic factor for TNBC, we performed univariate and

multivariate Cox regression analyses on OS in the validation

dataset (Figures 6G, H). The results showed that MVPRS was a

significant risk factor for OS in both univariate (HR > 1, p < 0.001)

and multivariate (HR 1.802, p < 0.001) analysis, remaining an

independent prognostic factor, which indicated its robust

prognostic capability in TNBC patients.

To enhance the clinical utility of MVPRS, we developed a

nomogram that integrates MVPRS with additional clinical

characteristics (Figure 6I). The AUC for the nomogram at 3, 5,

and 7 years was 0.759, 0.775, and 0.775, respectively, demonstrating

strong predictive performance (Figure 6J). In addition, the

concordance index (C-index) validated the nomogram’s reliability

and stability in forecasting OS, outperforming the performance of

other individual clinical features (Figure 6K). DCA demonstrated

that the nomogram achieved higher net clinical benefit compared to

other clinical characteristics (Figure 6L). These findings suggested

that the MVPRS-based nomogram was a reliable and precise tool

for individualized prognosis prediction in TNBC patients.
3.6 Correlation between immune
microenvironment, immunotherapy
response, and MVPRS

To evaluate the immune infiltration status of TNBC samples, we

used the ssGSEA algorithm to quantitatively analyze the abundance
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of microenvironmental cells in each TNBC sample (Figure 7A). The

results indicated that the high-risk group had higher abundances of

epithelial cells, pericyte, VSMC, and EMT-like CAF cells. In

contrast, cell types with antitumor activity, such as CD4_Tem,

Plasma_Bcells, CD8_Teff, cDC2, NK cells, and Memory_Bcells,

were more enriched in the low-risk group. Similarly, Spearman

correlation analysis identified 22 cell types that were significantly

associated with MVPRS (P < 0.05), most of which were immune

cells showing a negative correlation with MVPRS (Figure 7B).

Additionally, using the CIBERSORT algorithm to quantify the

abundance of infiltrating immune cells in each sample, the results

similarly showed that cell types related to antitumor immunity,

such as B cells naïve, T cells CD4 naïve, T cells CD4 memory

resting, T cells CD4 memory activated, T cells gamma delta,

Macrophages M1 and mast cells resting, were mainly enriched in

the low-risk group. On the other hand, Macrophages M2, which are

known to promote tumor progression, were enriched in the high-

risk group (Figure 7C, Supplementary Table S13).

Given the complexity of intratumoral immune processes and

the TME, immune activation and exhaustion states cannot be fully

captured by merely assessing the abundance of infiltrating immune

cells. A more comprehensive understanding of the antitumor

functions of immune cells, along with enhanced guidance for

immunotherapy, can be achieved by analyzing the activity at each

stage of the cancer immunity cycle (36). As shown in Figure 7D and

Supplementary Figure S6B, there were significant differences in the

activities of steps in the cancer immunity cycle between MVPRS

risk subgroups. Specifically, step 3 (priming and activation), step 4

(immune cell trafficking to the tumor), and step 6 (T-cell

recognition of cancer cells) showed weaker activity in the high-

risk group. Moreover, we further analyzed the differences in

immune cell recruitment capabilities in “step 4 - immune cell

trafficking to the tumor” between MVPRS risk subgroups

(Figure 7E and Supplementary Figure S6C). The results showed
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that the high-risk group exhibited significantly reduced capabilities

in recruiting immune cells, including T cells, CD8 T cells, Th1 cells,

Dendritic cells, Macrophages, Monocytes, NK cells, and B cells.

These findings suggested that the high-risk group demonstrated

poorer antitumor activity in the functional immune cell cycle.
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Previous research has shown that elevated expression of

immune checkpoints correlates with improved responses to ICI

therapy (45, 46). Therefore, we analyzed the expression levels of

immune checkpoints across MVPRS risk subgroups. As depicted in

Figure 7F, the low-risk group exhibited significantly higher
FIGURE 6

Evaluation of the MVPRS model with Nomogram establishment and validation. (A, B) ROC curves illustrate the specificity and sensitivity of MVPRS in
predicting 3, 5, and 7-year OS in the training set (A) and validation set (B). The X-axis represents the false positive rate, while the Y-axis represents
sensitivity, indicating the true positive rate. The ROC curves in different colors represent the predictive performance of MVPRS at 3, 5, and 7 years.
(C) The ROC curve compares the prognostic performance of MVPRS with other clinical features (age, stage, T, N, M). The X-axis represents the false
positive rate, while the Y-axis represents the true positive rate. Different colors distinguish the ROC curves of various predictive factors. (D-F) The
prognostic performance of MVPRS is compared with four published survival prediction models for TNBC in predicting overall survival at 3 years (D),
5 years (E), and 7 years (F). The X-axis represents the false positive rate, while the Y-axis represents the true positive rate. Different colors distinguish
the ROC curves of various models. (G, H) Univariate and multivariate analyses of clinical characteristics and MVPRS for OS in the validation cohort. (I)
Development of a nomogram incorporating MVPRS alongside clinical features, including Age, Metastasis, Weight, Tumor and Stage. The top section
(b (X-m) terms) displays the distribution of regression coefficients (b values) for each variable, indicating their contribution to survival prediction. Total
Score represents the overall score calculation, which is used to determine each patient’s score on the nomogram and ultimately predict the
probability of death at 1, 3, and 5 years. (J) ROC curves illustrate the nomogram’s ability to predict outcomes at 3, 5, and 7 years. The X-axis
represents the false positive rate, while the Y-axis represents the true positive rate. Different colors distinguish the ROC curves of the nomogram at
1, 3, 5, and 7 years. (K) The C-index is compared across the nomogram and other clinical characteristics, including Age, Metastasis, Weight, Tumor
and MVPRS. The X-axis represents follow-up time in years, while the Y-axis represents the C-index, which reflects the survival prediction ability of
the model. Different colors distinguish the C-index curves of various features. (L) DCA for net benefit of different models and clinical characteristics
(Stage, Metastasis, MVPRS, and the nomogram). The X-axis represents the individualized decision threshold, which indicates the level of survival risk
at which a doctor or patient would accept intervention. The Y-axis represents the net benefit of the model at a specific risk threshold, where a
higher net benefit indicates greater clinical value of the model at that threshold.
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FIGURE 7

The immune landscape and immunotherapy response associated with MVPRS in TNBC. (A) The abundance of each TME-infiltrated cell type between
high- and low-risk groups, quantified by the ssGSEA algorithm. (B) Lollipop plot showing the correlation between TME-infiltrating cells and MVPRS. (C)
The abundance of 22 immune-infiltrated cell types between high- and low-risk groups, quantified by the CIBESORT algorithm. (D) Heatmap illustrating
the differences in the activity of the seven-step anti-cancer immunity cycle between high- and low-risk groups. (E) Radar plot depicting the difference in
immune cell recruitment capabilities between MVPRS subgroups. (F) Box plots showing expression levels of immune checkpoint genes in high and low
MVP risk groups. (G) Violin plots depicting TIDE scores, exclusion scores, CAF scores, and MDSC scores between high and low MVP risk groups. (H) The
IPS score of ips_ctla4_pos_pd1_pos compared across high- and low-risk groups. (I) The IPS score of ips_ctla4_neg _pd1_pos compared across high-
and low-risk groups. (J) The distribution of CR/PR and SD/PD among patients undergoing immunotherapy in high- and low-risk groups within the
GSE91061 cohort. (K) The Boxplot depicting the MVPRS score between patients with CR/PR and those with SD/PD in the GSE91061 cohort. The symbols
"*", "**", "***" represent p < 0.05, p < 0.01, and p < 0.001, respectively; "ns" stands for not significant (p ≥ 0.05).
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expression of most immune checkpoints, including CD27, PD1,

CTLA-4, TIGIT, LAG3, TNFRSF14, and ICOS.

Next, we calculated the TIDE scores for the MVPRS risk

subgroups. The results showed that the high-risk group had

higher TIDE scores, exclusion scores, CAF scores, and MDSC

scores (Figure 7G, Supplementary Figure S6D, Supplementary

Table S14), indicating a higher potential for immune evasion and

potentially poorer ICI performance in the high-risk group.

To further confirm these findings, we examined the IPS scores

derived from the TCIA database. Elevated IPS scores are linked to

improved responses to ICI therapy, which includes four types:

CTLA4+/PD1+ therapy (ips_ctla4_pos_pd1_pos), CTLA4+/PD1-

therapy (ips_ctla4_pos_pd1_neg), CTLA4-/PD1+ therapy

( ips_ct la4_neg_pd1_pos) , and CTLA4-/PD1- therapy

(ips_ctla4_neg_pd1_neg). The results showed that for CTLA4

+/PD1+ and CTLA4-/PD1+ therapies, the high-risk group had

significantly lower IPS scores, suggesting that patients in the

high-risk group had a lower response to both PD-1 monotherapy

and the combination of PD-1 and CTLA4 therapies compared to

patients in the low-risk group (Figure 7H, I, Supplementary

Figure S6A).

To further assess the predictive capability of MVPRS for patient

response to immunotherapy, we included the GSE91061 cohort,

which includes patients treated with nivolumab (anti-PD1 therapy)

either alone or in combination with ipilimumab (anti-CTLA4

therapy). Based on the MVPRS signature, we calculated risk

scores for this cohort and stratified patients into high-risk and

low-risk groups. The results showed that the proportion of patients

with stable disease/progressive disease (SD/PD) was higher in the

high-risk group, whereas the low-risk group had more cases with

complete response/partial response (CR/PR) (Figure 7J). Moreover,

the risk scores of CR/PR patients were significantly lower compared

to those of SD/PD patients (Figure 7K). Taken together, these

findings supported the ability of MVPRS to predict immunotherapy

efficacy, indicating that patients in the high-risk group are less likely

to benefit from these treatments.
3.7 Potential molecular mechanism of
MVPRS

To explore the molecular mechanisms linking MVPRS to

TNBC prognosis, we conducted a functional enrichment analysis.

Using GSEA with GO gene sets, we observed that the low-risk group

was enriched in immune-related biological processes, including

regulation of cell killing, immune response-regulating signalling

pathway, and activation of immune response, among others

(Figure 8A, B, Supplementary Table S15). In contrast, the high-

risk group was significantly enriched in pathways related to collagen

fibril organization, epithelial cell differentiation, epidermal

development, intermediate filament cytoskeleton organization,

and keratinization, suggesting that their biological characteristics

mainly involve extracellular matrix remodelling and abnormal

differentiation of epithelial tissues. The enrichment of collagen
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fibrils may imply enhanced stromal remodelling within the tumor

microenvironment, promoting tumor invasion and metastasis (47).

Enrichment in epithelial cell differentiation and keratinization

could be linked to an imbalance in cell proliferation and

differentiation, typically associated with malignant tumor

progression (48). Therefore, these enriched pathways might

indicate that patients in the high-risk group possess more

aggressive characteristics and a poorer prognosis.

Furthermore, the GSVA analysis of Hallmark gene sets revealed

that the high-risk group had higher activity in tumor-related

pathways (Figure 8C, Supplementary Table S16), such as

ANGIOGENESIS, NOTCH SIGNALING, EPITHELIAL

MESENCHYMAL TRANSITION, GLYCOLYSIS, MYOGENESIS,

HYPOXIA, COAGULATION, MTORC1 SIGNALING, and

HEDGEHOG SIGNALING.

Conversely, the low-risk group showed stronger activity in

pathways related to INTERFERON RESPONSE, ALLOGRAFT

REJECTION, IL6 JAK STAT3 SIGNALING, COMPLEMENT,

IL2_STAT5_SIGNALING, and INFLAMMATORY RESPONSE.

Analysis of the correlation between MVPRS and Hallmark

pathway scores provided additional evidence for these findings

(Figure 8D), highlighting the strong association of MVPRS with

cancer-related biological processes.

Furthermore, to further validate the relationship between GSVA

results and the three stromal cell subpopulations, we added a

correlation analysis between Hallmark pathway scores and the gene

set scores of myCAF, VSMC, and Pericytes (Supplementary Figure

S7). The results showed that myCAF, VSMC, and Pericytes gene set

scores were significantly positively correlated with pathways such as

ADIPOGENESIS, ANDROGEN_RESPONSE, ANGIOGENESIS,

APICAL_JUNCTION, APICAL_SURFACE, APOPTOSIS,

COAGULATION , EP ITHEL IAL_MESENCHYMAL_

TRANSITION, ESTROGEN_RESPONSE_EARLY, HEDGEHOG

_S IGNALING, HYPOXIA , KRAS_S IGNALING_UP ,

MYOGENESIS, NOTCH_SIGNALING, P53_PATHWAY,

PANCREAS_BETA_CELLS, TGF_BETA_SIGNALING,

UV_RESPONSE_DN and XENOBIOTIC_METABOLISM. In

contrast, they were significantly negatively correlated with

DNA_REPAIR, E2F_TARGETS, G2M_CHECKPOINT,

MTORC1_SIGNALING, MYC_TARGETS_V1, MYC_TARGETS_

V2, OXIDATIVE_PHOSPHORYLATION, REACTIVE_

OXYGEN_SPECIES_PATHWAY, SPERMATOGENESIS and

UNFOLDED_PROTEIN_RESPONSE. These findings further

suggest that these stromal cell subpopulations may play a critical

role in remodeling the TNBC microenvironment and tumor

progression through distinct Hallmark signaling pathways.

To assess the relationship between Hallmark pathways and

TNBC prognosis, Kaplan-Meier curve analysis was conducted.

The findings revealed that pathways positively linked to MVPRS,

such as HEDGEHOG_SIGNALING and, NOTCH_SIGNALING

were associated with poor prognosis (Figure 8E, F). Conversely,

pathways inverse ly associated with MVPRS, such as

INTERFERON_GAMMA_RESPONSE and IL2_STAT5_

SIGNALING, were linked to a favorable prognosis (Figures 8G,

H). These results indicated that the activation or suppression of
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these pathways may influence the varying prognostic outcomes

within MVPRS risk subgroups.
3.8 FN1 promotes the malignant
phenotype of TNBC cells

In the cell communication analysis, we observed that compared

to the normal group, TNBC patients exhibited significantly

enhanced signalling of the LAMININ, FN1, and COLLAGEN

pathways in myCAF, VSMC, and Pericyte cells. (Figure 9A). This

suggested that these three cell types may play a crucial role in the

initiation and progression of TNBC through these pathways.

Furthermore, among the nine genes included in MVPRS, we

observed that four genes were significantly associated with TNBC

prognosis (P < 0.05): WFDC1, ISCU, FN1, and NOTCH3. Kaplan-
Frontiers in Immunology 20
Meier survival analysis revealed that high ISCU expression

correlated with improved prognosis in TNBC patients, with

significantly longer overall survival (OS) in the high-expression

group compared to the low-expression group (HR = 0.3209, P =

0.0045). The five-year survival rate was 85.79% for high-expression

patients versus 58.71% for low-expression patients. Conversely,

high expression of WFDC1, FN1, and NOTCH3 was associated

with poor prognosis, with significantly shorter OS and faster

survival decline over time (WFDC1: HR = 4.529, P = 0.00011;

FN1: HR = 2.672, P = 0.024; NOTCH3: HR = 2.3554, P = 0.017).

The five-year survival rates for high-expression patients were

55.69%, 62.64%, and 63.46%, respectively, compared to 88.53%,

81.7%, and 80.58% in the low-expression group(Figure 9B).

Subsequently, we conducted an intersection analysis between the

genes in the model, the differentially expressed genes in the TCGA-

TNBC dataset, and those in the GSE76250 dataset, ultimately
FIGURE 8 (Continued)
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The transcriptomic characteristics of TNBC patients across different MVPRS subgroups. (A) Ridge plot illustrating the GO terms significantly enriched
in the low-risk group. The X-axis represents the normalized enrichment score, indicating the degree of enrichment of a specific GO term in the
low-risk group. The Y-axis lists the top 10 significantly enriched GO terms in the low-risk group. (B) GO terms significantly enriched in the high-risk
group, as identified by GSEA analysis. The X-axis represents gene ranking, where all genes are ordered based on expression changes from high to
low, forming a continuous ranked gene list. The Y-axis indicates the enrichment score (ES) of the gene set, with higher peak values signifying a
greater degree of enrichment for the GO term in the high-risk group. Colors distinguish different GO biological process terms. Vertical lines in the
middle mark the positions of genes from the GO term within the ranked gene list. The gray bar plot at the bottom represents gene ranking scores.
(C) Differences in hallmark pathway activities between the high- and low-risk groups as evaluated by GSVA. The X-axis represents GeneRatio,
indicating the enrichment ratio of genes within a gene set. A higher value signifies a greater degree of enrichment for the pathway in the dataset.
The Y-axis lists Hallmark signaling pathways enriched in the high- and low-risk groups. The dot size (Count) represents the number of genes
enriched in each pathway, while the dot color (p.adjust) reflects the significance level, with deeper colors indicating stronger pathway enrichment
significance. (D) Association between the risk scores and hallmark pathway activities assessed through GSVA. The X-axis and Y-axis list a series of
Hallmark signaling pathways and MVPRS risk scores. Each matrix pane represents the strength of the correlation between two pathways. The circle
size and color indicate the correlation strength and direction: larger red circles represent a strong positive correlation, while larger blue circles
indicate a strong negative correlation. (E-H) Kaplan–Meier survival plots depict the notable association between OS and GSVA scores for
HEDGEHOG_SIGNALING (E), NOTCH_SIGNALING (F), INTERFERON_GAMMA RESPONSE (G), and IL2_STAT5 SIGNALING (H). The X-axis represents
follow-up time (days), while the Y-axis indicates the proportion of surviving patients at different time points. The curve colors represent the high-
and low-risk groups based on Hallmark pathway enrichment scores, with the red curve indicating the high-risk group and the blue curve indicating
the low-risk group. The shaded area represents the confidence interval (CI) for survival probability in each group.
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identifying a single gene——FN1 (Figure 9C, Supplementary Table

S17, S18). In light of the prognostic results, we speculated that FN1

may play a critical role in the initiation and progression of TNBC.

To evaluate the impact of FN1 on TNBC, we examined the

expression levels of FN1 in TNBC tissues and cell lines. The results

showed that FN1 was significantly upregulated in TNBC tumor

tissues and MDA-MB-231 cells compared to adjacent normal

tissues and normal breast epithelial cells, as confirmed by RT-

qPCR (P < 0.05) and IHC (Figures 9D-F). Notably, IHC staining

revealed that FN1 was primarily distributed in the extracellular

matrix and cytoplasm of TNBC tissues, with stronger staining

observed in invasive regions (Figure 9F). To further investigate

the functional impact of FN1, we performed knockdown

experiments in MDA-MB-231 cells. FN1 silencing led to a

significant reduction in mRNA levels (Figure 9G), suppressed cell

proliferation as assessed by CCK8 assay (P < 0.01, Figure 9H), and

induced apoptosis, as indicated by Annexin V-FITC/PI staining (P

< 0.001, Figures 9I, J). Furthermore, FN1 knockdown markedly

impaired cell migration, as demonstrated by wound healing assays

(P < 0.05, Figures 9K, L). These findings suggested that FN1 plays a

critical role in TNBC progression by promoting tumor cell

proliferation, survival, and migration.
4 Discussion

This study provides an in-depth analysis of the TME in TNBC,

focusing specifically on stromal cell subgroups (myCAF, VSMC,

and pericyte) that exhibit high-frequency cell communication,

strong interaction intensity, and are closely related to TNBC

prognosis and response to immunotherapy. By integrating single-

cell RNA sequencing data with transcriptomic data, we identified a

gene set closely associated with these three cell types (MVPRGs)

and developed a nine-gene prognostic signature (MVPRS). This

model showed strong predictive accuracy for prognosis and

immunotherapy response across multiple datasets.

In the tumor microenvironment (TME), different immune cells

exhibit distinct functions, with some promoting tumor progression
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while others demonstrate anti-tumor activity. For example, M2

macrophages have been reported to contribute to tumor

development through various mechanisms, including immune

suppression, angiogenesis, neovascularization, stromal activation

and remodeling (49–54). Similarly, tumor cells can secrete

chemokines such as CXCL12, VEGF, and CXCL8/IL-8, attracting

mast cells into the TME, where they become activated and release

cytokines, chemokines, and angiogenic factors, further driving

tumor progression (55, 56). Additionally, mast cells can promote

tumor progression by releasing anti-inflammatory cytokines such as

IL-10 and TGF-b, which suppress immune responses (57, 58).

However, under specific conditions, mast cells may also exert

anti-tumor effects, with their functions in the TME being

regulated by multiple factors (59–61). In contrast, some immune

cells play a crucial anti-tumor role in the TME. CD4+ Tem (CD4+

effector memory T cells) can recognize and bind to antigens on the

surface of tumor cells to trigger an immune response. They enhance

anti-tumor immunity by secreting IFN-g, IL-2, IL-4 and IL-17,

which activate cytotoxic T lymphocytes (CTLs), natural killer (NK)

cells, and macrophages (62, 63). Effector CD8+ T cells (Teff) are the

body’s primary effector cells and the key players in anti-tumor

immunity. They can directly kill tumor cells through perforin and

granzyme B (64). cDC2 activates effector T cells by secreting various

cytokines (such as IL-10 and IL-23) and presenting antigens to

CD4+ helper T cells (65, 66). NK cells can not only directly kill

tumor cells but also recruit other immune cells and enhance

adaptive immune responses of T cells and B cells by secreting

various cytokines and chemokines (67). Naïve B cells express IgM

and IgD antibodies that have not undergone somatic

hypermutation on their surface. Upon encountering an antigen,

they become activated, proliferate, and differentiate into effector B

cells or memory B cells, exerting anti-tumor effects (68, 69). Naïve

CD4+ T cells are immune-responsive precursor cells that have not

yet encountered antigen stimulation and play a role in initiating and

regulating immune responses. Upon activation through their

specific T cell receptor (TCR), naïve CD4+ T cells can

differentiate into Th1, Th2, Th17, Treg and follicular helper T

cells (70–72). CD4+ memory T cells play a crucial role in preserving
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immune memory, which is essential for establishing effective tumor

defense and preventing tumor recurrence (73). Studies have shown

that the enrichment of resting CD4+ memory T cells is associated

with benign prognosis in patients, while a high abundance of

activated CD4+ memory T cells is closely linked to favorable

prognosis and response to immunotherapy (74, 75). Additionally,

gd T cells have been widely observed in various tumor tissues, and

their high abundance is generally associated with better prognosis.
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Their unique “stress-sensing” function enables them to recognize

NKG2D ligands (NKG2DLs) such as MICA, which are expressed

on malignant transformed cells. Through NKG2D-mediated

signaling pathways, gd T cells activate cytotoxic responses to

eliminate abnormal cells. Therefore, gd T cells are considered

potent anti-tumor lymphocytes, playing a critical role in immune

surveillance and anti-tumor responses (76–79). The primary

function of M1 macrophages is to enhance local inflammatory
FIGURE 9 (Continued)
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FIGURE 9 (Continued)

The FN1 gene promotes the malignant phenotype of TNBC. (A) Dot plot illustrates significant ligand-receptor interactions between myCAF, iCAF,
and VSMC cells and other TME cell types. The X-axis represents receptor cell types, with red and blue colors distinguishing different tissue types—
red for tumor tissue and blue for normal tissue. The Y-axis lists ligand-receptor interaction pairs. Ligand-receptor interaction pairs from different
pathways are labeled in different colors (e.g., purple for the COLLAGEN pathway, red for the FN1 pathway, and orange for the LAMININ pathway). At
the top, signaling-sending cells are labeled and color-coded (green for myCAF, yellow for Pericytes, and blue for VSMC). The dot color represents
the probability of ligand-receptor interactions (Commun.Prob), with redder colors indicating stronger interaction intensity. The dot size reflects
statistical significance, with larger dots indicating higher significance. (B) The Kaplan-Meier survival curves illustrate the survival differences of key
genes (ISCU, WFDC1, FN1, and NOTCH3) between the high MVP risk groups and the low MVP risk groups. The X-axis represents follow-up time
(days), while the Y-axis indicates the proportion of patients surviving at different time points. The curve colors distinguish between high- and low-
expression groups for each gene, and the shaded areas represent the confidence interval (CI) for survival probability in each group. (C) Venn
Diagram Showing the overlap of MVPRS Genes with Differentially Expressed Genes in TCGA-TNBC and GSE76250 datasets. (D) The mRNA
expression levels of FN1 were measured by RT-qPCR in samples matched TNBC and adjacent normal tissues (NT) and normalized to GAPDH (P <
0.05). (E) The mRNA expression levels of FN1 were measured by RT-qPCR in MCF10A and MDA-MB-231 cell lines and normalized to GAPDH (P <
0.05). (F) FN1 expression was evaluated by IHC in TNBC tissues and adjacent normal tissues (NT) using an anti-FN1 antibody. Staining intensity was
higher in TNBC tumor tissues, particularly in invasive regions, with predominant localization in the extracellular matrix and cytoplasm. The sampled
regions included tumor core and invasive front areas for TNBC tissues, and corresponding normal epithelial regions in NT. Representative images at
200× and 400× magnification are shown. (G) The mRNA expression levels of FN1 were measured by RT-qPCR in MDA-MB-231 cells treated with
FN1 siRNA or negative control (NC) siRNA and normalized to GAPDH (n = 3, *P < 0.05, **P < 0.01). (H) The CCK8 assay was performed in MDA-MB-
231 cells treated with FN1 siRNA or NC siRNA (*P < 0.05, ***P < 0.001). (I-J) Apoptosis in MDA-MB-231 cells treated with FN1 siRNA or NC siRNA
was detected by Annexin V-FITC/PI staining. Representative flow cytometry plots (I) and quantification (J) are shown (*P < 0.05, ***P < 0.001). (K-L)
Scratch wound healing assays were conducted in MDA-MB-231 cells treated with FN1 siRNA or NC siRNA to assess the impact of FN1 on cell
migration. Images were captured at 0 and 48 hours post-scratch, and migration distances were quantified using ImageJ software (version 1.52).
Representative images of wound closure (K, scale bars: 200 mm) and corresponding quantification (L) demonstrate a significant reduction in
migration capacity following FN1 knockdown (*P < 0.05, **P < 0.01). Data represent the mean ± SD of three independent experiments.
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responses and recruit immune cells by secreting pro-inflammatory

cytokines such as IL-1, IL-6, IL-12, IL-23, and TNF-a, thereby
forming a strong anti-tumor immune defense. Additionally, M1

macrophages have shown great potential in tumor immunity.

Studies have demonstrated that M1 macrophages exert anti-

tumor effects by secreting pro-inflammatory cytokines and

utilizing direct cytotoxic mechanisms to inhibit tumor cell

proliferation and survival. Moreover, they can activate T cells and

further enhance anti-tumor immunity (49, 59, 70, 74–76, 80–82).

Our results show that the low-risk group is significantly enriched in

cell types with antitumor activity, while the high-risk group is

notably enriched in tumor-promoting cell types. This suggests a

potential mechanism for the better prognosis and immunotherapy

response observed in the low-risk group. Moreover, functional

enrichment analysis revealed significant differences between the

high-risk and low-risk groups in biological processes related to

immune responses, such as regulation of cytotoxicity, immune

response modulation, and immune activation. The low-risk group

exhibited markedly better immune activity. The hallmark pathways

positively correlated with MVPRS were predominantly identified as

oncogenic pathways, including ANGIOGENESIS, NOTCH

SIGNALING, EPITHELIAL MESENCHYMAL TRANSITION,

GLYCOLYSIS, MYOGENESIS, HYPOXIA, COAGULATION,

MTORC1 SIGNALING and HEDGEHOG SIGNALING. Previous

studies have shown that these pathways are frequently overactivated

in various cancers. They are known to drive tumor cell proliferation,

invasion, and metastasis, and are often linked to poor prognosis

(83–86). In contrast, pathways primarily associated with immune

responses, such as interferon response, inflammatory response, and

the complement system, are negatively correlated with MVPRS

(87–89). The differences in these pathways may account for the
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variations in immune therapy responses and prognoses between

different risk groups. Targeting these aberrantly activated pathways

could offer a potential strategy to suppress TNBC progression.

Our results showed that the prognostic signature, termed

MVPRS, constructed by using characteristic genes of myCAF,

VSMC, and pericyte, can predict whether patients will benefit

from immunotherapy (11–13, 90). Stromal cells, such as myCAF,

VSMC, and pericyte, significantly influence the effectiveness of

immunotherapy in the tumor microenvironment by promoting

tumor growth, immune suppression, and vascular remodeling.

Myofibroblasts also suppress antitumor immune responses by

secreting immunosuppressive factors such as TGF-b and IL-11,

rendering the TME immunosuppressive (18). VSCM and pericytes

further reduce immune cell infiltration and function by promoting

aberrant tumor angiogenesis and a hypoxic microenvironment,

thereby weakening the effectiveness of immunotherapy (13, 26,

38). These results further demonstrate that MVPRS can serve as an

effective indicator for predicting immune therapy response, offering

robust support for identifying potential beneficiaries of

immunotherapy in clinical practice.

Our results showed that TNBC has a distinct communication

pattern compared with normal tissue. In TNBC, signalling through

the LAMININ, FN1, and COLLAGEN pathways was significantly

enhanced in myCAF, VSMC, and pericyte cells. The LAMININ

pathway involves laminin and its associated signaling mechanisms.

Laminin, widely present in the cellular matrix of adult tissues, plays

a critical role in cell anchoring. By binding to integrin receptors, it

activates signaling pathways such as Ras/Raf/MAPK and RhoGAP,

thereby regulating cell growth, proliferation, and migration. This

pathway is essential for normal developmental processes in the

body (91). Extensive evidence indicates that the aberrant expression
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of the LAMININ pathway is associated with various cancers,

including colorectal cancer, liver cancer, lung cancer, and

pancreatic cancer (92). Tumors regulate the PI3K/Akt signaling

pathway through laminin to influence the proliferation, invasion,

and metastatic phenotypes of tumor cells (93). Fibronectin, a key

adhesion molecule in the extracellular matrix, plays a critical role in

the FN1 pathway by binding to integrin receptors, thereby

regulating cellular adhesion, migration, and proliferation. In

tumors, the FN1 pathway is upregulated, and the interaction

between FN1 and its receptors activates downstream signaling

pathways, such as FAK and PI3K/Akt. This activation enhances

the survival and invasive capabilities of tumor cells (94, 95). Under

normal conditions, collagen binds to integrins, activating signaling

pathways such as FAK/Src, PI3K/Akt, MEK/ERK, and Rho/ROCK,

which promote processes like cytoskeletal rearrangement, cell

survival, and proliferation. However, in the TME, the interaction

between collagen and integrins accelerates tumor progression. For

example, in fibrotic livers, the upregulation of integrin expression,

upon binding with collagen, activates the PI3K/Akt/mTOR and

FAK/ERK pathways, thereby promoting the invasion and growth of

hepatocellular carcinoma (96). These studies suggest that these

pathways may play a key role in the occurrence and progression

of TNBC, and further related research is expected to find new

targets (Figure 9A).

In the constructed nine-gene MVPRS model, WFDC1, ISCU,

FN1, and NOTCH3 demonstrated significant prognostic value.

Specifically, ISCU was associated with favorable prognosis,

whereas WFDC1, FN1, and NOTCH3 were linked to poor

prognosis. Subsequently, we performed an intersection analysis

between these genes, the differentially expressed genes from the

TCGA-TNBC dataset, and the differentially expressed genes from

the GSE76250 dataset, ultimately identifying the FN1 gene. The FN1

gene encodes fibronectin, which is involved in cell adhesion and

migration processes, including wound healing, blood coagulation,

fibrosis, and metastasis (97). Wang H et al. identifies FN1 as an

independent prognostic factor for OS and disease-free survival

(DFS), and found that it is upregulated in gastric cancer tumors

(98). FN1 is associated with biological characteristics essential for

tumors, such as sustaining proliferative signalling, stimulating

angiogenesis, promoting invasion and metastasis, and modulating

antitumor immunity (99). Zhang XX et al. finds that FN1

overexpression is associated with poor prognosis in breast cancer

(100). As expected, our in vitro experiments confirmed that FN1

expression in TNBC tissues and cell lines was significantly higher

than in normal tissues and cell lines, and FN1 downregulation

inhibited the proliferation and migration phenotypes of TNBC cells

while promoting cell apoptosis. Therefore, FN1 holds promise as a

potential therapeutic target for TNBC.

Unlike other studies on prognostic signatures, we focused on

cell populations within the TNBC microenvironment that exhibit

frequent cell communication and strong interaction intensity, and

are closely associated with TNBC prognosis. We constructed a

prognostic signature that can predict the prognosis and

immunotherapy response of TNBC patients. The strength of this

study comes from the use of a robust machine learning framework,
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which guarantees the high reliability of the MVPRS in terms of

prediction accuracy and clinical applicability. Meanwhile, we

integrated scRNA-seq, extensive transcriptomic, and clinical data

to gain a multidimensional understanding of the heterogeneity of

the TNBC microenvironment. However, there are still some

limitations in this study. Although we evaluated the predictive

performance of the MVPRS signature in both the training and

validation sets, further validation through large-scale, multi-center

prospective studies is needed to confirm our findings. Additionally,

further in vitro and in vivo experiments are required to gain a

deeper understanding of the molecular mechanisms of FN1 in

TNBC progression, providing valuable theoretical foundations

and practical references for TNBC research and treatment.
5 Conclusions

In this study, we constructed a prognostic model closely

associated with stromal cell subpopulations (myCAF, VSMC,

pericyte), which has the potential to serve as a promising tool for

prognosis prediction and personalized medicine in TNBC patients.

Additionally, we integrated single-cell transcriptomics and bulk

transcriptomics approaches, providing new insights into the

molecular mechanisms underlying TNBC initiation and

progression. We also validated the expression and regulatory role

of the key prognostic gene FN1 in TNBC progression in TNBC cell

lines. In summary, the findings of this study not only enhance our

understanding of prognosis prediction and immunotherapy

response in TNBC patients but also offer hope for therapeutic

strategies targeting stromal cell subpopulations, providing a

theoretical basis and reference for TNBC research and treatment.
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