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Introduction: The differentiation of hematopoietic stem cells (HSCs) into

diverse blood and immune cells is a complex, highly hierarchical process

characterized by a series of tightly regulated steps. It involves a sequence of

intermediate oligo-potent progenitors making successive binary decisions. This

process gradually narrows down lineage possibilities until a final fate is reached. This

step-wise process is tightly controlled by transcription factors (TFs) and their

associated regulome, ultimately resulting in the differentiation of both lymphoid

and myeloid compartments.

Methods: We unravel the lineage-specific gene regulatory circuitry controlling

the development of B cells, T cells, innate lymphoid cells (ILCs), and dendritic

cells (DCs). We employ weighted gene co-expression network analysis to

characterize gene modules associated with the lymphoid or myeloid cell fate,

enabling the identification of lineage-restricted TFs based on their

expression patterns.

Results: By identifying TFs whose expression is subset-restricted or those with a

broader expression in the hematopoietic compartment, we construct a

regulatory logic that potentially controls the development of these key

immune cells. Our results point to conserved regulatory elements between

ILCs, natural killer cells, and DCs. This analysis unravels an intricate relationship

between each cell type and how the expression of key TFs dictates lineage

specificity. We particularly dissect the elements associated with conventional

DCs and plasmacytoid DCs.

Discussion: In conclusion, our findings shed new light on regulatory mechanisms

controlling blood cell development and offer a blueprint that can be leveraged to

better understand the molecular mechanisms underpinning blood

cell development.
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Introduction

Hematopoiesis continuously generates billions of blood cells

each day, encompassing various cell types with distinct functions

essential for maintaining physiological homeostasis and immune

competence. In adult mammals, hematopoiesis is driven by

hematopoietic stem cells (HSCs) residing in the bone marrow.

These HSCs undergo a series of tightly regulated maturation

steps, giving rise to successive oligopotent progenitors that

progressively lose multipotency to differentiate into a range of

specialized mature blood cells (1). In brief, HSCs are categorized

by their self-renewal and multipotency. Long-term HSCs (LTHSCs)

have a prolonged self-renewal ability and give rise to short-term

HSCs (STHSCs), which possess a more restricted self-renewal

potential. STHSCs further differentiate into multipotent

progenitors (MPPs), which lack the self-renewal ability but

contribute to the generation of various blood cell lineages (1).

MPPs subsequently differentiate into common myeloid

progenitors (CMPs), producing erythrocytes, megakaryocytes, and

monocytes (2), and common lymphoid progenitors (CLPs), which

give rise to B cells, T cells, and natural killer (NK) cells (3–6).

This hierarchical process requires the dynamic regulation of TF

networks that activate lineage-specific gene expression and restrict the

differentiation options of hematopoietic progenitors (7–10). For

example, Runx1 and Gfi1 are essential for the development of HSCs

(11, 12), and Runx1 continues to play a pivotal role in guiding dendritic

cell (DC) development from myeloid progenitors (13). Pax5 and Ebf1

regulate B-cell development (14, 15), while PU.1 and IRF8 are

instrumental for dictating dendritic cell commitment (16–19). Thus,

the coordinated action of TFs is crucial for directing key regulatory

nodes that instruct the emergence of diverse blood cell lineages.

The integration of transcriptome data across various blood cell

types, along with chromatin profiling, has significantly advanced our

understanding of the regulatory mechanisms governing

hematopoiesis (20, 21). Adding to that, a comprehensive mapping

of the cis-regulatory elements associated with the development of 86

immune cell populations is readily available (22). Moreover, the role

of epigenetic modifications influencing chromatin dynamics during

hematopoiesis has been studied (23, 24). Despite the availability of

these resources, there is a critical need to construct detailed gene

regulatory networks (GRNs) that elucidate the differentiation and the

functional attributes of the different blood cells produced from HSCs.

Such networks are essential for uncovering the overarching principles

of gene regulation and the transcriptional circuitry that directs lineage

decisions. This understanding will not only offer valuable insights

into the process of blood cell formation but also pave the way for

exploring novel approaches for ex vivo blood cell production.

Herein, we apply network analysis to the high-throughput

transcriptome data of 48 cell types produced by Yoshida and

colleagues (22) under the ImmGen project (www.immgen.org/).

Through this analysis, we have identified lineage-specific

transcription factors (TFs) and developed a network illustrating

their interactions. Additionally, we introduce several novel

transcription factors, ranked according to their significance and
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interaction strength. Finally, we validate the efficacy of our

approach by identifying a novel transcription factor crucial in the

decision-making process of a progenitor to differentiate into

functionally distinct DC subsets.
Materials and methods

Data collection

In this study, we applied public-accessible datasets GSE109125 of

transcriptome data of 127 populations andGSE100738 of ATAC-seq

data of 86 primary cell types (22). The datasets were filtered for stem

cells (including LTHSCs, STHSCs, MPP3, and MPP4), lymphoid

cells [B cells, a/bT cells, and innate lymphoid cells (ILCs)], and DCs

as a group differentiated from both myeloid and lymphoid cells.

Thus, 91 samples of immune cells were used for further analysis

(Supplementary File 1). For ATAC-seq data, we used only the

corresponding cells to the transcriptome 39 sample of immune

cells (Supplementary File 2). The ILC group comprises ILC2s,

ILC3s, and natural killer cells. Additionally, the data were excluded

if miss-annotated, and activated T cells and gd T cells were excluded

from our analysis. Each lineage encompasses various transitional

states. Therefore, analyses were performed using different

approaches, including i) lineage-wise, where cells are compared as

lineages, and ii) subgroup-wise, which compares individual

subgroups against each other. For the analysis of the ATAC-seq

data, we only focus on the cis-regulatory regions associated with the

genes of interest using open chromatin region (OCR) data.
RNA analysis

RNA-seq analyses were performed using the edgeR package in

R (25). Samples were grouped as cell lineages and compared to the

stem cells group (including LTHSC, STHSCs, CLPs, and CMPs). A

gene was included for the analysis if it had a minimum count of 10

in more than 70% of the samples and a total count of 100 across all

the samples. The genes were significant if the log2-fold change was

±0.585 for TFs and ±1 for other genes. Only genes with a false

discovery rate (FDR) ≤ 0.05 were considered significant. The

specificity of genes to each cell group was calculated as:

Specificity =  
Average   expression   in   cell   group   of   interest

Mean   of   average   expression   in   all   cell   groups  
Gene filtering variable genes and sample
clustering

To study the distribution of data, samples were clustered using

hierarchical clustering (method = “average”) and Principal

Component Analysis (PCA) (26) using R. TFs were identified by

comparing the gene list against 1,611 from AnimalTFDB 3.0 (27).
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Weighted gene co-expression network
analysis

Weighted gene co-expression network analysis (WGCNA)

was performed using the WGCNA package in R (28). Based on

the clustering, samples were grouped into cell lineages and

compared to identify co-expressed genes in each group. To

analyze all the lymphocytes plus DCs, the network was

constructed by a soft-power “16” and “signed” type, and

modules were identified according to a minimum module size of

“50” and a deep split of “2”. To analyze the DCs, we used a soft-

power of “12” due to the smaller number of samples, and deep-

split of “2”. The modules were selected based on high association

with cell lineages for further analysis. The networks or modules

were extracted with a threshold of correlation > 0.01 and

thereafter analyzed and visualized using Cytoscape 3.8.2 (29).

Through the experiments, genes of interest were filtered using in-

house-developed R scripts.
Gene regulatory network construction

The regulatory networks were constructed through two

approaches. First, by applying the WGCNA results using only the

association between TFs and other genes. This approach produces

undirected networks of highly expressed genes in particular lineage/

s. WGNCA regulatory networks were then combined with

information from ChIP Enrichment Analysis from the ChEA

database (30, 31) and RegNetwork database (32). Briefly, to

obtain potential TF-gene interactions, we submitted a list of cell-

specific differentially expressed genes (DEGs) (against stem cells) or

DEGs present in a particular group of families or all cells, to the

ENRICHR online tool (30). We compared the resulting potential

regulators and kept those with a p-value ≤ 0.05 and those

specifically expressed in the corresponding cell(s). Additionally,

the expressed TFs, either DE-TFs or genes detected through

WGCNA, were compared against RegNetwork data (32) to find

potential interactions. The final network was constructed by

combining all the networks (from WGCNA, ChEA2022, and

RegNet), and removing duplicate interactions. We constructed a

network of only TFs by presenting only TF-TF interactions and

showing the centrality of TFs by adding the TF-gene interaction

scale number as the size of the node. The network analysis and

adding parameters, such as gene expression, gene connectivity

within the network, and ATAC-seq data, were done using

Cytoscape 3.8.2 (29).
Gene Ontology enrichment

The DAVID database was used for the Gene Ontology (GO)

enrichment analysis (33). The results with a p-value ≤ 0.05 and top

matches were used for further analysis.
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Bhlha15 cloning

A full-length coding sequence flanked by Xho1 sites of Bhlha15

was amplified from cDNA generated from RNA isolated from wild-

type (wt) splenic pDC. cDNA was cloned into a TOPO-TA cloning

kit (Invitrogen) according to the manufacturer’s recommendations.

Bhlha15 cDNA was subsequently subcloned into pMSCV-iresGFP

upstream of the IRES-GFP reporter gene.
Cell culture

Isolated bone marrow cells were cultured in mouse tonicity

RPMI-1640 supplemented with 10% heat-inactivated fetal calf

serum, 2 mM l-Glutamine (Gibco), 50 μM 2-mercaptoethanol

(Sigma-Aldrich), and 100 U/ml penicillin/streptomycin (Gibco).

Furthermore, 1.5×106 cells/ml were stimulated with 100 ng/ml of

Flt3L (Peprotec) for up to 7 days.
Retroviral infection

Retroviral supernatants were generated by transient transfection

of 293T cells with plasmids encoding viral envelope proteins (pMD1-

gag-pol and pCAG-Eco), and expression vectors encoding for

pMSCV-iresGFP and pMSCV-Bhlha15-iresGFP using FuGeneHD

(Promega). Retroviral supernatants were centrifuged onto

RetroNectin (Takara)-coated plates for 45 min at 4,000 rpm at 4°C.

Cells were then cultivated with the virus in the presence of 4 mg/ml

polybrene (Sigma-Aldrich) for 12 hr. Then, 96 h after infection, cells

were harvested and stained for flow cytometry analysis.
Flow cytometry and antibodies

Single-cell suspensionswere resuspended in PBS+ 2mMEDTA+

0.5%BSA (Sigma-Aldrich) and stainedwith the indicated antibodies at

4°C. All the analyses were performed on a FACSCanto (BD

Biosciences) and data were processed using FlowJo. Antibodies

against CD11c (N418), MHCII (M514.15.2), XCR1 (ZET), SiglecH

(551), and CD11b (M1/70) were purchased from BioLegend.

Propidium Iodide (Sigma) was used to exclude dead cells.
Literature review

To identify known TFs involved in the development or

functioning of lymphoid cells and DCs, we searched the literature

with keywords, including the name of the TF of interest and the cell

type in which we detected the TFs. We included information in two

tables, one for known TFs referencing their PubMed ID

(Supplementary File 3, Supplementary Figure S1) and a table

showing TFs with no identified function in the corresponding cells.
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The TFs with no direct study or only having the gene expression in the

publication were classified as unknown.
Results

High degree of expression similarities
across cells of white blood cell lineages

The mammalian blood system consists of multiple lineages

stemming from HSCs. To visually capture the development

pathways and relationships between the different blood cell types,

hematopoiesis is commonly depicted as a tree structure, reflecting

the lineage tracing from a common progenitor. In this study, we

leveraged publicly available resources to analyze the relationships

between progenitors and mature blood cells, including B cells, T

cells, innate lymphocytes, and dendritic cells (22) (Figure 1A). To

identify gene signatures within each group, the cells were clustered
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into stem cells, pro-B cells, pre-T cells, B cells, T cells, ILCs, NKs,

and DCs. We examined the clustering of the cells by analyzing

transcriptome data using hierarchical clustering and PCA. The

results of both methods showed that the members of each group

were clustered together (Figures 1B, C). Notably, stem cells and

proB and preT cells were in very close clusters, suggesting that even

as they commit to B or T cell lineages, proB and preT cells retain a

substantial level of stemness (Figures 1B, C). However, applying a

finer resolution by conducting PCA exclusively on the stem cells

and proB and preT cells reveals a broader distribution among these

cells, thus highlighting sharp differences among these progenitors

(Figure 1B). This analysis revealed that T cells, ILCs, and NK cells

were closely grouped, demonstrating some degree of similarities

between these cells (Figure 1B). Hierarchical clustering

corroborated these findings, aligning closely with the PCA results

(Figure 1C). These analyses showed that subsets within each family

lineage exhibited a similar transcriptome that sets them apart from

others. This fact, despite the fine differences within subgroups of
preT cells
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FIGURE 1

Lymphoid cell and DC lineage classification and gene expression. (A) The developmental tree of the lymphoid cells and DCs. The lineages and
subset cell groups used in our study. We considered the NKC family a separate group of ILCs (with modification from (22)). (B) PCA plots of the top
3,000 most variable genes of all cell types, and the only stem cells to obtain higher resolution. (C)Hierarchical clustering of all cells. (D)Heatmap of the top
50most variable TFs across all cell types. DCs, dendritic cells; ILCs, innate lymphoid cells; NKCs, natural killer cells.
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cells, allows us to compare each subset as a group against stem cells

or other lineages in further experiments (Figure 1A).

To identify regulatory elements specific to each lineage, we

identified the top 50 most variable TFs across all the samples. Our

results revealed that TFs were expressed either exclusively within a

particular lineage or across multiple lineages (Figure 1D). For

example, as expected, Ebf1 and Pax5 were exclusively expressed in

proB and B cells, whereas Spib also expressed DCs. In contrast,

some TFs, such as Ikzf3 and E2f2, were expressed across many cell

types.The clustering of blood cells into distinct groups reflects the

high transcriptomic similarity within each group and suggests

specific regulatory mechanisms, which we revealed by identifying

the most variable TFs across cell groups. However, focusing solely

on the most variable genes provides an incomplete picture. To

enhance our analysis, we performed WGCNA, which identified a

broader set of group-specific TFs with greater confidence.
WGCNA uncovered cell-type-specific gene
modules and functions in immune cells

WGCNA constructs weighted gene co-expression networks to

identify clusters of co-expressed genes and their associations with

specific features across samples (28). We applied this technique to

identify genes associated with each cell group. Using a soft power of

16, we identified 23 modules correlating to the cell groups

(Figures 2a, b). We then focused on lymphoid cells and DCs to

further identify the genes associated with each cell type. For each

cell type, at least one module with the highest correlation was

selected. Since B and T cells were strongly correlated with two

modules (16 and 5, and 14 and 18, respectively), we included both

sets of modules in the further analysis (Figure 2b). Each module

comprises a different number of genes, ranging from 121 (Module

26) to 2,654 (Module 1). We excluded proB and preT cells because

they either resulted in weakly correlated modules (proB cells) or

yielded redundant GO results (preT cells) (data not shown). We

then focused on differentiated blood cells that had progressed

beyond the stemness stages. To assess the biological relevance of

the modules, we performed GO enrichment analysis for the genes

constructing each module (Figure 2c). The results indicate that the

modules were significantly (p-value ≤ 0.01) correlated with the

function or development of the corresponding cell types, as

expected. For example, modules 5 and 16 were associated with B-

cell development (e.g., BCR signaling, antibody production),

module 8 was associated with NK cell function (e.g., cytotoxicity,

chemokine production), and module 10 was associated with DCs

(e.g., inflammatory responses and antigen processing) (Figure 2c).

All modules showed high levels of statistical significance in the GO

analysis (p-value ≤ 0.01). Notably, module 16 showed very low p-

values compared to the others, indicating a strong association

between the genes in this module and B cell identity (Figure 2c).

Altogether, our results showed that WGCNA successfully

identified modules correlated with each cell type. We also

highlighted that members of each module were associated with
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cell-specific biological processes, thus indicating the accuracy of

our analysis.
Identifying cell-specific regulatory
elements in immune cells

Each module was composed of dozens to hundreds of genes that

encode proteins and non-coding RNA molecules involved in

different functions. To understand the molecular mechanisms

underpinning the formation of each module, we focused our

analysis on the TFs to identify regulatory elements associated

with the development and/or function of each cell type. To this

end, we retrieved selected modules (5,8,9,10,14,16, and 18) from the

network constructed byWGCNA and applied a filter to select all the

TFs and their associated genes with a correlation value ≥ 0.02

(weight of edge). The result was a network showing intra- and inter-

module correlations between the TFs and connected genes

(Figure 2d). The topology of the network showed a relatively

close interaction between the modules of ILCs, NKCs, and DCs,

in which ILCs and NKCs shared several TFs, including Zbtb16,

Nfil3, Dmrta1, and Fosl1 (Figure 2e). Additionally, Figures 2d, e

show that the TFs such as Atf3, Fos, Batf3, and Zfp366 were

correlated with ILCs, NKCs, and DCs. Noticeably, in the shared

TFs, the majority of the connections were intra-modular. In

contrast, the modules associated with B and T cells showed

higher isolation. Each of these cell types was associated with two

modules (5 and 16 for B cells, and 14 and 18 for T cells) (Figure 2b).

For each cell type, the members of the two modules were

indistinguishably connected so that the TFs were highly

connected to the members of both modules. For example, the

Bhlhe41, Irf4, and Mef2b connections were identically shared

between modules 5 and 16 (Figure 2e). Similarly, Bcl11b was

connected to modules 14 and 18 associated with T cells (Figure 2e).

In conclusion, our results revealed that ILCs, NKCs, and DCs

exhibited partially overlapping co-expression networks and shared

several TFs. Nonetheless, ILCs and NKCs showed closer association

with each other compared to their relationships with DCs, which is

in line with their respective reported origin in the bone marrow.
Identifying cell-specific transcription
factors in immune cells through integrated
genomic analysis

To identify cell-type-specific TFs, we examined the identified

modules to pinpoint candidates that were either exclusively

expressed or expressed at a high level in the corresponding cells.

Moreover, the candidate TFs must hold a strong position in their

modules, which was defined by the module membership (MM)

score obtained from WGCNA results. The correlation between

MMs and cell types is shown in the scatterplots in Figure 3. The

scatterplots show TFs and other genes, with corresponding

regression lines (R) when applicable. We selected TFs with MM ≥
frontiersin.org
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0.5 to encompass a range of specific (a higher MM score) and more

general (a lesser MM score) factors.

In the subsequent step, we characterized candidate TFs by

integrating gene expression patterns, chromatin accessibility, and
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their centrality within the modules. We first visualized the

expression levels (Log2CPM) and compared these expression

levels across all cell types, which provided insights into the cell-

specificity of the candidate TFs (Figure 3, purple heatmap).
Module−trait relationships
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FIGURE 2

The results of WGCNA and network analysis of the identified modules. (a) Analysis of the scale-free topology network of the WGCNA.
(b) Heatmap showing the relationships between the modules and cell groups. (c) GO analysis of the related modules. (d) Integrated network of
the related modules to the blood cells. Circles are TFs, and rhombi are non-TF genes. Larger nodes have higher connectivity (degree). Purple
and dark blue: B cells; cyan and orange: T cells; red: NKCs; yellow: ILCs; Green: DCs. (e) Stacked bar chart showing the distribution of connections with
genes to different modules for the top 50 most connected TFs. DCs, dendritic cells; ILCs, innate lymphoid cells; NKCs, natural killer cells.
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Other TF

FIGURE 3

Analysis of TFs in highly related modules to the white blood cells. Scatter plots: The scatter plot shows the correlation of module membership (MM)
and gene significance (GS) of the selected modules. The correlations are shown for TFs and genes that belong to other types. Only TFs with an MM
≥ 0.5 are shown. Heatmaps and bar charts: The purple heatmaps show the average gene expression in log2 CPM for selected TFs (MM ≥ 0.05). The
orange heatmap shows the changes (Log2FC) in gene expression of corresponding cell families compared to stem cells. A complete list of DEGs in
all cell groups is presented in Supplementary File 3, Supplementary Figure S6. Green heatmaps show the OCR activity at the TSS site of the genes in
corresponding cells. Blue columns show the degree number of each TF, indicating the number of connections with other genes within the module.
Black: Stem cells; Green: B cells; Orange: T cells; Yellow: NKCs; dark gray: ILCs; purple: DCs.
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Additionally, we incorporated the expression changes in each cell

type relative to stem cells using Log2FC (Figure 3, brown heatmap).

We then assessed the accessibility of potential cis-regulatory

elements at the transcription start site (TSS) of the candidate TFs

by incorporating ATAC-seq data specific to corresponding cell

types (Figure 3, green heatmap). Finally, we queried the

intramodular importance of the TFs by analyzing the hubness of

the TF in the module, using the degree centrality index, which

quantifies the number of connections between a node and all the

other nodes within the network (Figure 3, bar chart).

Our results showed that the number and specificity of TF

expression can vary greatly amongst cell types. Globally, B and T cells

showed a limited number of cell-specific TFs compared to the other

immune cells analyzed in our study. For example, Ebf1 and Pax5 were

two TFs restricted to B cells, while ILCs exhibited a high expression of

several TFs, including Rorc, Jun, Nr1d1, Fosb, Hic1, and Epas1

(Figure 3). Interestingly, many of the identified TFs were also

expressed across multiple cell types. For example, Id2 was expressed

in NKCs and ILCs, and Pou2f2 was expressed across all cell types,

peaking in B cells (Figure 3). These findings suggest that while TFs can

function inmultiple cell types, their impact may bemore pronounced in

specific groups, depending on the presence of co-interactors that may

play crucial roles in modulating their activity/functionality in each cell

type. Concordantly, the majority of candidate TFs were also

differentially expressed compared to stem cells. Unexpectedly, TFs

with cell-specific expression did not always have open chromatin

regions (OCRs) at their TSS in the cell type where they were

selectively expressed. For example, Pax5 and Ebf1 in B cells, Bcl11b in

T cells, and Zfp872 in DCs had no OCRs at TSS (Figure 3). Finally, the

centrality of the TFs in modules was strongly correlated with the cell-

specificity of the expression. For example, Epas1 and Lbx2, which

exhibited relatively high and low expression in ILCs, respectively, and

almost no expression in the other cells, were each connected to over 600

genes. In contrast, the TFs that were expressed in multiple cell types,

such as Jun and Fos in ILCs, demonstrated reduced centrality. These

findings indicate that the centrality of a TF is associated with the

specificity of its expression within a particular cell type.

Altogether, these results have identified multiple cell-specific

TFs in white blood cells. We also showed that, in some cases, their

expression can be dictated independently of the accessibility of their

chromatin at their TSS.
Regulatory networks controlling
lymphocyte development

The distinct patterns of TF expression across blood cells suggest

the existence of complex regulatory networks. To better define these

networks, we integrated our WGCNA results with data from the

RegNetwork (32) and ChEA (31) databases. This approach enabled

us to construct a network that integrated multiple aspects of

interactions between TFs and other non-TF encoding genes. This

includes co-expression, protein-gene, and protein-protein
Frontiers in Immunology 08
interactions. In addition to the TFs identified through the

WGCNA, we included TFs from the ChEA database that are

known to regulate genes expressed in each cell type, and any other

TFs listed on the RegNetwork database. RegNetwork contains gene

regulatory networks based on TF, protein-protein interaction, and

microRNA information, which are collected and integrated from 25

selected databases (32). The ChEA database is a compilation of

chromatin immunoprecipitation (ChIP) studies that identify TF-

targeted genes across a range of cell types (31). In addition to gene

clustering derived from the WGCNA results, we also categorized TFs

based on their expression level changes compared to the stem cells.

Accordingly, TFs could be differentially expressed in a specific (Pax5

in B cells) or multiple cell lineages (Foxo1 and Junb in all cell types).

Based on this approach, TFs expressed in multiple cell types were

defined as general TFs, either for ILCs, NKCs, and DCs together or all

other cells, despite belonging to a specific cell type identified by the

WGCNA (Figure 4). The resulting network had 3,051 nodes and

15,072 edges (Supplementary File 3, Supplementary Figures S2, S3,

respectively). We analyzed this network and extracted information,

such as the centrality of the TFs, the type of connections (WGCNA,

ChEA, and RegNet), and the cell group(s), to construct a new

network restricted to the TFs (Figure 4). This network had 170

nodes and 467 edges (Supplementary File 3, Supplementary Figure

S4, S5, respectively). Finally, chromatin status was determined for

each connected gene and included as a bar chart showing the average

OCR activities across all cell types. This visualization provides a

comprehensive overview of the regulatory potential of each TF in

different cellular contexts.

Using our network, one can predict the significance of TFs in

governing blood cell development through factors such as

connection type, centrality, specificity, and the activity of their

interactors within OCRs. The network shows that the WGCNA

result is the dominant indicator of the network topology,

particularly in individual cell types. In each module, the

majority of the TF connections were based on the expression

correlation. Hence, having interactions from other sources can

enrich WGCNA results. We must flag that TFs within a cluster

may have no direct association. For example, there was no

detected interaction between Bcl6b and Mef2a in NKCs. In

addition, the number of connections showed the importance of

the TF because larger nodes have a higher potential impact on the

development. For example, Pax5, Eomes, and Foxp3 are known to

be important in B cells, NKCs, and regulatory T cells

development, respectively (34–36). Specificity is another critical

feature for the importance of a TF. Based on the WGCNA results,

we identified several cell-specific TFs in each cell type.

Remarkably, some of these TFs, i.e., Foxo1, Irf4, Jund, Junb,

and Fos, were expressed in multiple cell types, suggesting their

involvement in controlling the development and/or function of

these cells, as previously reported. For example, FOXO1 regulates

B cells, T cells, and DCs (37–40). JunB is also involved in the

development and function of DCs and NK cells (41–43). The

differential expression of some TFs compared to stem cells,
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coupled with their shared expression across a range of

differentiated immune cells, suggests that these TFs may have

critical roles in controlling the development and function of these

immune cells, which warrants further investigation.

Finally, we showed that the non-TF encoding genes that interact

(protein-gene interaction or gene co-expression) with the TFs

generally have more active OCRs at TSS. For example, the genes

connected to Pax5, Ebf1, and Pou2f2, possess higher active OCRs in

B cells compared to other cells (Figure 4). These results indicate a

direct correlation between TFs and the accessibility of cis-regulatory

elements of their associated genes.

Altogether, our network analysis underscores the importance of

several TFs in governing white blood cell development and/or

function. Additionally, our analysis reveals the interaction and

potential roles of TFs within a particular subset of cells or across

multiple immune cells. These findings offer valuable insights to study

the regulatory mechanisms controlling white blood cell development.
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Identification and prioritization strategies
for novel transcription factor candidates
regulating immune cell development and
function

Our analysis identified a range of TFs involved in hematopoiesis,

including both well-established TFs and potentially novel candidates. To

extract from our analysis the TFs with an unknown function in

controlling immune cell development, we conducted a comprehensive

literature review, focusing on the TF names and their associated cell

families.We classified TFs as known if they have beenmechanistically or

experimentally validated in relation to blood cell development or

function. Using this strategy, we identified 71 novel TF candidates,

whose function in the expressing cells remains to be elucidated (Tables 1,

2). Among all the TFs, 78 (> 50% of all identified TFs) have already been

reported to control immune cell development or function

(Supplementary File 3, Supplementary Figure S1). Interestingly, all the
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FIGURE 4

Integrated regulatory network of white blood cells. By combining WGCNA with the RegNet and ChEA2022 datasets, we constructed a large
network of gene interactions between TFs and their non-TF interactors and enriched it with the gene expression data to identify cell-specific
members expressed in a specific or a group of cells. The resulting network was analyzed for centrality parameters. Next, we constructed a
smaller network of only TFs interacting with each other. The TF centrality calculated in the first network was presented as different in the
node size. For each TF, the average activity OCR of its targets across all cell families was calculated and presented as a bar chart next to the
nodes. Larger nodes indicate a higher degree. The color of the edges shows the type of interaction between the nodes. The color(s) of the
nodes show the fraction of edges identified in the datasets. Abbreviations: DCs, dendritic cells; ILCs, innate lymphoid cells; NKCs, natural
killer cells.
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TABLE 1 The identified TFs in this study with no reported function.

Cell
group

Gene
symbol *

Expression in
corresponding

cell
(Log2 CPM)

Log2FC
(vs

Stem cells)
Specificity Degree

Network
types

OCR activity
of

interactors

B cells

Bhlha15 2.98 6.55 2.35 189 WGCNA 1.50

Rbpjl 1.04 2.92 2.93 118 RegNet 8.48

Rere 7.26 1.78 1.16 73 RegNet_WGCNA 7.12

Tada2b 3.41 4.04 1.46 27 WGCNA 7.14

Terb1 1.98 4.06 3.22 98 WGCNA 8.34

NKCs

Bcl6b 3.16 2.45 2.82 123 chea 9.27

Creb3l1 1.95 1.96 1.80 99 chea 8.41

Dnajc1 7.37 1.14 1.12 40 WGCNA 21.15

Hopx 1.85 5.99 2.87 89 RegNet_WGCNA 7.51

Hsf4 2.66 4.25 3.24 310 WGCNA 10.90

Mef2a 8.05 1.99 1.16 108 RegNet_WGCNA 8.15

Rxra 4.38 1.27 1.48 9 WGCNA 19.35

Tshz3 4.78 2.79 2.07 217 WGCNA 12.12

Zfp105 3.90 3.32 2.42 179 WGCNA 10.60

Zfp512 8.25 1.37 1.19 55 WGCNA 6.79

Zfp568 5.01 1.40 1.26 75 WGCNA 7.87

Zfp948 5.91 1.36 1.28 39 WGCNA 8.07

ILCs

Ahrr 4.71 4.16 2.86 137 WGCNA 8.04

Atf4 8.41 1.68 1.12 124 WGCNA 6.47

Cc2d1a 6.24 2.20 1.28 76 WGCNA 6.84

Cebpd 3.44 2.10 1.78 45 chea 25.61

Creb3l3 2.02 2.08 3.06 126 RegNet_WGCNA 7.10

Crem 6.65 3.60 1.36 76 WGCNA 6.20

Csrnp1 7.23 3.14 1.39 56 RegNet_WGCNA 11.46

Dmrta1 3.79 7.33 3.42 124 WGCNA 5.83

Epas1 8.23 9.03 3.81 402 WGCNA 10.59

Ets2 4.88 1.73 1.05 21 chea 9.63

Fosb 8.66 10.03 3.41 355 RegNet_WGCNA 10.09

Foxs1 3.51 10.03 4.93 280 WGCNA 8.15

Hey1 3.93 7.40 5.21 405 chea 10.66

Heyl 3.35 7.38 4.08 158 RegNet_WGCNA 7.40

Jun 12.38 8.93 2.33 408 chea 11.62

Klf4 8.31 10.02 3.45 300 RegNet_WGCNA 10.49

Lbx2 3.14 5.98 5.61 528 RegNet 11.40

Npas2 3.95 2.86 2.71 187 chea 8.56

Pparg 2.18 3.25 1.69 64 chea 20.02

Tbx20 0.94 3.37 1.52 41 chea 16.83
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F
rontiers in Imm
unology
 10
 frontiersin.org

https://doi.org/10.3389/fimmu.2025.1544483
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Godini et al. 10.3389/fimmu.2025.1544483
TFs associated with the T cell lineage were known with reported

functions, in contrast to the ILC and NK lineages, which contain

several TFs whose functions remain to be addressed (Supplementary

File 3, Supplementary Figure S1). Additionally, our analysis revealed that

ubiquitous TFs (found across immune cells) have been mostly

experimentally validated with the exception of FOSL2 whose function

in ILCs, NKs, and DCs remains unknown.

To prioritize the study of unknown TFs, we employed strategies

based on expression criteria such as expression levels, fold changes,

and cell-specificity. Network centrality metrics were used to rank the

TFs, with a higher number of connections indicating greater hubness

in the regulatory network (44). Additionally, we integrated data from

multiple sources (WGCNA, ChEA, and RegNet) to ensure robust

identification. We also used the average OCR activity of TF-

associated genes as a sorting criterion, where a higher average

suggests a link between TF activity and the chromatin accessibility

of its target genes (Supplementary File 3, Supplementary Figure S4).

Overall, our analysis validates the effectiveness of our strategy

by confirming a substantial number of TFs previously known to

regulate the development and function of immune cells.
Frontiers in Immunology 11
Importantly, our approach also uncovers multiple novel TFs with

potential roles in these processes. By employing innovative sorting

criteria, we enhanced the identification and prioritization of novel

TFs involved in white blood cell regulation. To further validate this

strategy, we will conduct a case study where in silico analysis leads to

the identification of a new TF regulating cell fate decisions.
Deciphering dendritic cell lineage by
unveiling transcription factor network

DCs are antigen-presenting cells with the ability to orchestrate

adaptive immune responses (45, 46). Despite their pivotal role in

shaping immune surveillance, a comprehensive understanding of their

origin and functional specialization remains a matter of debate (47, 48).

According to the established paradigm of DC specification, myeloid-

primed progenitors give rise to both conventional DC subsets (cDCs:

type-1 or type-2 cDCs) and plasmacytoid DCs (pDCs). Lineage

specification into these functionally distinct subsets is tightly regulated

by transcription factors. For instance, BATF3 and IRF8 are essential for
TABLE 1 Continued

Cell
group

Gene
symbol *

Expression in
corresponding

cell
(Log2 CPM)

Log2FC
(vs

Stem cells)
Specificity Degree

Network
types

OCR activity
of

interactors

Tgif1 7.58 1.12 1.27 17 chea 18.60

Tulp2 2.79 2.96 2.35 117 WGCNA 8.74

Zbtb16 4.48 2.94 2.06 27 chea 13.32

Zbtb8b 1.71 4.04 2.99 132 WGCNA 5.64

Zfp92 4.46 2.47 3.49 124 WGCNA 7.44

DCs

Aebp2 6.42 1.83 1.10 14 WGCNA 3.11

Ehf 3.92 8.15 3.37 104 WGCNA 5.27

Foxr1 3.63 5.21 4.55 49 WGCNA 11.47

Hsf5 2.18 3.96 2.52 100 WGCNA 5.41

Litaf 7.93 2.08 1.35 5 chea 38.92

Nfe2l3 3.17 4.34 2.78 63 WGCNA 7.88

Nr1h3 3.74 2.68 2.27 91 WGCNA 7.81

Preb 7.52 1.10 1.05 39 chea 6.28

Purg 1.81 1.53 1.53 1 chea 33.50

Snai1 1.97 4.02 2.32 23 WGCNA 4.65

Spic 4.93 2.12 2.55 56 WGCNA 10.17

Tcf7 2.73 3.88 0.59 120 chea 18.88

Trerf1 6.52 1.91 1.26 2 chea 27.95

Zbtb3 2.86 1.15 1.44 2 chea 20.45

Zfp791 1.20 4.18 2.09 41 WGCNA 5.17

Zfp872 4.18 8.30 3.78 305 WGCNA 8.46
* The gene symbols are sorted alphabetically.
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cDC1 differentiation (49, 50), while IRF4, NOTCH2, and KLF4 play a

role in defining cDC2 identity (51–54). Importantly, ID2, a key inhibitor

of E protein activity, acts by repressing E2.2 (Tcf4) activity in

progenitors, which is essential for the development of pDC (55). This

inhibition allows the initiation of the cDC program in progenitors and

the subsequent development of cDC1 and cDC2 subsets (16, 17, 45).

This traditional view serves as the foundation for uncovering the

molecular mechanisms that govern DC lineage specification (17, 56).

However, recent studies have challenged this paradigm by disputing the

myeloid origin of pDCs, proposing instead that pDCs predominantly

originate from a lymphoid-primed progenitor (57–59). Consistent with

this emerging view, our findings indicate that, although cDCs and pDCs

cluster together, their expression of TFs vastly differs (Figure 3).

Therefore, we performed a separate WGCNA analysis for DCs,

including stem cells, cDC2s (DC4s), cDC1s (DC8s), and pDCs

(Figure 5). Our results showed that stem cells (STHSC, CMP, and

CLP) were closely clustered and cDC2s and CDC1s were grouped

together in a separate cluster. In contrast, pDCs formed a distinct cluster

apart from stem cells and cDCs (Figures 1A, C), which is reflective of

significant differences between conventional and plasmacytoid DCs

transcriptomes (22). We examined the 50 most variable genes in the

samples and identified several candidates across cell types. For example,

Relb, Id2, Fos, and Zfp366were expressed only in cDC2s and cDC1s, not

pDCs (Figure 5b), whereas Spib was selectively expressed in pDCs (60).

Conversely, theWGCNA results showed multiple specific genes for DC

types through four highly correlated modules (Figure 5d).We visualized

highly correlated TFs (MM > 0.8) in each module to compare their

expression levels across cDC2cs, cDC1s, and pDCs (Figure 5e). We

found several TFs that were uniquely correlated with cDC2s (module

10), including Zfp263, Tsc22d3, and Rel (Figure 5e). In contrast, Mxd1

and Zfp872 showedmoderate correlation with cDC1s, despite also being

slightly expressed by cDC2s. We also searched module 4, which was

associated with both cDC2s and cDC1s, and identified several highly

expressed TFs, such as Junb, Relb, Id2, Fos, and Zfp366 (Figure 5e).

Finally, we found multiple TFs highly expressed in pDCs, including the

known transcription factors Tcf4, Bcl11a, and Xbp1, but also ill-studied

TFs such as Zfp658, Cdip1, Bhlha15, and Hivep3.

Based on these results, we constructed a regulatory logic of TFs

that potentially regulate the DC development (Figure 5f). In this

framework, TFs were categorized into pDC, cDC-specific, and general

factors that regulate all DCs. Our analysis revealed a few known

interactions among these TFs. Although a literature review identified

several of these TFs (green nodes) as established key regulators of DC

development and function, many candidates (orange and red nodes)

remain to be investigated further (Figure 5d, Tables 1, 2).
BHLHA15 (Mist1) inhibits conventional
dendritic cell differentiation

Our data identified several TFs with poorly defined roles in DC

differentiation and function (Figure 5d). Among these, BHLHA15

(also known as Mist1) emerged as a prime candidate for further

investigation. BHLHA15 efficiently binds to E-box sequences as a

homodimer but can also bind as a heterodimer with E-proteins (61).
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Importantly, the latter, particularly E2.2, is crucial in determining

the lineage decision between pDCs and cDCs from progenitor cells

(55, 56). This suggests that BHLHA15 may play a significant role in

regulating DC lineage fate decisions.

To test this hypothesis, bone marrow progenitors were cultured in

the presence of Flt3L and retrovirally transduced with either a control

virus encoding GFP or a virus encoding BHLHA15 (Figure 6A). Five

days post-transduction, the differentiation of bone marrow-derived

DCs was analyzed by flow cytometry. While all three subsets, i.e.,

pDCs (pDCs; SiglecH+, MHCII-/low), cDC1s (cDC1s; SiglecH-,

CD11c+ MHCII+, XCR1+), and cDC2s (cDC2s; SiglecH-, CD11c+

MHCII+, XCR1-), were generated from progenitors transduced with

either the control or BHLHA15-encoding virus, the overexpression of

BHLHA15 significantly impaired the differentiation into conventional

DCs (Figures 6A, B). Additionally, we noted a substantial

accumulation of immature CD11c+ MHCII- cells upon BHLHA15

retrotransduction, indicative that BHLHA15 may prevent the

differentiation of progenitors into cDCs (Figure 6C and data not

shown). These findings suggest that BHLHA15 may function as a

negative regulator of cDC differentiation.
Discussion

A fundamental requirement for a multicellular organism is the

establishment of an extensive network of specialized cells, each

with unique functions that collaboratively contribute to the

development and function of tissues and organs. The

hematopoietic system provides a perfect illustration of this

concept. For example, multipotent hematopoietic stem cells in

the bone marrow undergo differentiation into functionally distinct

lineages whose specialization is paramount for vital processes such

as oxygen transport, immune surveillance, and hemostasis. As the

development of a functional immune system requires dynamic

regulation of transcription factor networks that activate lineage-

specific gene expression and restrict the differentiation options of

hematopoietic progenitors, we reasoned that a description of both

the wiring and the logic of these transcriptional networks is

essential for a complete understanding of immune cell

development. Our study leveraged transcriptomic data from

highly purified immune cells provided by the ImmGen project,

which is well-suited for systems-level analysis. By integrating

ATAC-seq data and applying WGCNA, we constructed a

network of co-expressed genes and further enriched it with gene-

protein interaction data. This approach enabled us to identify key

regulatory circuits and hub TFs associated with the development

and function of immune cells.

Network-based analyses have proven effective in uncovering

hub genes and proteins across various biological systems (62–67).

Previous studies have investigated regulatory networks in blood cell

development, including TF gene regulatory interactions in intestinal

ILCs (63) and distinct TF expression patterns in stem and

progenitor cells (64). However, these studies often concentrated

on specific cell types or HSCs. Although a previous study identified

the transcriptional regulatory networks for various mouse immune
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cell types (65), to date, most network-based analyses have either

focused on HSCs or specific immune cell types. In our study, we

appliedWGCNA to identify co-expressed genes uniquely associated

with each cell family, providing a detailed network analysis (28).

Our approach benefits from an unbiased analysis that leverages

gene expression variability among samples, allowing us to capture

insights beyond those provided just by DEGs (68). Additionally, we

not only identified highly expressed and cell-specific TFs but also

characterized subtle, yet cell-specific, changes in the transcriptome

profile. We then enriched the WGCNA results with gene-protein
Frontiers in Immunology 14
and protein-protein interactions, and DEGs, to construct a

blueprint regulatory network controlling lymphoid cells and DCs

development and function. In addition, applying ATAC-seq

demonstrated higher activity of cis-regulatory elements of the TF-

associated genes in each group (22). Altogether, our multi-layered

blueprint network highlights central TFs regulating different cell

lineages and their functional specificity or redundancy in blood cell

development. However, our current network lacks DNA sequence

motifs for TF-gene interactions, which would enhance the accuracy

of the regulatory network.
TABLE 2 The identified TFs associated with DC lineage development with no reported function.

Cell
group

Gene
symbol*

Expression in DC4s
(Log2 CPM)

Expression in DC8s
(Log2 CPM)

Expression in pDCs
(Log2 CPM)

Specificity

DC4s

E2f2 5.88 2.82 0.09 0.83

Trps1 8.38 6.64 5.01 1.15

Zfp263 9.43 8.39 8.01 1.08

DC8s

Atf3 6.18 5.64 0.35 2.02

Ehf 6.55 4.95 0.25 3.37

Fosb 5.45 5.28 1.01 1.54

pDCs

Bhlha15 0.17 0.89 5.41 1.70

Cdip1 6.00 6.01 9.00 1.04

Gcm2 0.00 0.08 3.69 2.85

Hivep3 3.76 3.71 7.41 1.01

Sp100 7.23 6.81 8.35 0.93

Zfp658 3.18 1.20 7.04 1.20

Zfp810 6.06 5.97 7.86 1.10
*The gene symbols are sorted alphabetically.
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Multiple TFs have been identified that regulate blood cell

development. The functionality of TFs could be restricted to a

specific lineage, such as PAX5 and EBF1 in B cells (14, 15). In

contrast, other TFs, such as FOXO1, have broader roles and

influence multiple lineages, including B cells, T cells, and

dendritic cells (37–40). Our study uncovered several TFs with

potential roles in lymphoid cells and DC development and/or

function. We combined all related sub-populations as a single

lineage due to their close relationships. Notably, proB and preT

cells were excluded from analysis of the corresponding matured

cells because their characteristics are more closely aligned with

those of stem cells. We showed that the expression of most of the

identified lineage-specific TFs was highly consistent across all the

sub-groups and showed high statistically significant differential

expressions compared to stem cells. These indicate a potential

functionality in cell development and/or function. Noticeably, the

lack of chromatin accessibility at the TSS of some of these TFs

suggests the existence of regulatory mechanisms through distal-

regulatory elements. However, attempts to identify these distal

regulatory elements could be compromised by the presence of

multiple genes within the 100kb region from the TSS, although

integration of chromatin accessibility with expression of nearby

genes in the relevant cells may help determine if distal regulatory

elements are more likely associated with distantly expressed genes

rather than nearby non-expressed genes (22).

By performing a separate WGCNA analysis specifically for DCs,

our study revealed that cDCs and pDCs possess a set of exclusive

regulatory TFs. It further evidenced the central role played by

transcription factors such as IRF8, PU.1 (encoded by Spi1) and

DC-SCRIPT (encoded by Zfp366) in controlling cDC identity (18,

19, 69–71). Interestingly, we identified a substantially higher

number of transcription factors associated with cDC2s compared

to cDC1s, suggesting not only their functional differences but also

that cDC2s may represent a more heterogeneous population of

DCs, in contrast to the relatively well-characterized cDC1s in terms

of ontogeny and function (17, 45, 46, 72). Importantly, our in silico

analysis identified previously uncharacterized transcription factors

associated with DC lineage commitment. Among these

transcription factors, we demonstrated through a gain-of-function

approach that the basic helix-loop-helix transcription factor

BHLHA15 plays a regulatory role in progenitor cell fate decisions

by inhibiting differentiation into cDCs, although its overexpression

did not affect the subsequent specification of cDC1 vs. cDC2

subsets. These results suggest that BHLHA15 acts upstream of

cDC lineage bifurcation, most likely influencing the decision

made by the progenitor to commit to either pre-conventional

DCs or pre-plasmacytoid DCs. Our results further support

previous studies derived from murine models suggesting that

pDC and cDC lineage specification occurs within the bone

marrow, rather than being determined by signals from peripheral

tissues (49, 73). Although the molecular mechanisms by which

BHLHA15 inhibits cDC specification remain to be fully elucidated,

we posit that BHLHA15 expression in progenitors competes with
Frontiers in Immunology 15
ID2 for E protein binding (61). This competition could prevent

ID2-mediated inhibition of E2.2, thereby blocking the

differentiation into conventional dendritic cells (cDCs) (55, 74).
Conclusion

We developed a comprehensive regulatory network that elucidates

the control mechanisms underlying the development and function of

immune cells. This network serves as a strategic blueprint to guide

future research endeavors to decipher the role of newly identified

transcription factors in the formation of the immune system.
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