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From surfing to diving into the
tumor microenvironment
through multiparametric
imaging mass cytometry
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and Andrea Doni1

1Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy, 2Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
The tumor microenvironment (TME) is a complex ecosystem where malignant

and non-malignant cells cooperate and interact determining cancer progression.

Cell abundance, phenotype and localization within the TME vary over tumor

development and in response to therapeutic interventions. Therefore, increasing

our knowledge of the spatiotemporal changes in the tumor ecosystem

architecture is of importance to better understand the etiologic development

of the neoplastic diseases. Imaging Mass Cytometry (IMC) represents the elective

multiplexed imaging technology enabling the in-situ analysis of up to 43 different

protein markers for in-depth phenotypic and spatial investigation of cells in their

preserved microenvironment. IMC is currently applied in cancer research to

define the composition of the cellular landscape and to identify biomarkers of

predictive and prognostic significance with relevance in mechanisms of drug

resistance. Herein, we describe the general principles and experimental workflow

of IMC raising the informative potential in preclinical and clinical cancer research.
KEYWORDS

imaging mass cytometry, tumor microenvironment, multiplexed histopathology,
cancer, pancreatic cancer
Introduction

Cancer development and progression are regulated by a complex multistep process

involving heterogeneous interacting components (1, 2). The biological and spatial

relationship between the diversity of cells composing the tumor microenvironment (TME)

plays a pivotal role in tumor progression and in response to therapies (3). Recent technological

advances currently support cancer research. In particular, single-cell technologies have largely

increased the knowledge on TME landscape, providing detailed proteomic and genomic

profiles, and leading to the identification of new potential prognostic and therapeutic

biomarkers (4–6). Most of these technologies make use of a suspension of cells collected

from tumor specimens, thus lacking the spatial information of cell localization within tumor
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tissue. On the other hand, conventional tissue analysis technologies,

such as IHC and immunofluorescence, lack multiplex capabilities,

mainly due to limitations in the number of markers simultaneously

visualized on the tissue (7). To overcome these limitations, several in

situ imaging multiplex technologies have been applied to the study of

TME (8), including fluorescence-based multiplexed techniques (9–13).

However, most of these techniques involve multiple cycles of staining,

acquisition and stripping, leading to possible modifications to the

antibody-epitope affinity, damaging of the tissue architecture and

requiring precise image co-registration processes for the analysis

(10, 14–18). A different fluorescence-based solution has been recently

provided by the Orion platform, who developed a one-shot

immunofluorescence high-plex method, followed by Hematoxylin-

Eosin imaging on the same tissue slide (19). However, the number of

antibodies simultaneously analyzable is limited and a robust image

post-processing is required to correct for system aberrations and

separate the contribution of overlapping signals. In addition, tissue

autofluorescence, especially in formalin-fixed paraffin-embedded

(FFPE) tissue, represents a limitation in probe detection (20). Finally,

IHC chromogens and fluorophores are often not chemically stable,

thus limiting sample long-term storage.

Methods based on detection of elements and ions through mass

spectrometry, relying on non-fluorescent signals, represent

promising alternative technologies (21, 22). Among these mass

spectrometry-based techniques, Imaging Mass Cytometry (IMC)

(23), combines the multiplex capacity of mass cytometry (CyTOF,

Standard Biotools®) with IHC and is successfully applied in

preclinical and clinical cancer studies (24–28).
Imaging combined with mass
spectrometry: IMC

Differently from chromogen- and fluorescence-based technologies,

IMC relies on the use of metal-tagged antibodies, allowing the

simultaneous visualization of up to 43 different markers on the same

tissue slide (23, 29–31). The staining protocol is based on conventional

immunohistochemistry procedures and can be applied to both frozen

and FFPE tissues (28, 32, 33) (Figure 1A). Subsequently, a laser system

ablates the stained tissue with a spatial resolution of 1mm2 (Figure 1A).

The ablated material is then collected by the CyTOF analyzer, where it

is ionized through an inductively coupled plasma (ICP) (Figures 1B, C)

and the metal masses are quantified by a time-of-flight (TOF) mass

spectrometer (MS) (23, 34) (Figures 1D, E).Metals can be also linked to

DNA probes for the detection of mRNA, combining transcriptomic

and proteomic approaches (35). To date, 42 metals are commercially

available for the antibody conjugation, in addition to a cation nucleic

acid intercalator (191-193 Iridium), which is used to identify nuclei

(Standard Biotools®) (31, 34). Further signal from other isotopes can

be recorded during the acquisition as control channels for

contaminants (e.g. Ar, Ba, Pb). Metal tags in the optimal detection
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range (141-176 A) have less than 4% of signal spillover, avoiding signal

overlap (36, 37).

In addition to IMC, multiplexed ion beam imaging (MIBI) is

another technology that takes advantage of metal-tagged antibodies

(38, 39). MIBI is based on the principle of secondary ion mass

spectrometry: briefly, by applying an O2
+ duoplasmotron primary

ion beam to the tissue slides, secondary ions are released from the

tissue and directly introduced into a TOF-MS systems for the metal

detection. A MIBI detection system collects not only metal ions

from conjugated antibodies, but quantifies all the elements,

including those naturally present in tissues, such as 12C and 31P,

which can be used to infer the general structure of the tissue and the

nuclei, or 56Fe, which has been correlated with the amount of heme-

oxygenase-1 in spleen macrophages (39). Compared to IMC, that is

destructive, MIBI has minimal effect on the tissue, allowing multiple

rounds of acquisition of the same ROIs. In addition, the image

resolution is adjustable by regulating the acquisition time. However,

the multiplexing capacity of MIBI technology has often been limited

to 7 channels acquired in a single round, with only recent advances

improving it to 15-20 and up to 40 channels (40, 41).
IMC images and single-cell profiles

During IMC acquisition, the system records, for each ablated tissue

spot, the intensity of the signal (collected as dual counts) coming from

metal-tag antibodies and the coordinates of the spot inside the ablated

region of interest (ROI). Thus, ROIs can be visualized as multichannel

images, where individual ablated spots are identified as a pixel, and the

vector of metal-tag dual counts represents the pixel intensity for each

channel. In this context, it would be straightforward to analyze IMC

data applying traditional multiplexed immunofluorescence pipelines,

but various technical issues, such as different signal intensity and spatial

resolution, need to be addressed (42). As an example, data

normalization and background removal are affected by the mean

intensity value of IMC signals, that are often lower than a

conventional fluorescence signal. Moreover, approaches based on a

general simple analysis of the staining patterns and signal intensity

would overlook a large fraction of the data complexity. To properly

investigate the biological information provided by IMC acquisitions, it

is necessary to set-up a workflow consisting of sequential steps of data

pre-processing, cell segmentation (in order to convert pixel-based

signal into single-cell data), cell annotation and downstream analysis

(42). A variety of open-source libraries, algorithms and commercial

software tools have been applied to IMC data: the majority of these

tools addresses only a subset of the complete analytical workflow, while

others encompass the full range of processes, from raw data extraction

to downstream analysis (28, 43, 44).

Herein, we briefly describe the steps related to IMC analyses,

highlighting some of the existing methods. A more comprehensive

comparison of the analysis methods is reported in the following

references (23, 42, 45).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1544844
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Erreni et al. 10.3389/fimmu.2025.1544844
Pre-processing

IMC data are saved in .txt and MiniCAD Design file (MCD)

format, which can be easily visualized as false-color multichannel

images using the MCDviewer® software (Standard Biotools®).

Data from .MCD files are generally converted into multi-channel

.tiff/.ome.tiff files, suitable for downstream analyses, using either

MCD viewer or dedicated python libraries (mcdparser and napari)

(43). Alternatively, .txt files can be converted into multichannel .tiff

images using more generic matrix-to-tiff libraries (Figure 1F).

Although autofluorescence and signal overlap do not affect IMC

images, artifacts and background noise can have an impact on the

analysis. Hot pixels and speckles are the most common artifacts in

IMC images, generally due to detector abnormalities and non-specific

binding of aggregated antibodies or contaminants (46, 47). Artifacts

can also arise due to signal spillover, when a channel signal is

excessively high and affects the signal detection of neighboring
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channels. Background noise, mainly derived from the staining

procedures and non-specific antibody binding, is often detectable

and can be non-negligible for rare or low-expressed markers. Most of

these issues can be minimized by a proper titration of the antibodies

and an optimization of the staining protocol. In addition, signal

amplification methods have been proposed for IMC applications in

order to overcome issues related to low signal-to-noise ratio (48, 49).

Several pre-processing methods have been generated to remove

channel crosstalk, non-specific staining and aggregates, including

MAUI, IMC-Denoise and Fiji (ImageJ) plugins (28, 46, 50–52).
Cell segmentation

Cell segmentation is the most challenging and critical step in IMC

procedure and hence the correct interpretation of the data directly

depends on the accuracy of this process (53–55). In most of the cases,
FIGURE 1

Schematic principle of Imaging Mass Cytometry (IMC) technology and downstream analysis. (A) Antibodies (up to 43) conjugated with metal isotopes
are hybridized on tissue slides (FFPE or frozen) as done for conventional immunohistochemistry. Slides are then inserted in the IMC analyzer
(Hyperion Imaging System, Standard Biotools®) for data acquisition. (B) Within the IMC analyzer, a UV laser with a 1mm2 beam spot ablates the tissue,
generating a plume. (C) The plume is ionized by an inductively coupled plasma. (D) Ions are then filtered by a quadrupole mass spectrometer to
discard elements with lower atomic mass. (E) Ions with high atomic mass are finally quantified by a Time-of-Flight (TOF) mass spectrometer (MS).
(F) MCD files are converted into multi-channel and single-channel.tiff files. Image pre-processing is required to remove background noise and
artifacts, including speckles and hot pixels. (G) Pixel classification is applied to IMC images to generate probability maps and distinguish cell nuclei
(red), membrane/cytoplasm (green) and background (blue). Based on probability maps, watershed segmentation generates a cell mask for single-cell
identification. The cell mask can then be overlaid on the original IMC signal to assure the accuracy of the segmentation process (inset, Blue: Nuclei;
Green: CD45; Magenta: Pan-Cytokeratin). (H) Cell masks generated in the cell segmentation process are combined with raw.tiff files and exported as
a single-cell file containing the signal intensity and spatial coordinates of each marker in each cell. (I) These data are then used for cell annotation
and downstream analysis.
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cell segmentation relies on mixed manual/automatic methods for

pixel classification, where a model is trained to discriminate between

nuclear, cytoplasm/membrane and background pixels, in order to

generate a probability map (Figure 1G). Cell boundaries are then

automatically identified from the probability map using thresholding-

, watershed- or inference- based methods. The combination of Ilastik

single-pixel classification (56) and CellProfiler segmentation (57) is a

commonly used strategy for IMC data processing (28, 43, 53, 55).

This method requires, for each single experiment and panel, the

presence of operators with expertise both in histology, for the correct

identification of cells and background, and in bioinformatics, to

correctly train the models. To reduce the impact of operator-

dependent classification, more advanced approaches, based on

convolutional neural networks (CNN), have been developed, such

as Dice-XMBD and YOUPI. These methods only require a single

training on a set of images and can be applied to other experiments,

independently from the antibody panel used (47, 58). Regardless of

the implemented method, it is crucial to check the reliability of the

cell segmentation process by overlaying cell masks with specific

nuclear and cytoplasm/membrane staining, in order to assure the

accuracy of the downstream analysis (Figure 1H). In densely packed

tissues, the relatively low spatial resolution of IMC (1mm2/pixel) can

be insufficient to properly discriminate cell boundaries. To overcome

this limitation, some approaches combining fluorescence and IMC

have been developed: for example, the MATISSE pipeline combines

IMC-derived signal for cytoplasm/membrane and nuclear staining,

together with fluorescence DAPI staining on the same tissue

section (53). By acquiring the same region in fluorescence and

IMC modalities, it is possible to overlay DAPI and Iridium

signals, taking advantage of the higher resolution of the

immunofluorescence signal to better discriminate packed cells, thus

obtaining more accurate cell masks (53). Even if the cell segmentation

process has been done flawlessly, lateral signal bleed-through can

occur between cells in very close proximity, resulting in the

generation of marker expression patterns that are biologically

implausible, such as CD3/CD20 expressing lymphocytes, or CD3/

PanCK expressing epithelial cells (42). A specific compensation

algorithm named RedDSEA has been recently developed, to

correctly assign IMC signal to the proper cell of origin (54).
Data analysis

The process of cell segmentation results in the generation of a

cell mask, where the signal intensity for each acquired channel,

morphological parameter and tissue localization are associated to

every single cell. Thus, each ROI is generally associated with data

files (txt, csv, xls, etc.) containing per-cell information, that can be

then used for cell annotation and downstream analysis, using

essentially the same strategies developed for scRNA-seq and

cytometry (Figure 1I). Cells with incoherent signals, area or

debris should be discarded from the analysis at this step.

Dimensional reduction strategies, such as t-SNE and UMAP

(59, 60), are widely used for the 2D representation of these high-
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dimensional datasets, preserving as much as possible data structure.

Cell annotation is usually performed by unsupervised clustering of

cell analysis, allowing the unbiased identification of cell populations

and the potential discovery of new cell phenotypes (42, 43, 61).

Differently from scRNA-seq, where existing gene-sets can be used

for the annotation of new experiments, the cellular subtypes can be

defined in IMC experiments only on the base of detected channels,

and the level of detail used to characterize the sub-populations

depends on the chosen panel of markers. The main advantage of the

IMC data is that the information on tissue localization of the cells

and their spatial interaction is preserved. Thus, once a specific cell

population has been detected, besides relative frequency estimate, it

is possible to perform neighborhood analysis to identify preferred

cell partnership, recognize spatial enrichment or avoidance between

cell clusters, define spatial signatures involving different subtypes

and determine a specific cell network (61–63).

For IMC downstream analysis, both packages and software not

specifically developed for IMC analysis (such as Seurat, Histocat,

QuPath) are currently used, with few precautions and adjustments,

as well as more spatial-oriented pipelines such as Imacyte, Simpli or

Spicyr, depending on the specific research questions (42, 44, 62–65).

In conclusion, while IMC data processing and analysis are still

challenging for users with limited experience in image analysis and

computational skills, the wide number of developed pipelines

highlights the number of perspectives that can be applied and

biological questions that can be addressed by IMC.
Technical considerations

There are several aspects that need to be taken into

consideration in the setup of an IMC experimental workflow.

First, the selection of the markers included in the panel is crucial,

since the information derived from the IMC analysis directly

depend on this choice. A good balance between conventional

markers able to identify macro-population, and markers selected

to investigate specific biological questions is advisable. While the

latter subset could be used to describe in detail the specific

subpopulation of interest, the macro-population markers are

intended to identify, theoretically, all the cellular compartments

in the tissue, such as tumor cells, immune cells, stromal cells and

endothelial cells, to correctly support the cell segmentation

procedures (61). Alternatively, it is possible to use commercially

available kits for cell segmentation, which can be combined with

conventional IMC antibody panels, as well as broad spectrum

membrane and pan-Actin antibodies (27, 31, 66). As the

technology relies on the specificity and affinity of antibodies for

their targets, antibody validation is strictly required before and after

metal conjugation, since metal-tag can induce modifications and

affect the antibody performance (36). Antibodies should be tested

with conventional histological methods before and after metal-

conjugation, to confirm the immunodetection pattern. The use of

tissues of different origin, such as tonsils, lymph nodes as well as

tumor tissues, could be helpful (31). After metal conjugation,
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antibodies need to be titrated to get the optimal signal-to-noise

ratio. Antibody titration is also necessary to set up the right

conditions of antibody saturation for the recognition of its target,

and allow a semi-quantitative evaluation of the expression of the

different markers within the tissue. Therefore, the optimization of

antibody-panel is an expansive and time-consuming process, but

necessary to obtain reliable data. Indeed, most of the studies

reporting the application of IMC are provided with detailed lists

of antibodies included in the validated panels, which is extremely

helpful for the IMC community (31, 67, 68). Papers focusing on the

different aspects of the antibody validation process have been

published and libraries of validated tissue-specific panels have

been recently made available to the scientific community (69–71).

The selection of the ROIs to acquire represents another crucial step

to be considered. Generally, IMC images are small (in the range of

1-1.5mm2) compared to conventional entire tissue sections, so that

the acquisition of multiple ROIs within the same tissue slice is

mandatory. The number of ROIs to acquire per sample strictly

depends on the type of tissue and its heterogeneity: the most

rigorous methods for an appropriate sampling strategy is

generally based on the acquisition of a matched whole tissue

slide, stained with conventional histological methods, that can be

used as a reference sample. In addition, several statistical methods

have been developed to determine the best sampling strategies,

optimizing both the number and the size of the ROIs to acquire,

according to the tissue structure and the segregation level of specific

cell types (72–74). Alternatively, tissue microarrays (TMAs), in

which punches of tumors from different patients are selected and

arrayed on the same slide, represent an interesting option to analyze

large cohort of patients in a reasonable time and with affordable

costs, since they can be processed and imaged together (75, 76).
IMC in preclinical cancer studies

Preclinical mouse models of cancer have been widely used to

recapitulate human disease and to investigate the complex biological

processes occurring in tumor development and therapeutic responses

(77, 78). Although IMC has been largely applied to analyze the TME

in humans, only few studies have been published onmouse models of

carcinogenesis (Table 1). Among them, Glasson and colleagues, set

up a 31-antibody panel for the IMC investigation of FFPE mouse

models of cancer (79). By applying IMC analysis, they characterized

the tissue architecture and cell composition of B16-K1melanoma and

ApcD14+ intestinal models of carcinogenesis. In particular, in the B16-

K1 model, IMC analysis showed a preferential localization of T cells

at the periphery of the tumor mass, while macrophages were able to

infiltrate the tumor core, thus describing a feature that is typical of

immune-excluded tumors (79). Similarly, Van Maldegem et al.

developed a 27-antibody panel for frozen tissue of K-RAS mutated

mouse model of lung tumors (80). They analyzed the TME of mouse

lungs, providing quantitative information about the phenotype and

spatial relationship of stromal and immune infiltrating cells, and how

the inhibition of KRAS G12C promotes remodeling towards an

enhanced immune activation state (80).
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In addition to the description of the TME composition, IMC has

been used to analyze the response to treatment in preclinical models. In

syngenic models of hepatocellular carcinoma, IMC has been used to

demonstrate the role of the TME in response to treatment with anti-

PD-1 antibodies: interestingly, the infiltration of tumor-associated

macrophages (TAMs) with an M2-phenotype and the interaction

between T cells and cancer-associated fibroblasts (CAFs) were

associated with the resistance to treatment (81). Similarly, in a mouse

model of pancreatic cancer, it has been shown that the expression of

Cadherin-11 was associated with CAF pro-tumorigenic activity and

that the administration of anti-Cadherin-11 antibody was able to

inhibit this effect by decreasing the infiltration of FoxP3+ T cells in

the tumor (82). Recently, our group validated a 28-marker panel to

investigate the TME in orthotopic and genetic models of pancreatic

ductal adenocarcinoma (PDAC) (28). We compared the KPC model,

expressingmutant isoforms ofKRAS and TP53 genes in pancreatic cells

(83), and the Panc02-cell orthotopic transplanted model (84). While in

the Panc02 model stromal cells surrounded the dense neoplastic mass,

in the KPC model the desmoplastic stroma infiltrated the tumor and it

is characterized by the presence of cells expressing markers of CAFs,

such as aSMA, Vimentin and Desmin. In addition, markers included

in the panel allowed to discriminate KPC tumors having different grade

of desmoplasia. Distribution of blood vessels was different too: while in

the orthotopic model CD31+ blood vessels mainly surround the tumor

mass, in the KPC model blood vessels infiltrate the tumors, better

resembling the features of human PDAC (28). Moreover, the

composition and localization of immune infiltrating cells were

different between the models. In the orthotopic model, the tumor

core was mainly infiltrated by TAMs and CD8+ T cells. Differently, a

spatial association of CD8+ T cells, CD4+ T cells, neutrophils, dendritic

cells and TAMswas identified at the tumor-stromal interface and in the

KPCmodel (28). These differences could be due to the diverse nature of

the immune response, with the orthotopic model characterized by a

more acute inflammatory microenvironment compared to a mild,

chronic inflammation in the genetic model.

IMC has also been applied in studies aimed at comparing drug

delivery methods and pharmacodynamics. Strittmatter and

colleagues applied IMC, in combination with mass spectrometry

imaging, to analyze the biodistribution of an aurora kinase B inhibitor

(AZD2811) in patient-derived xenograft models of ovarian, lung and

colon cancer (85). By using a 27-antibody panel, they described the

cell composition and distribution in the TME. Subsequently, they

applied mass spectrometry imaging to visualize and quantify the

distribution of AZD2811-loaded nanoparticles. Finally, by combining

these techniques, they demonstrated an accumulation of the drug in

macrophage-rich regions. Similarly, the same group analyzed the

distribution and the effect of gemcitabine and its metabolites in the

KPC model of pancreatic cancer, revealing that gemcitabine

metabolites were able to induce DNA damage in regions

characterized by a high proliferation rate (86).

Since IMC detects metal isotopes, it can be used to monitor the

biodistribution of platinum-based therapies. In pancreatic cancer

patient-derived xenograft models, Chang and colleagues combined

the detection of platinum and a 14-antibody panel to evaluate the

accumulation of cisplatin in collagen-rich areas of the tumor (87).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1544844
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Erreni et al. 10.3389/fimmu.2025.1544844
TABLE 1 Summary of the studies using IMC to investigate the TME.

Author Research Target Tumor Reference

Glasson et al Preclinical Melanoma and ApcD14+ intestinal model (79)

Van Maldegem et al Preclinical Lung cancer (80)

Zabransky et al Preclinical Hepatocellular carcinoma (81)

Peran et al Preclinical Pancreatic cancer (82)

Erreni et al Preclinical Pancreatic cancer (28)

Strittmatter et al Preclinical Ovarian, lung and colon cancer (85)

Strittmatter et al Preclinical Pancreatic cancer (86)

Chang et al Preclinical Pancreatic cancer (87)

Shen et al Clinical Hepatocellular carcinoma (92)

Ravi et al Clinical Glioblastomas (93)

Colombo et al Clinical B-cell lymphomas (94)

Rigamonti et al Clinical Non-small cell lung carcinoma (27)

Sorin et al Clinical Lung cancer (75)

Jackson et al Clinical Breast cancer (76)

Ali et al Clinical Breast cancer (95)

Danenberg et al Clinical Breast cancer (96)

Rogenes et al Clinical Breast cancer (31)

Tornaas Clinical Head and neck squamous cell carcinoma (99)

Xiang et al Clinical Lung squamous cell carcinoma (100)

Cords et al Clinical Breast cancer (101)

Cords et al Clinical Non-small cell lung cancer (68)

Elyada et al Clinical Pancreatic cancer (105)

Sussman et al Clinical Pancreatic cancer (106)

Erreni et al Clinical Pancreatic cancer (61)

Oetjen et al Clinical Myelodysplastic syndrome (116)

Li et al Clinical Lung squamous cell carcinoma (91)

Zhang et al Clinical Colorectal cancer (117)

Bertocchi et al Clinical Colorectal cancer; liver metastasis (120)

Fischer et al Clinical Breast cancer; lymph node metastasis (123)

Kuett et al Clinical Breast cancer; bone, soft tissue, liver and brain metastasis (124)

Hoch et al Clinical Metastatic melanoma (125)

Martinez-Morilla et al Clinical Melanoma (126)

Le Noac'h et al Clinical Small cell lung cancer (127)

Hiltbrunner et al Clinical Non-small cell lung cancer (128)

Bortolomeazzi et al Clinical Colorectal cancer (129)

Mi et al Clinical Hepatocellular carcinoma (66)

Carvajal-Hausdorf et al Clinical Breast cancer (130)

Wang et al Clinical Breast cancer (131)

Cao et al Clinical Gastric cancer (132)

Cao et al Clinical Colorectal cancer (133)
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IMC in clinical cancer studies

IMC has been widely applied to investigate the composition of

TME, the identification of new biomarkers and the effectiveness of

therapeutic approaches in several studies on human cancer (25, 88,

89). As previously discussed, IMC allows to visualize up to 43

different markers on the same tissue slide, providing not only

qualitative but also quantitative information about the amount

of different metal-conjugated antibodies in the corresponding
Frontiers in Immunology 07
tissue spot. The combination of multiple antibodies is necessary

to adequately identify different cellular phenotypes and their

state of activation, as well as the spatial relationship of different

cel l populat ions within tumor, immune and stromal

compartments (Figure 2A).

These aspects make IMC particularly appropriate for the in-

depth, single-cell analysis of cancer tissues and for the correlation

between imaging data with patients’ clinical and pathological

features (Figures 2B, C).
FIGURE 2

Schematic representation of IMC analysis of the tumor microenvironment (TME). (A) TME is a complex ecosystem where cells of different
phenotypes, such as tumor cells, immune cells, stromal cells and endothelial cells, immerse in a reactive extracellular matrix, cooperate to influence
tumor progression and response to therapeutic intervention. IMC analysis provide information related to the phenotype of cells, their functional state
and their localization in the TME, as well as the composition of the extracellular matrix. (B) These information can be analyzed by single-cell
visualization with dimensional reduction strategies, such as t-SNE and UMAP, and cell clustering, as well as by investigating cell localization and their
spatial relationship (neighborhood analysis) in the TME. (C) These data can be then correlated with patients’ clinical parameter and used to compare
different cohorts of patients to find markers and signatures able to predict patients’ outcome and prognosis.
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Profiling the cellularity of the tumor
microenvironment

Several studies reported the feasibility of IMC to describe the

complexity of the TME in different cancer subtypes and for the

quantification of specific cellular markers (Table 1) (33, 90, 91).

Shen and colleagues applied IMC for the investigation of TME in

human hepatocellular carcinoma (HCC): they quantified 36

biomarkers in a cohort of 134 HCC patients and 7 healthy

donors and identified three major types of intratumor regions,

characterized by a distinct distribution patterns of cancer, stromal

and immune cells. In addition, the analysis of the cellular

neighborhood showed that different types of cells were spatially

associated to form regional functional units, which are relevant to

patients’ clinical outcomes (92). Similarly, Ravi et al. provided a

detailed description of the TME in glioblastomas, confirming its

pivotal role in tumor development (93). In another study on diffuse

large B-cell lymphomas (DLBCL), IMC has been used to

characterize tumor and immune cell architecture, in correlation

with clinicopathological features. The data showed that, instead of

being histo-pathologically monotonous, DLBCL displays a

complex tumor architecture and that modification in tumor

topology can be associated with clinically relevant features (94).

More recently, Rigamonti and colleagues combined artificial

intelligence (AI)-aided histopathology with IMC to investigate the

microenvironment of non-small cell lung carcinoma (NSCLC) (27).

Specifically, an AI-based approach was applied to hematoxylin and

eosin (H&E) stained NSCLC tissues to identify tumor cells and

generate a classifier of neoplastic cell spatial clustering. Then,

consecutive sections were used for the IMC analysis of 24

markers related to tumor, stromal and immune cell populations

and immune activation, resulting in the identification of 11

macrophage clusters and T cells with different tissue localization.

Combining AI-powered histopathology and IMC, the authors

provided insights into NSCLC microenvironment and used the

data to translate tumor characteristics into a classifier capable to

predict patients’ prognosis and response to therapy (27). Still in the

context of lung cancer, Sorin and colleagues applied IMC to

investigate the tumor and immunological landscape in a large

cohort of lung adenocarcinoma patients (75). Using deep

learning, the authors were able to predict patients at higher risk

of progression after surgery, which could be extremely useful for

clinical management after surgical resection (75).

In breast cancer, IMC approach allowed the identification of

multiple cellular phenotypes in the TME, providing a refined

histopathological classification of tissue samples (76). In addition,

single-cell spatial analysis described cellular inter- and intra-tumor

heterogeneity, resulting in the identification of novel subtypes of

breast cancer associated with distinct clinical outcome (76). The same

group applied IMC on tissues from a genetically well-characterized

cohort of breast cancer patients from the Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) (95). They

found that genomic diversities correspond to differences in tumor
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and stromal cell phenotypes, showing how genomes shape the

composition and the architecture of TME in breast cancer. Also in

this cohort of patients, IMC data revealed that cell phenotype and

cellular neighborhood were associated with patients’ prognosis (95).

Similarly, Danenberg and colleagues demonstrated the presence of

different structures of TME in breast cancer subtypes showing

association with somatic alterations and genomic profiles (96).

These structures are characterized by enrichment for CASP8 and

BRCA1 mutations and are associated with poor prognosis in

estrogen-receptor positive breast cancer (96).

Several studies demonstrated the pivotal role of CAFs in shaping

the tumor microenvironment (97, 98). CAF-focused IMC panels

have been validated in the context of breast cancer and head and neck

squamous cell carcinoma (HNSCC), resulting in the identification of

distinct CAF subtypes, expressing different levels of aSMA and FAP

(Fibroblast Activation Protein) (31, 99). Xiang and colleagues

described a specific interaction between CAFs and monocytic

myeloid cells in the TME of lung squamous carcinoma,

highlighting the role of CAFs in regulating monocyte recruitment

and differentiation (100). More recently, Cords and colleagues

combined single-cell RNA sequencing and IMC to identify nine

CAF subtypes and one pericyte population in human breast cancer

(101). In particular, IMC analysis provided information about the

spatial distribution of CAFs in the TME and their relationship with

tumor and stromal cells, vessels and classes of neighboring cells.

Moreover, they proposed a general classification system for CAFs that

can be useful for their identification and functional description across

different cancer types (101). The same group analyzed the CAF

population in a large cohort of NSCLC, identifying 11 CAF

phenotypes and demonstrating that CAFs represent an

independent prognostic factor for NSCLC patients’ survival. In

addition, they showed that the CAF phenotype influenced the TME

composition, regulating inflammation and immune cell infiltration

(68). In PDAC, CAFs play a pivotal role in shaping TME (102).

Although IMC has been applied to study the composition of

pancreatic islet in both type 1 and type 2 diabetes (103, 104), only

a limited number of studies have employed IMC for this purpose. In

PDAC, IMC was used to show the presence of a novel identified CAF

subtype, defined as antigen-presenting CAFs (apCAFs), which

expresses MHC-II and CD74, but is negative for the classical co-

stimulatory molecules (105). They further demonstrated that apCAFs

are able to activate CD4+ T cells, confirming their immune-

modulatory capabilities. In addition, Sussman and colleagues

identified a specific subset of CD68+/CD44+/HLA-DRLow

macrophages located within the vascular niche and not spatially

associated with T and B cells, suggesting a unique pro-angiogenic

activity different from the other, more abundant, antigen-presenting

cells in the PDACmicroenvironment (106). More recently, our group

applied a 31-antibody panel to investigate the cellular composition of

TME in 8 PDAC patients (61). We defined 19 different

subpopulations of CAFs having distinct phenotype, tissue

localization and spatial relationship with other cells in PDAC TME

(61). Beside the already described myCAFs and apCAFs, we
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identified a subpopulation of podoplanin+/cadherin-11+ CAFs, which

were associated with higher levels of carbohydrate antigen 19-9

(CA19-9), shorter disease-free survival (DFS) and overall survival

(OS). In addition, we found a spatial association of podoplanin-

expressing CAFs with CD4+ T cells and CD44+ macrophages,

suggesting a role in the modulation of immune response.

Moreover, we identified 4 distinct CAF subtypes expressing FAP,

that were specifically enriched in regions of tumor-stroma interface

and associated with tumor cells and CD44+ macrophages. This

observation suggested the presence of an extracellular matrix

remodeling niche, that sustains tumor cell invasion and promotes

PDAC progression. Of note, FAP+ CAFs were also associated with

higher levels of CA19-9 (61). Moreover, we identified 7 different types

of tumor cell subtypes, characterized by the differential expression of

markers associated with disease progression, invasion and resistance

to therapy, including carbonic anhydrase IX (CA-IX), S100A4 and

CD44 (61, 107–109). Moreover, we identified a specific subtype of

tumor cells expressing PTX3, a molecule already associated with

tumor progression in several types of cancer (110–115), in patients

having distant metastasis at the time of the diagnosis.

As mentioned earlier, the possibility to combine multiple

markers in the same tissue slide provides the identification of new

complex cell phenotypes. Oetjen and colleagues described a new

population of erythroid cells expressing CD71, CD235a and high

levels of the proliferative marker Ki-67 in erythroid islands in

normal bone marrow samples and myelodysplastic syndromes

(116). In lung squamous cell carcinoma, a new subpopulation of

CD3-/CD4+ cells, characterized by the high expression of FoxP3

and TNFa, has been identified, suggesting their proinflammatory

role in the tumor immune microenvironment (91). Similarly, in

colorectal cancer, IMC allowed the spatial identification of an

abnormal EpCAM+/CD4+ T cell population, which also expressed

CCR5, CCR6 and increased levels of phospho-p38 MAPK and

phospho-MAPKAPK2 (117).

It has been shown that in the metastatic process, the primary

tumor can affect the metastatic target organ to form a pre-

metastatic niche that supports cancer cell metastasis and growth

(118, 119). Bertocchi and colleagues applied IMC to analyze the

pre-metastatic microenvironment in colorectal cancer liver

metastasis (120). They found that following damage to the gut

vascular barrier (121, 122), C17 Escherichia Coli colonizes the liver

and generates a microenvironment that is suitable for colorectal

cancer cell metastasis. In particular, they combined IMC with

fluorescence in situ hybridization (FISH) and RNA sequencing,

showing that bacteria preferentially localized close to SOX9+ cancer

cells, both in primary and liver metastatic tumors (120). In breast

cancer, Fischer and colleagues compared the single-cell phenotypes

of primary tumors and matched lymph node metastases (123). They

observed a phenotypic diversity between primary tumor and

metastatic lymph node and identified single-cell phenotypes of

tumor cells, prone to disseminate, that are associated with

patients’ prognosis (123). More recently, Kuett and colleagues

assembled three different antibody panels (75 markers) to study
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the tumor and immune cell composition of primary and metastatic

breast cancer tissues (124). Interestingly, they found that the

proportion of the same tumor cell phenotypes differs between

primary tumors and matched metastatic tissues. In addition,

immune cell infiltration is generally reduced in the metastatic

sites, showing a higher proportion of remodeling myeloid cells, as

well as cytotoxic and exhausted T cells (124).

In conclusion, IMC provided the possibility to deeply describe

the composition of TME, leading to the identification of

phenotypically and spatially distinct new rare cell subpopulations,

that can be potentially used as innovative prognostic and

therapeutic markers.
Correlating IMC data with disease’s
outcome

In addition to the description of the complexity of the tumor

microenvironment and the identification of new potential

biomarkers, IMC has been successfully applied to evaluate

patients’ responses to anti-cancer treatments. Hoch and

colleagues demonstrated that, in metastatic melanoma,

chemokines CXCL9 and CXCL10 were associated with CXCL13+

exhausted T cells, suggesting their role in recruiting B cells and in

the formation of tertiary lymphoid structures (TLS). In addition,

TLS showed a spatial enrichment of naïve and naïve-like T cells,

which are involved in anti-tumor immunity and are predictive of

response to immune checkpoint blockade (125). Similarly, IMC has

been applied to correlate the composition of TME and the survival

of melanoma patients treated with immunotherapy, pointing out

some potential predictive biomarkers, such as beta2-microglobulin

(126). In small-lung cancer, Le Noac’h and colleagues used IMC to

identify predictive biomarkers to stratify patients who could benefit

from the combination of chemotherapy and anti-PD-L1

immunotherapy. They found that higher infiltration of CD4+/

CD8+ and regulatory T cells was associated with longer

progression-free survival (127). More recently, Hiltbrunner and

colleagues investigated the mechanism responsible for the acquired

resistance to immune-checkpoint inhibitor (ICI) therapy in patients

with NSCLC: IMC analysis revealed that in resistant neoplastic

lesions, despite the broadly distributed infiltration, T cells co-

expressed a variety of immune checkpoints and immune

modulatory enzymes, resulting in an exhausted T cell phenotype

having limited effector functions that, in turn, can be responsible for

the lack of response to ICI therapy (128). In colorectal cancer

(CRC), response to immune checkpoint blockade is variable.

Bortolomeazzi and colleagues applied IMC to demonstrate that,

in hypermutated CRC, anti-PD1 drugs released the PD1-PD-L1

interaction between macrophages and CD8+ T cells, finally

promoting cytotoxic antitumor activity (129). In a recent study

on hepatocellular carcinoma, IMC analysis showed that, in patients

treated with a combination of cabozantinib and nivolumab, the

spatial interaction between CD8+ T cells and Arginase 1-expressing
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macrophages represents a key feature of the TME in non-

responders. In addition, an interaction network between

macrophage-enriched and lymphocyte-enriched areas with tumor

regions was observed in non-responders (66). Carvajal-Hausdord

and colleagues applied IMC to analyze tumor tissues in

trastuzumab-treated breast cancer patients: they found that the

expression of HER2-extracellular segment (HER2-ECD) was

reduced in relapsed patients. Moreover, authors found a

correlation between high expression of HER2-ECD and cytotoxic

T cell response: this observation could explain the better prognosis

of trastuzumab-treated patients showing high tumor-infiltrating

lymphocytes (130). More recently, Wang and colleagues analyzed

the effect of immune checkpoint blockade (ICB) in patients with

triple-negative breast cancer (TNBC) (131). IMC analyses on 42

markers revealed that CD8+ TCF1+ T cells and MHC-II+ cancer

cells are predictors of response to ICB treatment. In addition,

responsive tumors are highly infiltrated by granzyme B+ T cells,

while in resistant tumors cancer cells are CD15-positive (131).

As already described in the preclinical model, IMC can be used

to monitor the biodistribution of platinum-based therapies in both

tumor and non-tumor tissues. In gastric cancer, it has been shown

that platinum was detectable up to 72 days after preoperative

chemotherapy in resected surgical samples and its concentration

correlated with an increased pathological response. In addition,

platinum was strongly associated with collagen-rich regions, thus

explaining the variability in platinum concentration in tumor

tissues among patients (132). The same group also showed that in

colorectal cancer patients treated with FOLFOX, platinum was

detectable in skin biopsies more than 60 months after the

completion of the therapy, providing a possible explanation for

the oxaliplatin-induced peripheral sensory neuropathy, observed as

an adverse effect of the treatment (133).

In summary, IMC analysis can provide important information

related to the effect of therapeutic interventions on the tumor

microenvironment. Due to the heterogeneity of cancer, the

selection of the right treatment plans and the assessment of

efficacy responsiveness are of primary importance for cancer

patients. In this context, IMC provides a deep single-cell analysis

of the phenotypes and interactions of cells in TME, promoting the

tumor pathological classification, the prediction of the response to

therapeutic treatments and the assessment of the risk of

patients’ relapse.
Future direction and perspectives

In the last decade, the field of multiplex imaging, and in

particular IMC, has grown rapidly and the number of available

protocols, designed panels and papers applying IMC to address

biological questions is constantly increasing. In this review, we

provided several examples of the contribution of IMC in preclinical

and clinical studies in the field of oncological research. With the

possibility to analyze multiple markers on the same tissue section,
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multiplexed methods, IMC allows the identification of cells with

different phenotypes, as well as their localization and spatial

interaction in the TME, and to correlate this information with the

risk of tumor progression, the efficacy of therapeutic interventions

and, finally, patients’ prognosis. The technology is still evolving,

with the introduction of new features at both hardware and software

level, such as the recently introduced possibility to acquired whole

slides sections, sampling the tissue with a lower spatial resolution.

Although this approach prevents the possibility of a single-cell

analysis, it allows a more comprehensive distribution of markers in

the tissue section, performing a spatial clustering of the targeted

proteins that could serve as the bases for ROI positioning in the

subsequent analyses at single-cell levels. In addition, a new

methodology based on X-ray fluorescence imaging technology

has been recently proposed for the detection of lanthanide

metal-conjugated antibodies (134): this approach has the

advantage to preserve the integrity of the sample and can be

extended to 3D imaging, but it currently shows lower sensitivity

compared to IMC and requires the use of a synchrotron (134).

Another direction for the development of IMC is represented by its

application in 3D, that would dramatically improve the analysis of

spatial processes, including tumor angiogenesis and cancer cell

invasion (135).

Multi-omics technologies are rapidly developing (136) and the

integration of genomic and mass spectrometry imaging data with

IMC analysis would allow to obtain and correlate complementary

information, to go even deeper in the characterization of the TME

and to identify signatures capable to predict tumor progression and

response to therapy. In addition, IMC analysis can be used to

validate, at proteomic level, data related to the transcriptional

regulation of genes in the TME. To this aim, efforts have been

made to increase the spatial resolution of spatial transcriptomic and

mass spectrometry imaging towards the single-cell (137–139). In

addition, computational protocols and algorithms able to integrate

different types of datasets derived from multi-omics technology are

necessary (140, 141).

In conclusion, IMC-based studies significantly contribute to

unveil the complexity of TME and to discover new predictive

signatures of tumor progression and mechanisms of resistance to

therapy. Currently, IMC is mainly applied for research purposes.

To integrate this technology into clinical practice, efforts are

needed to standardize staining procedures and data analyses, and

to harmonize data, to ensure the generation of reproducible and

reliable information that can be used for the development of effective

diagnostic and therapeutic approaches for precision medicine.
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