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Exosomes are tiny vesicles secreted by the vast majority of cells and play an

important role in physiological as well as pathological processes in the body.

Circulating exosomes in Lung Transplant Recipients (LTxR) undergoing rejection

contain mismatched Human Leukocyte Antigens (HLA) and lung-associated

autoantigens (e.g., K-alpha1 microtubule protein and collagen V), which may

induce autoantibodies, and the circulating exosomes trigger an immune

response that results in rejection of the lung transplant recipient. This article

discusses the role of exosomes in lung transplantation from three perspectives:

exosomes as a biomarker for rejection after lung transplantation; the mechanism

of exosome-mediated activation of the immune response; and the potential of

exosomes as a therapeutic strategy.
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1 Introduction

Organ transplantation is the most effective treatment for end-stage organ failure, and

the establishment of organ transplantation technology is one of the most important

advances in human biomedicine in the 20th century. Lung transplantation is the only

effective treatment for end-stage lung disease (1–3). Since 1990, more than 70,000 cases

have been completed worldwide (4). In recent years, lung transplantation (LTx) technology

has been developing rapidly, but at the same time, it faces many obstacles. Basic research on

transplantation immunology is a necessary way to solve the rejection reaction of organ

transplantation and a source of driving force for the development of technological

innovation related to organ transplantation. With the continuous development of

medical technology and immunosuppression, LTx has become more and more mature,

but there are still many postoperative complications, such as infection, acute rejection

reaction (AR), chronic rejection reaction (CR), acute pulmonary edema, and cardiovascular
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disease, etc. Among them, CR is the most common after LTx, with

an incidence of about 50% within 5 years and a rate of up to 90%

within 10 years (5).

Exosomes are nanovesicles with an average size of 40-100 nm.

They contain membrane and cytoplasmic proteins, as well as

molecules essential for exosome biogenesis, and are secreted by a

variety of cells and released in biological fluids (6). The composition

of exosomes is highly dependent on the biological function of the

parental cells. Thus, exosomes contain specific microRNAs

(miRNAs), mRNAs, and proteins associated with specific cell

types, including epithelial cells, B cells, T cells, and Dendritic

Cells (DCs) (7–9).

Exosomes are involved in physiological, (e.g., embryo

implantation, regulatory functions of semen, pregnancy,

regulation of immune responses) and pathological processes such

as cancer, development of neurodegenerative diseases (8, 10). They

are also involved in rejection/tolerance of recipient kidney

transplants (11, 12) as well as in the pathogenesis of autoimmune

diseases, including rheumatoid arthritis, desiccation syndrome and

systemic lupus erythematosus. Exosomes can functionally transfer

their cargoes such as mRNAs and miRNAs to recipient cells, Thus,

with respect to the transfer of cargo and its effects on other cells,

exosomes can be considered carriers of cell-cell communication,

just like other types of cell-cell communication (including secretion

of soluble factors [e.g., cytokines and chemokines], as well as cell-

contact-dependent communication [e.g., cytosolic nibbling,

membrane nanotubes, or nibbling]) (13, 14). Exosomes use

different mechanisms to carry out their pathologic actions. In the

case of transplantation, exosomes participate in the activation or

suppression of the immune response by presenting allogeneic MHC

peptides to allogeneic-specific T cells.

Based on the above characteristics, exosomes play an important

role in immune activation or suppression of allograft

immunization. The presence of alloantigens, cell-specific antigens,

peptides, and co-stimulatory molecules on the surface of exosomes,

as well as the presence of nucleic acids, lipids, small RNAs, and

transcription factors inside exosomes that are released after

transplantation, make exosomes one of the attractive targets for

the identification of biomarkers related to allogeneic

transplantation immunity. Circulating exosomes in Lung

Transplant Recipients (LTxRs) are characterized by the presence

of tissue-associated Self-Antigens (SAgs)-K-a1 Tubulin (Ka1T) and

Collagen V (Col-V), costimulatory molecules, the transcription

factor Nuclear Factor kB (NF-kB), Hypoxia-Inducible Factor

(HIF), 20S proteasome, MHCP, and other factors, MHC class II

molecules and its transcription factor CIITA (15). By studying the

biological components of exosomes, it is crucial to understand their

role in transplant rejection. Sigdel et al. (16) demonstrated that

urinary exosomes isolated from acutely rejected kidney transplant

recipients (KTxR) contained proteins associated with inflammatory

responses; urinary exosomes isolated from stable KTxR did not. A

recent report by Dieude et al. (17) also showed that exosomes

isolated from HUVEC and mouse endothelial cells contain active

20S proteasomes that increase the immunogenicity of the exosomes,

leading to the production of antibodies against renal-associated SAg
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bead proteoglycans in a mouse model. Different cargoes are

transferred between different cell populations and have

different roles.

In this review, we will explore recent advances in exosomes in

terms of isolation, characterization techniques and half-life,

explaining in detail the different types of exosome-mediated

allograft immunization, emphasize the value of exosomes released

during post-transplant rejection as biomarkers and therapeutic

targets, review and discuss the triple roles of exosomes in

transplantation recipients or in transplantation models (role as

Antigen-Presenting Vesicles (APVs), role as biomarkers, and role

as therapeutic strategies) in order to elucidate their role in the field

of transplantation[as shown in Figure 1].
2 Current status and technological
advances in exosomal research:
isolation, identification and half-life

The exosomes contain a variety of biologically active substances,

such as proteins, lipids and nucleic acids, and these components not

only reflect the physiological state of the mother cell, but also

influence the progression of the disease by regulating the function of

the target cells (18).
2.1 Gold standard techniques in exosome
research

Exosome research has gained significant attention due to the

critical role these extracellular vesicles play in intercellular

communication and their potential as biomarkers for various

diseases. The standard techniques for isolating and characterizing

exosomes are crucial for advancing this field. The gold standard

methods include ultracentrifugation, immunoaffinity methods, and

commercially available separation kits. Each of these techniques has

its advantages and limitations, and their effectiveness can vary based

on the specific application and sample type (19) variations in

protocols, such as the number of centrifugation cycles and the use

of sucrose gradients, can impact the purity and yield of isolated

exosomes (20).
2.2 Best separation methods for exosomes

The isolation of exosomes is a critical step in understanding

their biological functions and potential therapeutic applications.

Various methods have been developed to separate exosomes from

biological fluids, each with its advantages and limitations. The

choice of separation method can significantly influence the yield,

purity, and functionality of the isolated exosomes. Among the most

commonly used techniques are ultracentrifugation, size exclusion

chromatography, and immunoaffinity capture. Ultracentrifugation,

while being the traditional gold standard for exosome isolation, can
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be time-consuming and may result in the co-isolation of non-

exosomal contaminants. Size exclusion chromatography offers a

more gentle approach, allowing for the separation of exosomes

based on size, thus minimizing damage to their structure.

Immunoaffinity capture utilizes antibodies specific to exosomal

surface markers, providing high specificity but requiring prior

knowledge of the markers present on the exosomes of interest

(21). Recent advancements in microfluidic technologies and novel

separation techniques continue to enhance the efficiency and

specificity of exosome isolation (22), paving the way for their

application in diagnostics and therapeutics (23).
2.3 Description of common methods for
exosome characterization

Nanoparticle Tracking Analysis (NTA) is a widely utilized

technique for characterizing exosomes based on their size and

concentration. NTA employs laser light scattering to track the

Brownian motion of individual nanoparticles, allowing for real-

time measurement of their size distribution and concentration in a

sample. The technique is particularly advantageous due to its ability

to analyze particles in the size range of 40 to 1000 nm, which
Frontiers in Immunology 03
encompasses the typical size of exosomes (24). One of the key

strengths of NTA is its capability to provide a comprehensive size

distribution profile, which is critical for understanding the

heterogeneity of exosome populations derived from different

biological sources. Moreover, NTA is relatively quick and requires

minimal sample preparation, making it suitable for high-

throughput applications (25). However, NTA also has limitations,

including sensitivity to sample concentration and the potential for

inaccuracies in size estimation due to the presence of aggregates or

contaminants (26). Despite these challenges, NTA remains a

valuable tool for exosome characterization, particularly when

combined with other analytical techniques to enhance the

robustness of findings.

Transmission Electron Microscopy (TEM) is a powerful

imaging technique that allows for the visualization of exosomes at

the nanoscale. TEM provides detailed morphological information

about exosomes, including their size, shape, and structural integrity,

which are crucial for understanding their biological roles (27). The

method involves the transmission of electrons through ultra-thin

sections of exosome preparations, yielding high-resolution images

that can reveal the presence of specific surface markers through

immunogold labeling techniques (28). TEM is particularly

beneficial for examining the ultrastructure of exosomes and
FIGURE 1

Three roles of the exosomes in transplantation recipients or in transplantation models: (A) Role as Antigen-Presenting Vesicles; (B) Role as as
biomarkers; (C) Role as therapeutic strategies.
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assessing their purity, as it enables researchers to distinguish

exosomes from other extracellular vesicles and contaminants (28).

However, the application of TEM is limited by its requirement for

extensive sample preparation, which can introduce artifacts and

may alter the native state of exosomes (27). Additionally, TEM is

not suitable for quantitative analysis of exosome populations,

making it essential to complement this method with quantitative

techniques like NTA or proteomic analysis for a comprehensive

understanding of exosome characteristics.

Proteomic analysis is a critical method for characterizing the

protein composition of exosomes, providing insights into their

functional roles and potential therapeutic applications. This

technique involves the identification and quantification of

proteins present in exosomes using Mass Spectrometry (MS),

which has become the gold standard for proteomic studies (29).

Proteomic profiling of exosomes can reveal distinct protein

signatures that correlate with specific biological processes or

disease states, thereby aiding in the identification of potential

biomarkers for diagnostics or therapeutic targets (30). High-

throughput proteomic technologies have advanced significantly,

allowing for comprehensive analysis of exosomal proteins,

including post-translational modifications that may influence

their function (31). However, challenges remain in standardizing

sample preparation methods and ensuring reproducibility across

studies, particularly given the complexity and heterogeneity of

exosomal samples (32). Despite these challenges, proteomic

analysis is an invaluable tool for elucidating the biological roles of

exosomes and advancing their application in clinical settings.

In conclusion, each of these methods—NTA, TEM, and

proteomic analysis—offers unique advantages for the

characterization of exosomes. A comprehensive characterization

approach that integrates these techniques can enhance our

understanding of exosome biology and facilitate their application

in diagnostics and therapeutics.
2.4 Exosome surface markers and internal
protein identification techniques

Western blotting remains a foundational technique for protein

analysis, allowing for the detection and quantification of specific

proteins in exosome samples. This method involves the separation

of proteins by gel electrophoresis, followed by transfer to a

membrane where they can be probed with specific antibodies.

The sensitivity and specificity of Western blotting make it

particularly suitable for identifying exosomal proteins, as it can

detect low-abundance proteins that may play critical roles in disease

processes (33).

However, the technique does have limitations, including the

potential for cross-reactivity and the need for high-quality

antibodies. Recent advancements have sought to improve the

efficiency of Western blotting, such as optimizing antibody

concentrations and using total protein normalization methods to

enhance quantification accuracy (34). Additionally, novel strategies,

such as the use of aptamers instead of antibodies, have been
Frontiers in Immunology 04
explored to provide a more cost-effective and efficient approach

to protein detection (35). Overall, Western blotting continues to be

a valuable tool for exosome research, particularly in the context of

identifying disease-associated proteins.

Flow cytometry is a powerful technique that allows for the rapid

analysis of exosome populations based on their size and surface

markers. This method utilizes laser technology to analyze individual

exosomes as they pass through a detection point, providing

information on their physical and chemical properties. With the

ability to simultaneously measure multiple parameters, flow

cytometry can identify specific exosome subpopulations based on

the expression of surface proteins, which is particularly useful for

understanding their roles in various biological processes (36). The

use of fluorescently labeled antibodies enables the quantification of

exosome surface markers, facilitating the identification of exosomes

derived from specific cell types or disease states. Recent innovations

in imaging flow cytometry have further enhanced the capabilities of

this technique, allowing for the visualization of exosomes while

maintaining high throughput (37). However, challenges remain,

such as the need for standardized protocols to ensure

reproducibility and the potential for signal overlap when

analyzing multiple markers. Despite these challenges, flow

cytometry remains an essential tool for exosome characterization

and has significant implicat ions for diagnost ics and

therapeutic monitoring.

Mass spectrometry (MS) has emerged as a critical technique for

the comprehensive analysis of exosomal proteins and their

molecular constituents. This method provides high sensitivity and

specificity, allowing for the identification and quantification of

proteins, lipids, and nucleic acids within exosomes (38). Mass

spectrometry can be combined with various sample preparation

techniques, such as liquid chromatography, to enhance the

separation and identification of complex mixtures (39). The

ability to analyze post-translational modifications and protein

interactions makes mass spectrometry particularly valuable for

understanding the functional roles of exosomal proteins in

cellular communication and disease progression. Recent

advancements in mass spectrometry technologies, including high-

resolution mass analyzers and novel ionization techniques, have

significantly improved the detection limits and accuracy of exosome

analysis (40). However, challenges such as sample complexity and

the need for robust bioinformatics tools for data interpretation

remain. Overall, mass spectrometry represents a powerful approach

for elucidating the molecular profiles of exosomes, providing

insights into their biological significance and potential as

therapeutic targets.
2.5 Half-life of exosomal markers

Understanding the in vivo half-life of exosomes is critical for

their application in transplant immunology, particularly regarding

their stability and efficacy as therapeutic agents. Studies have

demonstrated that exosomes can exhibit variable half-lives

depending on their origin and the biological environment (41).
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For instance, exosomes derived from mesenchymal stem cells

(MSCs) have shown prolonged circulation times in vivo, which

enhances their potential as therapeutic agents for promoting graft

survival and tissue repair. The half-life of exosomes can be

influenced by factors such as their size, surface charge, and the

presence of specific surface proteins that facilitate interactions with

recipient cells (26). Moreover, engineering exosomes to improve

their stability and targeting capabilities is an area of active research,

with the aim of enhancing their therapeutic efficacy in

transplant settings.
3 Role of exosomes in allograft
immunization

The primary cause of allogeneic graft rejection is through

allogeneic immune responses mediated by T cells, B cells,

macrophages, dendritic cells (DCs), and others. These pathways

include direct, indirect, and semi-direct allograft recognition

(42, 43). In the direct pathway, donor DC migrates to regional

lymph nodes (LNs) and presents whole allogeneic Major

Histocompatibility Complex (MHC) peptides to recipient T cells,

whereas in the indirect pathway, recipient DC captures allogeneic

antigens (e.g., isoallogeneic MHC) and presents them to allogeneic

T cells in the context of their ownMHC. By an indirect pathway, the

alloantigen is internalized by the receptor APC, processed by its

own MHC class II molecules and presented as a peptide to CD4+ T

cells [as shown in Figure 2]. This mechanism has been described to

persist throughout the allograft period and is considered the
Frontiers in Immunology 05
primary cause of chronic graft rejection, which is dominated by

the production of CD4 + T cells and alloreactive antibodies. Patients

with occlusive Bronchiolitis Obliterans (BO) have a significantly

higher frequency of indirect donor allogeneic reactions than

patients without BO (44, 45). The researchers later found that

direct alloreactive T cells also recognize intact donor MHC

molecules acquired by acceptor APCs through a third

mechanism, the semi-direct pathway. The semi-direct pathway

has also been used to explain the cross-regulation between CD4

and CD8 T cells activated by different pathways (46, 47). The

mechanisms by which recipient APCs acquire and retain fully

functional donor MHC molecules in the semi-direct pathway are

unknown. New evidence from the field of extracellular vesicles,

especially exosomes, is now providing new answers to these long-

standing questions in transplantation and allogeneic recognition.

Secreted by a variety of APCs, including mast cells, natural killer

cells, Dendritic Cells (DCs), macrophages, T cells, and B cells, the

exosomal surface MHC peptide complexes are highly enriched,

suggesting that they can act as antigen-presenting vesicles or vectors

to disseminate allogeneic antigens to initiate anti-donor T cells (48,

49). Exosomes produced by DCs have been observed in primary

DCs and DC cell lines and have been the focus of many studies in

the field of exosome-mediated allosome recognition. Mature

dendritic cells release exosomes enriched for MHC, adhesion and

T-cell co-stimulatory molecules, mature dendritic cells also

encounter secreted exosomes from a variety of other cellular

subpopulations and present ectoparasitic antigens to stimulate or

inhibit cellular (50). Montecalvo and his colleagues described a

short-range mechanism for the distribution of alloantigens to the dc
FIGURE 2

Exosome mediated allogeneic recognition of T cells in local lymph nodes: (A) Exosomes released from allogeneic grafts or donor DCs are captured
by recipient DCs and their cognate MHC is expressed on the surface of the recipient DCs (called cross-modified cells). The cross-modified cells
present the cognate MHC peptide to T cells; (B) In addition to APC, exosomes secreted by allogeneic grafts or donor DCs can directly present their
allo-MHC-peptides to T cells.
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via an exosomal delivery mechanism, leading to the triggering of the

anti-donor T response observed in transplantation. It was also

shown that exosomes are more important than soluble

isopeptides in the transfer of antigens to the dc, because antigens

internalized and secreted as phagosomes are 103- 104 times more

efficiently presented in MHC II (50–52). In addition, Sureshbabu

et al. (53) induced Obstructive Airway Disease (OAD), similar to

human CLAD, by intra-bronchial administration of MHC

antibodies in mice, and importantly, antibodies to lung-associated

SAgs (Col-V, Ka1T) on exosomes were detected before the clinical

diagnosis of OAD, demonstrating that exosomes activate the

immune response, leading to the production of antibodies to lung

SAgs and ultimately lead to the development of OAD. Clearance of

donor leukocytes, or the inability to migrate to recipient lymphoid

tissue, suggests that exosomes of donor graft origin play an

important role in the alloantigen recognition pathway.
3.1 The role of exosomes in direct/indirect
recognition

Peche et al. (2006) as well as Segura et al. (2005) demonstrated a

direct role of exosomes in the induction or suppression of immune

responses in the context of transplantation. In other words, they

noted that in addition to APCs, exosomes can present their MHC

peptides to T cells and activate them (51, 54). However, when

exosomes are captured by DCs, this leads to effective T cell

stimulation and therefore requires APCs to present allo-MHC-

peptides derived from exosomes to T cells (semi-direct pathway)

(50, 55). In the direct pathway, DC-derived exosomes can directly

present their MHC peptides to T cells. In the semi-direct pathway,

DC-derived exosomes can be captured by receptor DCs so that their

entire MHC peptide can be presented to T cells via DCs, which is

referred to as the heterodimerization phenomenon [as shown in

Figure 3] (56).

In the indirect pathway, although free exosomes have a limited

ability to directly induce allogeneic reactive T cells, they can act as a

peptide source to indirectly initiate T cells when the p-MHC

complexes they carry are internalized by APC through

phagocytosis or microcellular drinking (57). Robbins and morelli

demonstrated that exosomes carrying homodimeric peptides can

trigger specific cd4T cell responses in wild-type mice, but not in

MHC class II-deficient hosts (58).
3.2 The role of exosomes in semi-direct
recognition

A recent study has shown, based on ultrastructural

observations, that exosomes are involved in semi-direct pathways

(59). After skin and heart allografts, DCs and B cells in the graft-

draining lymphoid organs are cross-modified with donor-derived

exosomes carrying intact donor MHC molecules (59, 60). Notably,

rather than being internalized by recipient DCs as previously

described, exosomes adhered to the surface of recipient DCs in
Frontiers in Immunology 06
small clusters, retaining intact and functional donor MHC

molecules and APC activation signals. Depletion of these DCs

greatly diminished T-cell sensitization to donor MHC and

delayed cardiac allograft rejection (60). Since indirect allogeneic-

reactive T helper cells and direct allogeneic-reactive T effector cells

are differentially affected by host DCs after exposure to

“heterodimerization” exosomes, this process was observed during

chronic allogeneic-exosome exposure (61).

Exosomes are not only involved in the three pathways of

allogeneic recognition, but also activate the immune system by

presenting their mhc peptides to T cells other than APC. In

addition, there are no reliable non-invasive biomarkers to

monitor early post-transplant status. Such biomarkers may be

important for graft management and to improve long-term

survival of allogeneic grafts. Since exosomal levels and surface

markers are significantly different in rejection and non-rejection

patients, they can be considered as new predictive or diagnostic

biomarkers in the field of transplantation.
4 Exosomes as biomarkers of allograft
rejection

After LTx, clinicians monitor rejection by methods such as

bronchoscopic biopsy and imaging. However, these methods lack

accuracy and specificity and often reflect non-early stages of graft

lung injury. Therefore, there is an urgent need to develop new

diagnostic biomarkers in the field of LTx for noninvasive and

continuous monitoring of allogeneic LTx. LTxRs exosomes, which

differ in their major components in the presence or absence of

rejection, hold promise as predictive/diagnostic biomarkers of

allograft rejection.
4.1 Role of exosomal proteins in
biomarkers

As medical technology and immunosuppression continue to

evolve, LTx is becoming more and more sophisticated, However,

there are still many postoperative complications, such as infection,

Acute Rejection (AR), Chronic Rejection (CR), acute pulmonary

edema, and cardiovascular disease. Among them, CR is the most

common after LTx, with an incidence of about 50% within 5 years

and up to 90% within 10 years (62). Lung failure due to Chronic

Lung Allograft Dysfunction (CLAD) in CR is the leading cause of

death within one year of transplantation (63). CLAD consists of two

subtypes: obliterative (BOS) and restrictive allograft syndrome

(RAS).BOS is the most common clinical manifestation of CLAD

and occurs in approximately 70% of patients with CLAD (53).

The main reason for rejection is the mismatch between the

allograft and the recipient’s Human Leukocyte Antigen (HLA),

which is recognized by the recipient’s immune monitoring.

Sureshbabu et al. (53) reported the presence of exosomes in the

serum and BALF of LTxRs diagnosed with AR and CR, which carry

specific antigens and are involved in the rejection of allogeneic LTx.
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Circulating exosomes are induced by Primary Graft Dysfunction

(PGD), ischemia-reperfusion injury, Respiratory Viral Infection

(RVI), and the production of Donor-specific antibodies (DSA)

and antibodies to lung-associated SAgs (Ka1T and Col-V) (64).

Circulating exosomal expression in CLAD patients: recipient

mismatched HLA molecules, lung-associated SAgs, co-stimulatory

molecules (CD80, CD86), transcription factors NF-kb, HIF-1a,
microRNAs (miRNAs), and 20S proteasome (15). Gunasekaran

et al. (65) found that exosomes from non-rejected patients do not

express MHC class II molecules and co-stimulatory molecules

(CD80, CD86, CD40), but adhesion molecules are expressed on

circulating exosomes from LTxRs.

The production of antibodies to HLA molecules and/or lung-

associated SAgs is a predictive marker of rejection. In LTxRs in which

rejection occurred, donor HLA and SAgs were detected on the surface

of donor-sourced exosomes, and no SAgs were detected on donor-

sourced exosomes from stable LTxRs, suggesting that circulating

exosomes originated from transplanted organs after immune injury

(53). Exosomes of donor origin “leak” out of the graft and flow

through extravasated or severed openings in the recipient’s capillary

lymphatics to the lymphoid organs draining the graft. Habertheuer

et al. (66) transplanted left lungs from Wistar transgenic mice into

Lewis recipients with complete MHCmolecular mismatch, and GFP-

labeled CD63 was used to detect exosomes levels, with circulating

exosomes peaking on day 1, decreasing significantly on day 2, and
Frontiers in Immunology 07
then reaching baseline levels on day 3, consistent with the

manifestation of AR. The rapid decline in exosome levels,

occurring before histologic evidence of AR in the graft, suggests

that exosomes may serve as a new biomarker.

Rahman et al. (64) observed in a mouse model of in situ

unilateral LTx CR that more than 80% of transplanted mice

showed elevated levels of lung SAgs (Col-V and Ka1T) by

exosomes isolated from serum from day 14 onwards, and also the

presence of anti-lung SAgs antibodies in the serum, whereas

histological changes of CR appeared only on day 30 onwards,

suggesting that exosomes may be a potential CR biomarkers and

hypothesized that exosomes may be involved in the development of

CR after LTx.

Sharma et al. (67) showed that exosomes isolated from plasma

12 months prior to the clinical diagnosis of BOS showed elevated

levels of pulmonary SAgs (Ka1T and Col-V) (specificity 100%,

sensitivity 90%), suggesting that circulating exosomes with

pulmonary SAgs can be used as a biomarker to identify LTxRs at

risk of BOS.

The Clavate Cell Secreted Protein (CCSP) has anti-

inflammatory properties, and levels of CCSP are decreased in

smoking, infections, lung injury, BOS, and other diseases that can

lead to an inflammatory response.

According to Itabashi et al (68), CCSP levels in the BALF of

patients were significantly decreased 7 to 9 months prior to the
FIGURE 3

Two ways of DC derived exosomes (DC-EXO) mediated antigen presentation. (1) DC-EXO can directly present antigen to T cells and stimulate T cell
activation; (2) After binding to APCs, DC-EXO merges with the acceptor APC surface membrane and transfers its peptide/MHC complexes. Following
internalization, the DC-EXO peptide/MHC complexes can be reprocessed via endosomal pathways within the APC. Peptide complexes can then be
transported back to the DC’s surface for presentation to T cells.
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clinical diagnosis of BOS. Low levels of CCSP can promote the

production of pro-inflammatory cytokines, induction of natural

killer cell (NK cell)-derived exosomes, and immune responses to

HLA and SAgs. NK cell-derived exosomes contain increased SAgs,

NK cell markers, and cytotoxic molecules, suggesting that NK cell-

derived exosomes play a role in the development of CLAD. The

absence of CCSP leads to the release of exosomes from NK cells,

which can stimulate intrinsic and adaptive immune responses

after transplantation.

Goodlet et al. (69) reported that in a 76-year-old female lung

transplant patient who received immunosuppressive therapy for AR

and was subsequently infected with SARS-CoV-2, HLA antibody

levels began to increase dramatically. Analysis of circulating

exosomes prior to SARS-CoV-2 infection revealed the presence of

pulmonary SAgs, HLA-DR, and HLA-DQ. After the patient was

infected with SARS-CoV-2, exosomes were found to contain SARS-

CoV-2 spiking proteins, and after the symptoms of the infection

resolved, exosomes containing SARS-CoV-2 spiking proteins were

no longer detected; however, exosomes with lung SAgs, HLA-DR,

and HLA-DQ were consistently present, and lung function

continued to decline, suggesting that the patient had CLAD. The

above suggests that detection of exosomes containing viral proteins

may be useful in recognizing allograft injury caused by

viral infection.

Anti-HLA and anti-lung-associated SAgs may play a synergistic

role in the immunopathogenesis of BOS and are important

predictors of BOS progression (70). Most patients who develop

DSA also subsequently develop lung-associated SAgs antibodies,

suggesting that DSA may activate and induce lung-associated SAgs

antibody production (71). An analysis of 103 LTxRs by Sureshbabu

et al. (53) showed that 42.7% of LTxRs produced DSA and 30.1%

produced Ka1T and ColV antibodies, suggesting that the

production of DSA usually precedes the production of lung SAgs

antibodies. In addition, HLA antigens and lung-associated SAgs,

interacting with each other, had a greater probability of producing

antibodies, suggesting the presence of immunodiffusion. It was

shown that lung-associated SAg (Ka1T) induced not only

antibodies against Ka1T, but also antibodies against Col-V,

suggesting that spreading of the immune response occurs prior to
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BOS formation in the mouse LTx CR model. However, because

HLA molecules and lung-associated SAgs are encoded by different

genes on different chromosomes, the mechanisms that lead to their

spread are unclear (15).
4.2 The role of exosomal nucleic acids in
biomarkers

Micro-RNAs can be used as new diagnostic biomarkers to

identify patients at risk of developing BOS. miRNAs are a hot topic

of research in the field of organ transplantation, where they bind to

target mRNAs to regulate the expression of genes that are key

elements of the innate and adaptive immune response. The

miRNAs are a hot topic in the field of organ transplantation.

Exosomes are known to contain miRNAs that trigger immune

responses by inducing inflammation, endothelial activation, Th17

differentiation, and antibody-mediated rejection. Exosomes interact

with cells through ligand-receptor specific binding, fusing with the

cytosol of target cells and “injecting” their inclusions into the

cytoplasm of target cells. miRNAs in exosomes regulate the mNA

of target cells (72). Xu et al. (73) showed that the expression levels of

miR-134, miR-10a, miR-195 and miR-133b were significantly down-

regulated, and miR-144, miR-142-5p and miR-155 expression were

significantly up-regulated, compared to stable LTxRs serum samples

at 12 months of BOS. LTxRs at risk for BOS development can be

distinguished based on the above miRNAs.

Therefore, as shown in Table 1, it is believed that circulating

exosomes with tissue specificity are expected to be a noninvasive

biomarker that can monitor the risk of rejection in organ transplant

recipients and provide great help in clinical transplantation.
5 Therapeutic strategies for exosomes
in LTx rejection reactions

Exosomes are also potent candidates for targeted drug delivery

and offer various advantages over traditional synthetic materials

such as liposomes in drug delivery. The therapeutic potential of
TABLE 1 Characterization of exosomes from lung transplant patients with complications.

Study subjects Sample Species Exosome content References

CLAD Serum Human Col-V, Ka1T (15)

BOS BALF Human CCSP (81)

Rejected patients Serum Human CD80, CD86,CD40 (78)

CLAD Serum Human NF-KB, HIF-1a, 20S proteasome (17)

BOS Serum Human LKb1 (75)

OAD Serum Mice Col-V, Ka1T (66)

CLAD Serum Human HLA-DR, HLA-DQ (82)
CLAD, Chronic Lung Allograft Dysfunction; BOS, Bronchiolitis Obliterans Syndrome; OAD, Obstructive Airway Disease; Col-V, Collagen V; Ka1T, Self-Antigens (SAgs)-K-a1 Tubulin; CCSP,
Clavate Cell Secreted Protein; NF-KB, transcription factor Nuclear Factor kB; HIF-1a, Hypoxia-Inducible Factor-1a; LKb1, Liver kinase b1; HLA-DR, Human Leukocyte Antigen-DR; HLA-DQ,
Human Leukocyte Antigen-DQ.
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exosome-mediated drug delivery is still in preliminary clinical trials

[pancreatic cancer (74, 75), acute ischemic stroke (76, 77) and colon

cancer (78, 79)].

Several studies have shown that the pathophysiology of BOS

involves inflammation, fibroblast proliferation; extracellular matrix

deposition (80–82), and evidence of increased Epithelial-

Mesenchymal Transition (EMT) markers in bronchial epithelial

cells (62, 83).

Liver kinase b1 (LKb1), also known as serine/threonine protein

kinase 11, acts as a tumor suppressor in cancer (84–86). In a recent

study, exosomes isolated by Rahman et al. (62) from the plasma of

patients diagnosed with BOS or LTxRs with stable lung function,

and induced morphological and molecular changes in human

airway epithelial cells The study found that LKb1 expression was

downregulated in BOS exosomes compared to stable exosomes.

LKb1 knockdown induced a decrease in EMT markers,

phosphorylated mTOR, and phosphorylated AMPK in cells,

whereas BOS-exosome inhibited LKb1 expression and induced

EMT labeling. In air-liquid interface culture, BOS-exosome

treatment reduced LKb1 expression, and BOS exosomes

significantly induced down-regulation of Vimentin and E-

calmodulin and induced EMT labeling. Although the study did

not further analyze exosomal contents, exosomes as therapeutic

targets will be realized sooner rather than later with the rapid

development of high-throughput technologies.

Blocking exosome release from donor lungs has the potential to

prevent allograft rejection. In a mouse model of Mycobacterium

tuberculosis infection, it was found that mice knocked out of the

Rab27a gene were less efficient at stimulating T cells because of their

reduced ability to release exosomes. There are small inhibitory

molecules such as the neutral sphingomyelinase inhibitor GW4869,

the acidic sphingomyelinase phospholipase inhibitor promethazine

hydrochloride, which effectively block exosome induction from

various tissues and cells. However, one study showed that although

GW4869 decreased exosome secretion, it enhanced the secretion of

more plasma membrane-derived extracellular vesicles (EVs); Rab27a,

while decreasing exosome secretion, could also decrease the secretion of

some non-EV-binding soluble factors, suggesting that these inhibitory
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methods may indirectly affect EV composition and secretion and alter

cellular functions (72), Meanwhile, in the normal physiological process

of the body, exosomes can realize intercellular communication and

maintain the stability of the internal environment. Therefore only block

the release of exosomes from the transplanted organ and do not affect

the release of exosomes from other tissues or cells. Blocking exosome

induction in the donor lung during in vitro lung perfusion maybe

reduce lung injury and improve the function of the transplanted organ

so that even marginal lungs can be successfully transplanted.

Ravichandran et al. (72) mentioned that it is feasible to block

exosome formation and release during lung perfusion in vitro.

Immunogenicity of allogeneic or autoantigens depends on the

dose, presentation site, other signals and the nature/state of APC

activation. The ability of exosomes to induce immune tolerance

remains unexplored, but exosomes have recently been investigated as

therapeutic delivery vehicles. Studies have demonstrated that exosomes

play an important role inmaternal tolerance to fetal alloantigens during

pregnancy and in immune privilege associated with tolerance to

allogeneic liver transplantation in laboratory rodents (87). In

intestinal, cardiac, liver, or kidney transplantation models, exosomes

in combination with low-dose immunosuppressants or donor-specific

Treg can effectively enhance allograft survival (72, 88). Exosomes may

open new perspectives for dealing with severe post-transplant side

effects and improving allograft survival.

More importantly, exosomes have low toxicity, are not at risk

of tumor formation, and because of their small size, easily

diffuse across biological barriers, which allows them to be used as

injectable therapeutic agents (89–91). The Adipose-Derived

Stem Cell exosome miR-125b-5p attenuates Ferroptosis in lung

microvascular endothelial cells in septic lung injury via Keap1/Nrf2/

GPX4, half of the mice died at 24 h and 80% died at 48 h after

Cecum Ligation and Puncture (CLP), After tail vein injection of

ADSCs exosomes in mice, mortality decreased to 10% at 24 hours

and 60% at 48 hours. Lung tissues were collected for HE staining

and scored for injury by Lung Injury Score, Bronchoalveolar Lavage

Fluid (BALF), and Wet-Dry Ratio analysis. The HE results showed

swollen and congested alveolar capillaries, hemorrhage in the

alveolar lumen, and inflammatory cellular infiltration in mice in
FIGURE 4

Therapeutic Strategies for Exosomes in LTx Rejection. (A) Exosomes have high membrane penetrability, making them excellent drug carriers;
(B) Exosomes can regulate Epithelial-Mesenchymal Transition (EMT) markers expression in bronchial epithelial cells; (C) Exosomes can improve
injured bronchial endothelium.
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the sepsis group compared with the sham-operated group. And

ADSCs exosomes significantly improved after injury. Furthermore,

sepsis increased the lung injury score in mice, whereas ADSCs

exosomes decreased the lung injury score. Thus, intravenous

injection of ADSCs exosomes attenuated sepsis-induced acute

lung injury in mice (92) [as shown in Figure 4].

In recent years, in order to overcome the limitations of natural

exosomes, artificial exosomes based on nanobiotechnology have

emerged. Artificial exosomes with low immunogenicity and toxicity

can efficiently transport drugs, proteins and nucleic acids (49, 93, 94),

The lipid bilayer structure of exosomes can act as a natural protective

barrier for the contents (95), preventing the breakdown of the

carrier by surrounding enzymes, and will play an important role in

the LTx field.
6 Discussion

Although exosomes show great potential in the biomedical field,

there is a lack of uniform quality control standards in the isolation,

characterization and analysis of exosomes, which limits the promotion

of their clinical applications. Existing studies have used different

isolation techniques and analytical methods, resulting in significant

differences in the purity and functional reproducibility of exosomes

(96). For example, the MISEV2018 guidelines proposed by the

International Society for Exosomes (ISEV) emphasize the use of

standardized isolation and identification methods in exosome studies,

but in practice, many studies still do not follow these standards, leading

to questionable comparability and reliability of results. Therefore, the

development and implementation of rigorous quality control standards

is a critical step in advancing the translation of exosome research into

the clinic.

In addition, the reproducibility problem in exosome research is

mainly affected by a variety of factors, including sample processing,

analytical techniques and experimental design. First, different

methods used in the isolation and purification of exosomes (e.g.,

ultracentrifugation, immunocapture, etc.) may lead to differences in

the purity and composition of exosomes, thus affecting the

reproducibility of experimental results (97). Secondly, technical

differences between laboratories and the level of experience of

operators can also contribute to the variability of results. For

example, using the same exosome analysis technique in different

laboratories may produce different results due to factors such as

equipment calibration, reagent batch (98). Finally, the lack of

adequate experimental records and transparent research methods

also makes it difficult for the results of exosome studies to be verified

by other researchers. Therefore, the establishment of a systematic

experimental process and standardized operating procedures will

help to improve the reproducibility of exosome research and

promote its development in clinical applications (10, 99, 100).

Exosome-mediated allogeneic recognition involves acquired

immunity. Numerous studies have investigated the role of direct,

indirect and semi-direct pathways in allogeneic recognition driving

lung transplant rejection. Further studies on the role of exosomes of

donor or host origin in localized or secondary lymphoid organs in
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exosome-mediated allogeneic recognition may provide new

perspectives for solving outstanding problems in the field of lung

transplantation. Clearance of donor permissive leukocytes, or failure to

migrate to recipient lymphoid tissues, suggests that donor graft-derived

exosomes play an important role in the cognate antigen recognition

pathway. These pathways are critical to understanding the

development of these immune processes and will provide insights for

future therapies and biomarker identification for better patient

outcomes. Exosomes are an important biomarker for identifying

LTxRs that may be at risk for CLAD. Related studies are also needed

to reveal novel mechanisms of exosome biogenesis from lung

transplantation and the different roles of exosomes in the

development of CLAD after LTx in humans. Exosomes are emerging

as effective nanocarriers for drug delivery to target cells and are

expected to be a highly promising transport vehicle for development

in the field of lung transplantation.
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