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reperfusion injury
Kai Lu1†, Hanqi Li1†, Liankang Sun1†, Xuyuan Dong2,
Yangwei Fan2, Danfeng Dong2, Yinying Wu2* and Yu Shi2*

1Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University,
Xi’an, China, 2Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University,
Xi’an, China
Background: Liver ischemia-reperfusion injury (LIRI) is a critical condition after

liver transplantation. Understanding the role of immunogenic cell death (ICD)

may provide insights into its diagnosis and potential therapeutic targets.

Methods: Differentially expressed genes (DEGs) between LIRI and normal

samples were identified, and pathway enrichment analyses were performed,

followed by immune infiltration assessment through the CIBERSORT method.

The consensus clustering analysis was conducted to separate LIRI clusters and

single-sample Gene Set Enrichment Analysis (ssGSEA) was used to analyze the

distinct immune states between clusters. Weighted Gene Co-Expression

Network Analysis (WGCNA) was employed to identify hub genes associated

with ICD. To establish diagnostic models, four machine learning techniques,

including Random Forest (RF), XGBoost (XGB), Support Vector Machine (SVM),

and Generalized Linear Models (GLM), were applied to filter gene sets. The

receiver operating characteristic (ROC) curves were utilized to assess the

performance of the models.

Results: Pathway enrichment results revealed significant involvement of cytokines

and chemokines among DEGs of LIRI. Immune infiltration analysis indicated higher

levels of specific immune functions in Cluster 2 compared to Cluster 1. WGCNA

identified significant modules linked to LIRI with strong correlations between

module membership and gene significance. The RF and SVM machine learning

algorithms were finally chosen to construct the models. Both demonstrated high

predictive accuracy for diagnosing LIRI not only in training cohort GSE151648 but

also in validation cohorts GSE23649 and GSE15480.

Conclusions: The study highlights the pivotal roles of ICD-related genes in LIRI,

providing diagnosis models with potential clinical applications for early detection

and intervention strategies against LIRI.
KEYWORDS
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1 Introduction

Liver transplantation is a vital therapeutic option for patients

suffering from end-stage liver disease and acute liver failure (1). As

the prevalence of chronic liver diseases such as hepatitis, cirrhosis,

and fatty liver disease continues to rise globally, the demand for liver

transplants has reached unprecedented levels (2). The success of liver

transplantation is contingent upon numerous factors, including

donor organ quality, surgical technique, and postoperative care (3).

However, one significant complication that adversely affects

outcomes is liver ischemia-reperfusion injury (LIRI) (4).

In the context of liver transplantation, LIRI can lead to a cascade

of pathological events that result in hepatocyte injury,

inflammation, and apoptosis, ultimately compromising graft

function (5). The severity of LIRI is influenced by several factors,

including the duration of ischemia, the condition of the donor

organ, and the recipient’s immunological status (6). Complications

arising from LIRI include acute liver failure, prolonged

hospitalization, and chronic rejection or fibrosis, making it a

central priority in the continuous investigation of liver

transplantation (7).

LIRI is closely associated with the immune system and the

inflammatory reaction in the liver mediated by immune cells in

response to injury (8). It is well established that immune responses

and inflammation are intricately associated with the pathogenesis

and outcomes of LIRI. Recently, several studies have demonstrated

that the activation of innate and adaptive immune system is an

essential event in development of LIRI (9–13). A critical

pathophysiological mechanism underlying LIRI is its association

with immunogenic cell death (ICD) (14). Immunogenic cell death is

defined as a form of cell death that induces a potent immune

response, thereby contributing to the generation of adaptive

immunity (15). ICD can occur through various modalities,

including apoptosis, necroptosis, and pyroptosis, each

characterized by distinct biochemical and morphological features

(16). The release of damage-associated molecular patterns

(DAMPs) during these cell death processes plays a crucial role in

activating the immune system and promoting inflammation (17). In

LIRI, the interplay between ICD and the immune response can

exacerbate tissue injury and influence the subsequent immune

tolerance of the transplanted liver.

Understanding the role of ICD in LIRI is of great importance for

several reasons. First, elucidating the specific genes and molecular

pathways involved in ICD can provide insights into the

mechanisms that govern liver injury and repair. Second, targeting

these pathways could lead to the development of novel therapeutic

strategies aimed at mitigating LIRI, thereby improving graft survival

rates and patient outcomes. Recent studies have highlighted the

potential strategy for pharmacological interventions that modulate

immunogenic cell death, suggesting that a deeper understanding of

ICD could help guide future clinical applications (18, 19).

However, there remains a significant gap in understanding the

role of ICD in liver ischemia-reperfusion injury. Therefore, our

study undertook a thorough analysis of immunogenic cell death-

related genes (ICDs) in liver ischemia-reperfusion injury. Through
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the detailed identification and characterization of these genes, we

intend to deepen our insight into the mechanisms underlying LIRI

and its relevance to ICD. The discoveries of our research have the

potential to open new avenues for therapeutic interventions, which

could alleviate the detrimental impacts of LIRI and enhance the

prognosis for liver transplant patients.
2 Materials and methods

2.1 Data download and processing

Expression profiles from the datasets GSE151648, GSE23649,

and GSE15480 were downloaded from the Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo) database. The

gene probes were annotated using the R package “hgu133plus2.db”

and the genes were conducted log2 transformation. The 34

immunogenic cell death-related genes (ICDs) were retrieved from

the published article (18) and listed in Supplementary Table S1.
2.2 Identification of differentially
expressed genes

Differential gene expression analysis was performed using the

“limma” R package. The significance threshold was set at P-value <

0.05 and logFC > 1 to identify differentially expressed genes (DEGs)

between LIRI and control groups. The chromosomal positions of

the ICDs were visualized using the “RCircos” R package.
2.3 Consensus clustering

Consensus clustering was performed to identify the

immunogenic cell death-related molecular subtypes using the

“ConcensusClusterPlus” R package. The optimal number of

clusters was determined based on the cumulative distribution

function (CDF) curve, focusing on relative changes in the area

under the curve. To validate the consensus clustering results, the

dimensionality reduction technique principal component analysis

(PCA) was applied.
2.4 GO, KEGG, and GSVA
enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were performed using the R

package “clusterProfiler” and “org.Hs.eg.db”. The input genes were

first transformed into “ENTREZID” before the enrichment analysis.

Moreover, the gene set variation analysis (GSVA) was conducted

using the “GSVA” R package by conferring the genes downloaded

from the Molecular Signature Database (MSigDB, https://

www.gsea-msigdb.org/gsea/msigdb).
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2.5 Immune infiltration analysis

We performed the CIBERSORT method to analyze the immune

cell infiltration of LIRI and normal samples. To better understand

the differences in immune infiltration between different LIRI

clusters, we employed the single-sample Gene Set Enrichment

Analysis (ssGSEA) to assess the immune characteristics. The

immune functions were compared between two LIRI clusters.
2.6 WGCNA

We conducted a Weighted Gene Co-expression Network

Analysis (WGCNA) on the immunogenic cell death-related genes.

To identify key modules within the co-expression network, we

analyzed the relationships between modules and functional

phenotypes. The optimal soft-thresholding power was determined

to ensure accurate network construction. Subsequently, we set a

height threshold for module detection to identify gene co-

expression modules effectively. Additionally, we calculated the

person correlation coefficients between each module and the

corresponding traits to construct a heatmap of module-trait

relationships. The module demonstrating the highest correlation

with both gene sets’ enrichment scores was designated as a key

module for further investigation. The genes within this key module

were subjected to subsequent analyses.
2.7 ICD-related model construction based
on machine learning algorithms

The four machine learning methods—Random Forest (RF),

XGBoost (XGB), Support Vector Machine (SVM), and

Generalized Linear Models (GLM) were used to filter the genes

and develop the diagnosis model for patients with liver ischemia-

reperfusion injury. Receiver operating characteristic (ROC) curves

were used to evaluate the performance of the algorithms using the

“pROC” R package. The algorithms with the highest area under the

curves (AUC) values were selected to construct the models.
2.8 Nomogram construction and validation

We constructed the RF-nomogram and SVM-nomogram in the

training dataset GSE151648 and verified the accuracy in the

validation datasets GSE12720 and GSE23649. ROC curves were

utilized to evaluate the predictive ability of the models and genes

constituting the RF-nomogram and SVM-nomogram. Calibration

curves were created to assess the nomogram’s performance.

Additionally, decision curve analysis (DCA) was conducted to

analyze the clinical utility of the nomograms.
2.9 Liver cell LIRI model

HepG2 cell was purchased from National Collection of

Authenticated Cell Cultures (Shanghai, China). Before hypoxia,
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HepG2 cell was cultured in high-glucose DMEM (11965092,

Gibco) with 10% fetal bovine serum (FBS; 1027-106, Gibco) and

1% penicillin and streptomycin (15070063, Gibco) at 37°C in 5%

CO2. To construct a LIRI model, the medium was replaced with FBS-

free and glucose-free DMEM (BL1124A, Biosharp) and cells were

transferred to a hypoxia condition (1% O, 5% CO2, and 94% N2), for

6 h. Then the medium was replaced with high-glucose DMEM and

10% FBS at 37°C in a normoxia condition (5% CO2) for 1h.
2.10 Real-time quantitative PCR

The total RNA was isolated from HepG2 cell by AG RNAex Pro

Reagent (AG21101, Accurate Biology). cDNA was synthesized by the

ABScript III RTMasterMix for qPCRwith gDNARemover (RK20429,

ABclonal) and real-time quantitative PCR (qPCR) was performed

using the 2X Universal SYBR Green Fast qPCR Mix (RK21203,

ABclonal). The primers were listed in Supplementary Table S2.
2.11 Statistical analyses

Statistical analyses were performed using R software (version

4.3.2). Measurement data following a normal distribution was

compared using an independent sample t-test. While the non-

normally distributed measurement data was analyzed using the

Mann–Whitney U test. Correlation analysis was performed using

the Spearman method. A P-value of <0.05 was considered to be

statistically significant.
3 Results

3.1 Exploring immunogenic cell death-
related genes in liver ischemia-
reperfusion injury

The overall workflow of our study is summarized in Figure 1.

We first compared the expression levels of 34 immunogenic cell

death-related genes (ICDs) in LIRI samples with normal samples in

the GSE151648 dataset. The results showed that there were great

differences in the expression levels of ICDs in the two groups

(Figure 2A). The “limma” R package was used to screen the

differentially expressed genes (DEGs) with the threshold set to

P < 0.05 and |logFC| > 1. The obtained ICDs from the published

article are intersected with DEGs of LIRI and normal samples to

obtain 12 significant differentially expressed genes related to

immunogenic cell death (ICDs-DEGs: P2RX7, HSP90AA1,

EIF2AK3, TNF, IL10, PRF1, IFNGR1, IL1R1, IFNG, NLRP3, IL6,

and IL1B). The “pheatmap” R package was used to plot a heatmap

of the expression levels of ICDs-DEGs (Figure 2B). Moreover, we

also visualized the locations of ICDs in the chromosome

(Figure 2C). The correlation pie chart (Figure 2D) and the chord

diagram (Figure 2E) further showed the tight correlations between

ICDs-DEGs.
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3.2 Immune cell infiltration analyses of LIRI
by CIBERSORT

Growing evidence has proven that the tumor microenvironment

(TME) is closely related to the disease progression and therapy

response (20). To better understand the immune features of the liver

ischemia-reperfusion injury, we conducted the immune cell infiltration

analysis using the CIBERSORT method. The results showed that the

proportions of the immune cells were higher in LIRI samples than in

normal samples (Figure 3A). We performed comparisons of immune

cells in two groups and found that there were higher NK cells activated,

monocytes, macrophage M0, dendritic cells activated, and mast cells

activated; lower T cells CD8, NK cells resting, macrophages M2, and

mast cells resting in LIRI group than in normal group (Figure 3B). Our

study also analyzed the relationship between the expression of pivotal

ICDs-DEGs and immune cell components. The result showed that the

expression levels of ICDs-DEGs had significant connections with

immune proportions (Figure 3C). As a result, investigating the

mechanisms of immunogenic cell death could help understand the

immune functions of LIRI thus providing new clues for the prevention

and treatment of LIRI complications.
3.3 Consensus clustering based on the
expression of ICDs-DEGs

To analyze the mechanisms of immunogenic cell death in ischemic

reperfusion injury, we conducted consensus clustering based on the

expression levels of ICDs-DEGs. The results showed that the number

of clusters k=2 achieved the best clustering effect (Figure 4A). Then the
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samples of GSE151648 were divided into Cluster 1 and Cluster 2 based

on the clustering algorithm. Themain component analysis showed that

the two clusters could be separated from each other (Figure 4B).

Subsequently, we identified the differentially expressed genes of the two

clusters and visualized them using the volcano plot (Figure 4C). In

terms of the hub gene expression signatures, there were significant

differences in the ICDs-DEGs between Cluster 1 and Cluster 2. To be

more specific, Cluster 1 has higher gene expression levels of IL6, IL1B,

NLRP3, IFNG, TNF, IL1R1, and PRF1 (Figure 4D). The heatmap

graphically showed that the ICDs-DEGs expressed more in Cluster 2

than in Cluster 1 (Figure 4E).
3.4 Pathway enrichment analysis of the
two clusters

We also analyzed the DEGs between Cluster 1 and Cluster 2 and

performed the pathway enrichment analyses of the two clusters. GO

enrichment analysis showed that there were several pathways enriched.

The bubble and bar charts as well as the chord diagram all showed that

DEGs of the two clusters were mainly enriched in response to

interleukin-1, tumor necrosis factor, and leukocyte migration

signaling pathway in the biological process (BP); in the cellular

component (CC), DEGs were mainly enriched in granule-related

pathways; in the molecular function (MF), DEGs were enriched

primarily in cytokine activity and cytokine receptor binding

pathways (Figures 5A-C). On the other hand, the KEGG pathway

enrichment analysis showed that there were similar pathways enriched

including the cytokine-cytokine receptor interaction, IL-17 signaling

pathway and TNF signaling pathway (Figure 5D). The GSVA result

also revealed that the DEGs were related to several immune-associated
FIGURE 1

The graphical abstract of our study.
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pathways shown specifically in Figure 5E. In conclusion, these results

all shed light on the important role of ICDs in the molecular clustering

of liver ischemia-reperfusion injury.
3.5 Immune infiltration analyses of the two
clusters by ssGSEA

To investigate the immune functions of the two clusters, we

conducted the ssGSEA analysis. The results showed that the

infiltration of immune functions was different between Cluster 1
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and Cluster 2. We performed the comparisons between immune

cells and found that there were higher in APC_co-inhibition, CCR,

CD8+_T_cells, cytolytic activity, inflammation-promoting,

MHC_class_I, para-inflammation, pDCs, Th1_cells, and Treg in

Cluster 2 (Figure 6A), which proved that the Cluster 2 had a high

level of immune state. Our study also analyzed the relationship

between the expression of ICDs-DEGs and immune components in

the two clusters. The results showed that the expression level of

PRF1 had more connections with immune proportions in Cluster 2;

while the expression levels of IL6, IL1R1, and IFNGR1 had tighter

relationships with immune cells in Cluster 1 (Figures 6B, C).
FIGURE 2

Exploring immunogenic cell death-related genes in liver ischemia-reperfusion injury. (A) Boxplot of ICDs in GSE151648. (B) Heatmap of ICDs-DEGs
in GSE151648. (C) The location of ICDs on the chromosomes. (D, E) Correlation analysis of ICDs-DEGs by heatmap and circus. *P ≤ 0.05, **P ≤

0.01, ***P ≤ 0.001.
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3.6 Identification of the hub genes in liver
ischemia-reperfusion injury by WGCNA

TheWGCNAmethod was used to identify the hub genes in hepatic

ischemic reperfusion injury. We first analyzed the co-expression

network in LIRI samples and normal samples. A gene hierarchical

clustering dendrogramwas constructed based on gene correlations. The

soft threshold was set at 3 to achieve a scale-free topology for the

network, yielding an R² value of 0.9 and high average connectivity

(Figure 7A). Ultimately, we determined that the “turquoise” module,

comprising 3,607 genes, was the significant module in LIRI (Figure 7B).
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The scatter plot showed a strong correlation between the module

membership in turquoise and the gene significance for LIRI (Figure 7E,

Cor = 0.95, P < 1e−200). Likewise, we performed the WGCNA in

Cluster 1 and Cluster 2 to filter the most relevant genes of ICD. The

blue module containing 912 genes was selected based on the analyses

(Figures 7C, D). The correlation coefficient was 0.6 for the module

membership in blue and the gene significance for Cluster 2 (Figure 7F,

P = 2.9e−90). In the end, we took the intersection of the DEGs between

LIRI and normal samples, the WGCNA-disease genes of the LIRI, and

the WGCNA-cluster genes to identify the hub genes highly associated

with ICD and LIRI (Figure 7G).
FIGURE 3

Analysis of immune infiltration in liver ischemia-reperfusion injury by CIBERSOFT. (A, B) Boxplot of immune infiltration between control and LIRI.
(C) Correlation of ICDs-DEGs with different immune cells by heatmap. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
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3.7 Construction of the diagnosis model by
machine learning

Four machine learning algorithms were utilized to analyze the

dimensionality reduction of the 212 genes screened above. The ROC

results showed the area under the curves (AUC) of the four machine

learning algorithms. (Figure 8A). The reverse cumulative distribution

and boxplots of residual were plotted to show the residual

distribution of the models (Figures 8B, C). Because of the high

residual, we dismissed the GLM model. Moreover, It proved that

the root mean square error (RMSE) loss after permutations was

smaller in the RF and SVM models than in the XGB model

(Figure 8D). Since the RF and SVM models had the same AUC of

0.993, we selected both for the construction of the diagnosis model of

liver ischemia-reperfusion injury. The results showed that the ICDs

constructing the model had higher expression levels in the LIRI group

than in the normal group (Figure 8E).

To further verify the models, we chose the GSE23649 and

GSE15480 as the validation sets. Our results proved that the

genes constituting the RF and SVM models also had higher

expression levels in the LIRI group than in the normal group of

the validation cohort GSE23649. In addition, the AUCs of the

model genes had excellent performances in GSE23649 (Figures 9A,

B). The same conclusion also arrived in the validation cohort

GSE15480 (Figures 9C, D).
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3.8 Construction of the nomograms

Considering the superior performance of the diagnosis models,

we constructed the nomograms to further validate the clinical

applicability of the models. The nomograms showed the

relationship of the hub genes constituting the model and the risk

of LIRI (Figures 10A, C). Calibration curves of the nomograms

demonstrated remarkable alignments between the predicted values

and actual probabilities, providing support for the reliability of the

diagnosis models (Figures 10B, D; left). In addition, the decision

curve analysis (DCA) curves proved the high clinical values of the

nomograms to diagnose LIRI in patients (Figures 10B, D; right).
3.9 The expression of key genes in a cell
LIRI model

We have constructed RF-model and SVM-model for the

diagnosis of LIRI, which showed relatively high diagnostic value.

Hence, we constructed a cell LIRI model to further verify the key

genes in RF-model and SVM-model. In LIRI model, HepG2 cell was

cultured in a hypoxia condition for 6h and then transferred to a

normoxia condition for 1h (Figure 11A). Then mRNA expression of

key genes from RF-model and SVM-model were detected by qPCR.

Consistent with the results of bioinformatics analysis, the mRNA
FIGURE 4

Consensus clustering analysis of LIRI by ICDs-DEGs. (A) Consensus clustering matrixes were generated for values of k=2. (B) PCA analysis of Cluster
1 and Cluster 2. (C) Volcano plot of gene expression levels between Cluster 1 and Cluster 2. (D) Boxplot of ICDs-DEGs between Cluster 1 and
Cluster 2. (E) Heatmap of ICDs-DEGs between Cluster 1 and Cluster 2. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
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expression of NFKB2, RALGDS, RHBDL2, TRIM40 and HSPA1B

were upregulated in LIRI model (Figures 11C–F, H). However, the

expression of LIF and IFNG showed no significant difference

between Control and LIRI (Figures 11B, G).
Frontiers in Immunology 08
4 Discussion

The liver ischemia-reperfusion injury (LIRI) poses a significant

challenge in the context of hepatic resection and transplantation (21).
FIGURE 5

Gene enrichment analysis of DEGs between two clusters. (A-C) The column plots, bubble plots, and circus represent the GO enrichment of DEGs,
including BP, CC, and MF. (D) KEGG enrichment of DEGs. (E) GSVA enrichment of DEGs.
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LIRI of the liver is a major cause of hepatic dysfunction following

liver transplantation, highlighting the need for effective strategies to

prevent this liver damage (22). Understanding the mechanisms of

LIRI is essential for developing therapeutic interventions.

LIRI has two distinct stages including ischemia and reperfusion

(23). The ischemic phase is characterized by metabolic disorders in
Frontiers in Immunology 09
local tissue cells, including the continuous depletion of glycogen,

oxygen deficiency, and adenosine triphosphate (ATP) depletion,

leading to the death of liver parenchymal cells. Reperfusion follows

the ischemic phase and is not only marked by metabolic disorders

but also by immune responses (24). Therefore, a thorough

investigation of the immunogenic cell death occurring in LIRI is
FIGURE 6

Immune infiltration in Cluster 1 and Cluster 2 by ssGSEA. (A) Boxplot of different immune cells or processes between Cluster 1 and Cluster 2.
(B) Correlation of ICDs-DEGs with immune infiltration in Cluster 1. (C) Correlation of ICDs-DEGs with immune infiltration in Cluster 2. *P ≤ 0.05,
**P ≤ 0.01, ***P ≤ 0.001.
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essential for diagnosing and uncovering new therapeutic strategies

for LIRI, such as inhibiting harmful pro-inflammatory reactions or

promoting beneficial anti-inflammatory responses.

In this research, we analyzed the core mechanisms of ICDs in

liver ischemia-reperfusion injury and constructed machine learning-
Frontiers in Immunology 10
based diagnosis models for LIRI. We analyzed the expression of ICDs

in LIRI samples and normal samples. We found that the levels of

ICDs were higher in LIRI, which hints that ICD could play an

important role in liver ischemia-reperfusion injury. Cell death can be

immunogenic based on four crucial factors. First, cytotoxicity
FIGURE 7

Identification of gene modules associated with LIRI and ICD by WGCNA. (A) The selection of optimal soft thresholding power (b) between control
and LIRI. The scale-free fit index (left) and mean connectivity (right) for different soft-thresholding powers. (B) The correlation heatmap between
different gene modules and status of LIRI. (C) The selection of optimal soft thresholding power (b) between different clusters. The scale-free fit index
(left) and mean connectivity (right) for different soft-thresholding powers. (D) The correlation heatmap between different gene modules and the
status of different clusters. (E) Scatter plots showing the correlation between module membership and gene significance in the turquoise module of
LIRI and blue module of different clusters. (F) Venn diagram of key modules and DEGs from LIRI.
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requires cells to undergo stress responses before dying. Second,

antigenicity involves the expression of recognizable antigens by T

cells. Third, adjuvanticity entails the release of danger-associated

molecular patterns (DAMPs) that facilitate dendritic cell (DC)

recruitment and maturation, enabling effective antigen presentation

to T lymphocytes. Fourth, a permissive microenvironment must

allow access to both DCs and T cells (17, 19, 25).

In conclusion, the published research indicated that LIRI had a

tight connection to the immune process. Therefore, we analyzed the

immune cell infiltration of LIRI and normal liver samples and

found that the proportion of immune cells was different in LIRI and

normal samples. To be specific, the infiltration of NK cells activated,

monocytes, macrophage M0, dendritic cells activated, and mast

cells activated were all higher in LIRI, which suggested an

intensified innate immune reaction to tissue damage. In our

research, we also performed consensus clustering to identify two
Frontiers in Immunology 11
subtypes of LIRI. We also analyzed the immune functions of Cluster

1 and Cluster 2 using the ssGSEA method. We found that the

proportions of immune functions were higher in Cluster 2 than in

Cluster 1, indicating that Cluster 2 had a more activated

inflammatory microenvironment. Moreover, the pathway

enrichment results proved that the DEGs of the two clusters were

highly enriched in cytokine and chemokine-related pathways,

suggesting the important role of these molecules in immunogenic

cell death.

It has been reported that the liver ischemia-reperfusion injury

(LIRI) can be classified into two types: warm LIRI, resulting from

hepatocyte damage during in vivo liver transplantation, potentially

leading to liver failure; cold LIRI, caused by damage to hepatic cells

during ex vivo preservation, which is often followed by warm LIRI

during transplantation (26). Despite different initial cell death

mechanisms, both types share similar pathophysiological
FIGURE 8

Identification of hub genes in LIRI by machine learning. (A) The ROC curves of different machine learning models in the GSE151648. (B) The reverse
cumulative distribution curves of residual in different machine learning methods. (C) Boxplot of residuals in different machine learning models.
(D) Feature importance genes created for the RF and SVM model. (E) Differential expression analysis of feature importance genes from RF and SVM
models in GSE151648.
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processes mediated by innate immune responses, which involve the

activation of macrophages and neutrophils (27, 28), production of

cytokines and chemokines (29), release of reactive oxygen species

(ROS) (30), and infiltration of lymphocytes or monocytes (31). Our

immune infiltration and pathway enrichment analyses aligned with

the existing literature, highlighting the pivotal role of ICD in

ischemia-reperfusion injury, which could yield novel perspectives

on treatment after liver transplantation.
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In the end, we constructed the ICD-related diagnosis models

based on the WGCNA method and four machine learning

algorithms. The model had excellent performances in both the

training and validation cohorts. The nomograms proved that our

diagnosis models could help predict the risk of LIRI after

liver transplantation.

To validate the essential genes identified through machine

learning, we established an in vitro model of ischemia-reperfusion
FIGURE 9

External validation of the hub genes in LIRI. (A) Boxplot of the expression of feature importance genes from RF and SVM in GSE23649. (B) The ROC
curves of feature importance genes from RF and SVM in GSE23649. (C) Boxplot of the expression of feature importance genes from RF and SVM in
GSE15480. (D) The ROC curves of feature Importance genes from RF and SVM in GSE15480.
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in HepG2 cell and performed qPCR experiments. The findings

indicated that the mRNA expression of NFKB2, RALGDS,

RHBDL2, TRIM40 and HSPA1B were increased. The NF-kB
signaling pathway plays a critical role in the regulation of oxidative

stress, inflammatory responses, apoptosis, and mitochondrial

dysfunction, and is intricately linked to the pathophysiological

mechanisms underlying LIRI (32–34). A growing body of research
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highlights the potential therapeutic efficacy of pharmacological

agents or inhibitors that specifically target NF-kB in the

management of LIRI (35–37). RALGDS functions as a guanine

nucleotide exchange factor for the small G protein Ral and is

classified as one of the Ras effectors. It plays a critical role in the

regulation of membrane transport and the remodeling of the

cytoskeleton (38, 39). RHBDL2 is a member of the rhomboid
FIGURE 10

Construction of the diagnostic nomogram in LIRI. (A) Nomogram of feature importance genes from RF. (B) The calibration and DCA curves of the
nomogram based on RF feature importance genes. (C) Nomogram of feature Importance genes from SVM. (D) The calibration and DCA curves of
the nomogram based on SVM feature importance genes.
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family of the integral membrane proteins and functions as an

intramembrane serine protease (40, 41). TRIM40 is a member of

the tripartite motif-containing protein (TRIM) protein family. A

previous study showed that the upregulated TRIM40 could promote

the progression of inflammatory bowel disease. TRIM40 is a

pathogenic driver of inflammatory bowel disease through

subverting intestinal barrier integrity (42). However, as of now,

there is a lack of research publications concerning RALGDS,

RHBDL2 and TRIM40 within the context of LIRI. HSPA1B is a
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member of the heat shock protein (HSP) family. As a protein induced

under various environmental stresses such as high temperature,

hypoxia, chemicals, and oxidative stress, its main function is to

protect cells from damage caused by these stresses (43, 44).

Previous studies have reported that HSPA12A in hepatocytes

inhibits macrophage chemotaxis and activation by suppressing

glycolysis-mediated HMGB1 lactylation and hepatocyte secretion,

thereby alleviating liver ischemia/reperfusion injury (27). In this

article, through bioinformatics and the LIRI cell model, we found
FIGURE 11

The expression of key genes in a cell LIRI model. (A) The graphical abstract of LIRI model. (B-H) The mRNA expression of key genes from RF and
SVM model. ns P > 0.05, * P ≤ 0.05, **** P ≤ 0.0001.
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that HSPA1B was significantly elevated; however, the precise

mechanisms underlying its role in LIRI require further investigation.

Nonetheless, there are also several limitations in our research.

First, our research mainly relies on bioinformatic analysis, and the

conclusion has not been validated by biological experiments. Second,

due to the limited diversity of non-oncology databases, the sequencing

data of LIRI is constrained solely to the GEO database. Our future

studies will focus on delineating specific molecular pathways,

validating the hub genes involved in the model, and incorporating

data from additional sources that could enhance reliability.
5 Conclusions

In conclusion, our comprehensive analyses underscored the

intricate relationship between immunogenic cell death and

ischemia-reperfusion injury after liver transplantation. Moreover,

we also identified two clusters by consensus clustering which had

different immune infiltration degrees. Finally, we constructed the

ICD-related diagnosis models based on WGCNA and machine

learning algorithms. Our RF and SVM-based models had excellent

performances in the diagnosis of ischemia-reperfusion injury.
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Glossary

ATP adenosine triphosphate
Frontiers in Immunol
AUC area under the curves
BP biological process
CC cellular component
CDF cumulative distribution function
DAMPs damage-associated molecular patterns
DC dendritic cell
DCA decision curve analysis
DEGs differentially expressed genes
GEO Gene Expression Omnibus
GLM Generalized Linear Models
GSVA gene set variation analysis
HSPA1B Heat Shock Protein Family A (Hsp70) Member 1B
ICD immunogenic cell death
ICDs immunogenic cell death-related genes
ICDs-DEGs differentially expressed genes related to immunogenic

cell death
IFNG Interferon-gamma
ogy 17
KEGG Kyoto Encyclopedia of Genes and Genomes
LIF Leukemia inhibitory factor
LIRI liver ischemia-reperfusion injury
MF molecular function
NFKB2 Nuclear Factor Kappa B Subunit 2
PCA principal component analysis
RF Random Forest
RALGDS Ral Guanine Nucleotide Dissociation Stimulator
RHBDL2 Rhomboid Like 2
RMSE root mean square error;ROC, receiver operating characteristic
ROS reactive oxygen species
ssGSEA single sample gene set enrichment analysis
SVM Support Vector Machine
TME tumor microenvironment
TRIM40 Tripartite Motif Containing 40
WGCNA Weighted Gene Co-expression Network Analysis
XGB XGBoost
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