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Identification and analysis
of cuproptosis associated
molecular clusters and
immunological profiles
in atopic dermatitis
Liangzhe Wang1†, Bo Wang1†, Min Peng2†, Xiaoyan Yang1,
Sijia Huang3, Ruixin Wang1, Lin Du1, Ruiqian Yao1, Wei Wang4*,
Baiping Dong1* and Yuanjie Zhu1,3*

1Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China,
2Department of Ultrasound Diagnosis, Naval Medical Center, Naval Medical University,
Shanghai, China, 3School of Medicine, Shanghai University, Shanghai, China, 4Department of
Research, Naval Medical Center, Naval Medical University, Shanghai, China
Background: Atopic dermatitis (AD) is a chronic skin condition marked by

persistent itching and dryness. The role of cuproptosis, a novel form of

programmed cell death, in AD is not yet understood.

Methods: The GSE107361 dataset was obtained from the Gene Expression

Omnibus (GEO) database. Cuproptosis-related genes (CRGs) in AD were

identified and analyzed, and immune landscape analysis was performed using

ssGSEA. AD was clustered based on CRGs using ConsensusClusterPlus.

Weighted gene co-expression network analysis (WGCNA) and differential gene

expression analysis were conducted. Hub genes between AD clusters were

identified, and both protein-protein interaction (PPI) and drug-gene interaction

networks were developed.

Results: Three CRGs (DLD, MTF1, and GLS) were significantly upregulated in the

AD group compared to healthy controls. Notably, four core CRGs (LIAS, LIPT1,

PDHA1, CDKN2A) distinguished early-onset from adult-onset AD, indicating

more active cuproptosis in early-onset AD. CRGs were linked to immune cell

infiltration in AD, highlighting differences in immune microenvironments

between early- and adult-onset AD. Early-onset AD showed high innate

immunity, while adult-onset AD had a mix of innate and type 1 adaptive

immunity. CRG expression identified two molecular subtypes with distinct

immune infiltration: Cluster 2 (high cuproptosis) had predominant innate

immunity, while Cluster 1 (low cuproptosis) had adaptive immunity.

Additionally, 102 hub DEGs were identified through WGCNA co-expression

network analysis, and 10 hub node genes were identified and potential drugs

were explored for the management of AD.
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Conclusions: The study provides insights into the roles of cuproptosis-related

processes in the pathogenesis and potential treatment of AD. Finding of key hub

genes between the 2 distinct immune infiltration subtypes might inform potential

therapeutic strategies for AD.
KEYWORDS

cuproptosis, atopic dermatitis, differentially expressed genes, immune
infiltration, bioinformatics
1 Background

Atopic dermatitis (AD) is a chronic and refractory inflammatory

skin disease, characterized by dry skin and intense pruritus (1). It

ranks among the most common dermatological disorders globally,

impacting approximately 20% of the world’s population and imposing

a substantial societal burden (2). The pathogenesis of AD is intricate

and multifactorial, involving complex interactions among genetic

predispositions, environmental influences, and immunological

mechanisms (3–5). However, the molecular mechanisms of AD are

not well understood, hindering its prevention, diagnosis, and

treatment. Inflammation, involving various immune cells like

macrophages, dendritic cells, mast cells, neutrophils, T cells, and B

cells, plays a significant role in AD’s development (6, 7). Furthermore,

several studies revealed that early- and adult-onset AD exhibit distinct

genetic and immune profiles. For example, adult-onset AD is

associated with FLG mutations and Th1 skewing, while early-onset

AD shows stronger Th2 polarization. This dichotomy underscores the

need for age-stratified analyses.

Copper is an intracellular trace metal essential for numerous

biological processes. However, an excess of copper can result in

cytotoxicity, although the precise mechanism remains to be fully

elucidated (8). Tsvetkov et al. were the first to report that

cuproptosis represents a copper-dependent and distinct form of

cell death, separate from other known types of cell death (9). This

form of cell death, which is both copper-dependent and reliant on

mitochondrial respiration, occurs through the direct binding of
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copper to the lipoylated components of the tricarboxylic acid (TCA)

cycle. This interaction causes aberrant aggregation of lipoylated

proteins and the depletion of iron-sulfur cluster proteins, ultimately

resulting in protein toxic stress and the induction of cell death

(10, 11).

Recent studies highlight cuproptosis as a key factor in inflammatory

disorders. In rheumatoid arthritis, cuproptosis related genes (CRGs) like

FDX1 and LIAS increase synovial fibroblast growth and macrophage

polarization, worsening joint inflammation (12). In ulcerative colitis,

LIPT1 and PDHA1-related cuproptosis disrupts epithelial cells,

advancing the disease (13). Notably, in psoriasis, a cutaneous

inflammatory disease, cuproptosis causes mitochondrial stress and

keratinocyte apoptosis through lipoylation, indicating a common

mechanism in immune-related skin conditions (14). However,

cuproptosis’s role in AD remains unexamined. Considering AD’s

complex immune environment and mitochondrial dysfunction, we

hypothesize that CRGs may orchestrate immune cell infiltration and

inflammatory responses in AD, contributing to its clinical heterogeneity

between early- and adult-onset subtypes. Understanding cuproptosis

and CRGs in AD’s immune environment is crucial for exploring

its pathogenesis.

The Gene Expression Omnibus (GEO) is a comprehensive

database of gene expression datasets related to various diseases

(15). These datasets provide crucial information for gaining new

insights using different methods. Bioinformatics has become a

reliable tool for analyzing existing data (16). In this context,

Weighted Gene Co-expression Network Analysis (WGCNA) was

used to group selected genes into biological functional modules,

which can help explain disease mechanisms (17).

This study utilized the GSE107361 dataset to explore the impact

of CRGs on the immune microenvironment in AD, focusing on

immune-infiltrating cells, immune-response gene sets, and human

leukocyte antigen (HLA) genes. AD samples were categorized into

two molecular subtypes, with key molecules identified through the

WGCNA co-expression network, highlighting turquoise and yellow

modules. A protein-protein interaction network was constructed

from 102 hub genes, derived from the intersection of module key

genes and 357 differentially expressed genes. Ten hub node genes

were identified, suggesting potential therapeutic drugs via DGldb

database interactions. This research may provide new diagnostic

biomarkers or therapeutic targets for AD.
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2 Methods

2.1 Data collection and preprocessing

The gene expression microarray data GSE107361 were

downloaded from the National Center Biotechnology Information

Gene Expression Omnibus (NCBI-GEO) database (https://

www.ncbi.nlm.nih.gov/geo/, accessed on 15 March 2023). A total

of 79 AD patients and 29 adjunct healthy control samples (52 early-

onset samples and 56 adult-onset samples) were involved in the

present study. During data preprocessing, we retained the samples

with both the expression data and the clinical information for

analysis, and if there is no probe or multiple genes corresponding to

one probe, it is discarded, and if multiple probes correspond to the

same gene, the median value is used as the expression amount of the

gene. Cuproptosis-related genes were identified from the previous

literature (9). A total of 10 genes closely related to cupoptosis were

obtained for subsequent analysis, including CDKN2A, FDX1, DLD,

DLAT, LIAS, GLS, LIPT1, MTF1, PDHA1, and PDHB.
2.2 Chromosome location and protein-
protein interaction network of CRGs

Genomic locations of the 10 CRGs in chromosomes were

demonstrated using Circos. PPI networks of the CRGs were

created from the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) database, and an interaction score >

0.4 was considered as statistically significant, and hiding individual

target protein nodes (18). The data obtained from the String

database were input into Cytoscape3.8.0 to visualize the

PPI network.
2.3 Identification of differentially expressed
genes in the CRGs

Based on GSE107361 data, we usedWilcoxon test to analyze the

expression of 10 CRGs between AD samples and healthy samples.

The DEGs were further identified by the limma package (19)

between AD samples and healthy samples. Heat map and box

plot were drawn to demonstrate the expressions of DEGs between

the two groups. Similarly, the DEGs between AD samples from

children and adult patients were identified and illustrated.
2.4 Involvement of CRGs in immune
regulation of AD

To examine the role of CRGs in the immune regulation of AD,

we employed single-sample gene set enrichment analysis (ssGSEA)

to quantify immune cell infiltration. Based on GSE107361 data, we

conducted a comparative analysis of immune cell infiltration

between AD samples and healthy controls and assessed the
Frontiers in Immunology 03
Spearman correlation between CRGs and immune-infiltrating

cells. Furthermore, we validated these findings using the

GSE65832 bulk RNA-seq dataset and GSE269981 scRNA-seq

dataset comparing AD samples with healthy controls.

Differences in immune response gene set enrichment scores

between AD and normal samples were analyzed, and immune

response gene sets were downloaded from the immport database

(https://www.immport.org/shared/genelists) for a total of 17 immune

response gene sets, and spearman correlations between CRGs and

immune response gene set enrichment scores were analyzed.

Additionally, HLA gene differences between disease and normal

samples (PMID: 33724691,17 HLA genes, see supplementary file

HLA) were analyzed, and spearman correlations between

cuproptosis-related genes and HLA genes were analyzed. Using

the same method as above, the immune infiltration, HLA gene

difference and immune response gene set among children vs adults

patients were analyzed.
2.5 Classification of AD samples into two
biologically distinct subtypes based on
CRGs

To classify AD samples into distinct subtypes based on the

expression level of CRGs. The consensus clustering analysis was

conducted using the Consensus Cluster Plus package in R software.

Optimal clustering K was used and in order to ensure the stability of

classification, 1000 repetitions were performed. Principal

component analysis (PCA) was used to show the clustering of

different CRG-based subtypes. The differential expressions of CRGs

in each clusters were analyzed, and the heat map and box plot of

cuproptosis-related genes in each clusters were drawn. The

differentially expressed genes (DEGs) between cluster 1 and

cluster 2 were analyzed by Limma (with log2 fold change (FC) >1

criteria, adjusted P values < 0.05) The differential expressions

between groups were identified by limma, with log2 fold change

(FC) ≥ 1 and adjusted P values < 0.05 were considered DEGs. This

threshold were selected based on established practices for

microarray data to balance sensitivity and specificity.
2.6 Functional enrichment analysis and
drug-gene interaction network

The GO analysis is a useful method for annotating gene and

gene product, and identifying characteristic biological meaning of

genome and transcriptome (20, 21). The KEGG is a systematic

analysis database of gene function, linking genomic information

with high-level functional information (22). Based on CRG clusters,

the enrichment scores of GO and KEGG were calculated by ssGSEA

algorithm, and the enrichment differences of GO and KEGG

between two CRG clusters were analyzed and shown in heat map.

PPIs with STRING score > 900 were used to construct the

interaction network and visualized by cytoscape (23). The Drug-
frontiersin.org
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Gene Interaction Database (DGIdb) database serves as a central

repository for data on drug-gene interactions and druggability

gathered from various sources, providing information on drug-

gene interactions and druggable genes (24). The drug-gene

interaction network was explored by the DGIdb after excluding

all non-specific drugs that targeted > 10 genes from the analysis.
2.7 Statistical analysis

All statistical analyses were conducted in R (version 4.3.0) and

SPSS (version 27.0) software. For the comparison of continuous

variables between two groups, the Mann-Whitney U test (the

Wilcoxon rank-sum test) was used, as the data did not meet the

assumptions of normality required for parametric tests. The

significance levels of p-values were denoted as follows: NS (not

significant, p > 0.05), * (0.01 < p ≤ 0.05), ** (0.001 < p ≤ 0.01),

*** (0.0001 < p ≤ 0.001), and **** (p ≤ 0.0001). Correlation analyses

were performed using the Spearman correlation test, which is

suitable for non-parametric data. To control for the false

discovery rate (FDR) in multiple comparisons, the Benjamini-

Hochberg (BH) correction was applied to adjust p-values where

appropriate. Adjusted p-values are reported for all analyses

involving multiple comparisons.
Frontiers in Immunology 04
3 Results

3.1 Differential expression analysis of CRGs
between AD and healthy samples

As indicated previously, 10 genes (FDX1, LIAS, LIPT1, DLD,

DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A) were

demonstrated to be associated with cuproptosis. First, we

analyzed the location of the 10 CRGs on the chromosome

(Figure 1A), and a PPI network diagram between CRGs was

plotted showing the interaction relationship between them

(Figure 1B). Analysis of the expression correlations between

cuproptosis-related genes revealed that LIPT1 and PDHA1 were

most correlated among CRGs in AD samples (Figure 1C). Then, in

order to confirm the involvement of these CRGs in AD, we

compared the expression patterns of these 10 CRGs between AD

and healthy samples downloaded from GEO database (GSE107361

dataset). Consequently, 3 genes (DLD, MTF1, and GLS) were

identified as differentially expressed CRGs between AD and

healthy samples, and all of them were upregulated in AD samples

(Figures 1D, E).

Furthermore, based on the expression data of GSE107361

dataset, we used Wilcoxon to analyze the differential expression

of CRGs between the samples from early-onset and adult-onset AD.
FIGURE 1

Correlation analysis of AD and CRGs. (A) Position of the 10 CRGs on the chromosome. (B) Protein interaction network between CRGs;
(C) Spearman’s correlation between CRGs differentially expressed in disease (D) Heat map of 10 CRGs in AD and healthy control samples. (E) Box
plot demonstrating expressions of 10 CRGs in AD and healthy control samples. **P<0.01, ns, no significance.
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The results showed that LIAS, LIPT1, PDHA1, CDKN2A exhibited

significantly differential expression between early-onset and adult-

onset AD (Figure 2). Among these differentially expressed genes,

LIPT1, PDHA1, and CDKN2A were upregulated, while LIAS was

downregulated in adult-onset AD samples. These genes are closely

related to the condition of immune-infiltrating cells, suggesting the

different immune microenvironment between early- and adult-

onset AD.
3.2 CRGs are involved in the immune
regulation of AD

To explore the correlation between the development of AD with

immune status, the infiltration of immune cells was analyzed

between different samples using ssGSEA. Box plots of the

immune cell infiltration scores between AD samples and healthy

controls were shown in Figure 3A, and the infiltration scores of

activated CD4 T cell, activated CD8 T cell, effector memory CD8 T

cell, macrophage, neutrophil, regulatory T cell, type 17 T helper cell

and type 2 T helper cell were significantly higher in disease group

than that in healthy controls. This suggests a close association

between the development of AD and the immune system.

Furthermore, we validated the ssGSEA results using the

GSE65832 bulk RNA-seq dataset and GSE269981 scRNA-seq

dataset (AD vs. normal controls). The analysis of bulk RNA-seq

dataset (Supplementary Figure S1) revealed that the infiltration scores

of activated CD4 T cell, effector memory CD8 T cell, neutrophil,
Frontiers in Immunology 05
myeloid-derived suppressor cell, and type 17 T helper cell were

significantly higher in disease group than that in healthy controls,

which was consistent with the ssGSEA results, underscoring the

reproducibility of our findings. We annotated the immune cells in

the scRNA-seq dataset and compared the frequency of immune cells

between AD samples and the healthy samples. As shown in the

UMAP plots (Supplementary Figure S2A), the frequency of immune

cells (T cells, B cells, neutrophils, NK cells) in the disease samples is

significantly elevated than the healthy samples, validating the

increased ssGSEA scores. In addition, Bar plots (Supplementary

Figure S2B) indicated that AD lesions exhibited higher CD4 T cells,

B cells, neutrophils and dendritic cells compared to healthy controls,

aligning with ssGSEA results.

The correlation between CRGs and immune cells infiltration

were further investigated, and most of CRGs exhibited positive

correlation with immune cells. Among them, there was the most

significant positive correlation between GLS gene expression and

activated CD4 T cell as well as a significant negative correlation

between LIPT1 gene expression and neutrophil (Figure 3B). These

findings suggest that CRGs may regulate immune infiltration

in AD.

Additionally, we compared the difference of immune cells

infiltration scores between early-onset and adult-onset AD

samples through ssGSEA. As shown in Figure 4, the infiltration

scores of activated CD8 T cell, CD56bright natural killer cell,

CD56dim natural killer cell, central memory CD4 T cell, effector

memory CD8 T cell, macrophage, monocyte, natural killer T cell,

neutrophil, regulatory T cell, T follicular helper cell, and type 1 T
FIGURE 2

The differential expression of CRGs between early-onset and adult-onset AD. ****P< 0.0001, ***P< 0.001, **P< 0.01, ns, no significance.
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helper cell, are significantly different between early- and adult-onset

AD samples. This suggests that adult-onset AD and early-onset AD

may have different immune infiltration characteristics and

regulatory mechanisms. The correlation between CRGs and

immune cells infiltration in AD samples were further analyzed,

and most of CRGs exhibited positive correlation with immune cells

infiltration. Consistent with the above results, there was a significant

positive correlation between GLS gene expression and activated

CD4 T cell as well as a significant negative correlation between

LIPT1 gene expression and neutrophil (Figure 4). Notably, we

found a more extensive enrichment of innate immune cell driven

by neutrophil, monocyte, eosinophil in early-onset AD group, while

the adult-onset AD group exhibited a more complex immune status

combining innate immunity with type 1 adaptive immunity.
Frontiers in Immunology 06
3.3 Identification of two AD subtypes
based on CRG

The consensus clustering analysis was performed using the

Consensus Cluster Plus package in R software. Based on the

expression profile of 10 CRGs in GSE107361 dataset, the optimal

clustering stability was chosen when k = 2 (Figure 5A). The curve of

CDF values in the range of 0.1-0.9 became nearly smooth when k =

2 (Figures 5B, C). Consequently, the 79 AD patients downloaded

from GEO database were divided into two groups. Principal

component analysis (PCA) demonstrated a good distinction of

the two clusters (Figure 5D). Subsequently, we conducted the

differential expression analysis of CRGs between cluster 1 and

cluster 2, and three CRGs (FDX1, LIAS, and DLAT) were found
FIGURE 3

Immune correlation analysis of CRGs in AD and normal samples. (A) Differences of various immune cell infiltration scores between disease and
normal samples. (B) Spearman correlation between CRGs and immune cell infiltration scores, showing scatter plots of the largest positive and
negative correlations between them and box plots of the differences between positive and negative correlated immune cells and genes. ****P<
0.0001, ***P< 0.001, **P< 0.01, *P< 0.05, ns, no significance.
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to be higher in cluster 2 than cluster 1, while 2 CRGs (LIPT1,

PDHA1) were found to be downregulated in cluster 2 (Figures 5E,

F). Considering that FDX1 can directly regulate the lipoylation of

DLAT through its interaction with LIAS and lead to cuprotosis,

cluster 2 with high level of FDX1-LIAS-DLAT exhibited an active

cuprotosis status while cluster 1 exhibited a relatively low level

of cuprotosis.

Based on cuproptosis subtype grouping, the enrichment scores

of GO and KEGG pathways in different CRG clusters were

calculated by ssGSEA algorithm, and the differences of

enrichment scores of GO and KEGG pathways between the two

clusters were analyzed and shown in heat map (Figures 6A, B). It

can be seen that there were significant differences in the enrichment

scores of GO and KEGG pathways between the two clusters.
Frontiers in Immunology 07
3.4 Immune infiltration characteristics of
CRG based clusters

To investigate the differences in immune landscape between the

two clusters, the immune infiltrations of cluster 1 and cluster 2 were

quantified and analyzed. The results demonstrated that there were

significant differences of infiltration scores in activated dendritic

cell, CD56dim natural killer cell, effector memory CD8 T cell,

gamma delta T cell, immature dendritic cell, mast cell, monocyte,

natural killer T cell, and neutrophil between the two clusters.

Cluster 1 showed higher levels in CD56dim natural killer cell,

effector memory CD8 T cell, and natural killer T cell. We term

cluster 1 as adaptive-immunity predominant subtype (AI-subtype),

since all of these cells showed a function of cytotoxicity, with more
FIGURE 4

Immune correlation analysis of CRGs in early- and adult-onset AD samples. (A) Differences of various immune cell infiltration scores between early-
and adult-onset AD samples. (B) Spearman correlation between CRGs and immune cell infiltration scores, showing scatter plots of the largest
positive and negative correlations between them and box plots of the differences between positive and negative correlated immune cells and genes.
****P< 0.0001, ***P< 0.001, **P< 0.01, *P< 0.05, ns, no significance.
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perforin and granztmes production or a short half-life and little

memory potential, which further regulate the adaptive immunity.

While cluster 2, termed as innate-immunity predominant subtype

(II-subtype), showed higher levels in activated dendritic cell,

immature dendritic cell, gamma delta T cell, mast cell, monocyte,

and neutrophil (Figure 7A), which were mainly function in innate

immunity. The accumulation of immune cells with different

functions implies different immune responses, resulting from

different stimuli factors. Similarly, there were significant
Frontiers in Immunology 08
differences of gene expression in HLA-A, HLA-DMB, HLA-

DMA, and HLA-DRA between the two clusters, and cluster 1

showed higher expression in HLA-A, HLA-DMB, HLA-DMA

than cluster 2 (Figure 7B). Additionally, the enrichment scores of

cytokine receptors, antigen processing and presentation, were

significantly different between CRG-based clusters (Figure 7C).

Furthermore, we performed the breakdown of early- vs adult-

onset samples in clusters 1 and 2. As shown in Table 1, cluster 1

consisted of 68.4% early-onset and 31.6% adult-onset AD samples,
FIGURE 5

Identification of molecular clusters of CRGs in AD samples. (A) Consensus clustering matrix at k=2. (B, C) Representative cumulative distribution
function (CDF) curves, CDF incremental area curves. (D) Principal component analysis (PCA) based on two clusters. (E, F) Heat map and box plots
illustrating expressions of 10 CRGs in each clusters. ****P<0.0001, ns, no significance.
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https://doi.org/10.3389/fimmu.2025.1545457
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1545457
while cluster 2 included 36.6% early-onset and 63.4% adult-onset AD

samples. There was a significant correlation between CRGs-based

subtype (cluster 1 and cluster 2) and age-based subgroup (adult-onset

AD and early-onset AD) (P<0.05), which is consistent with the

observation that there were similar immune differences in early- vs.

adult-onset comparison and cluster 1 vs. 2 comparison points.
3.5 Identification of key molecules based
on co-expression network

Through bioinformatics analysis, a total of 357 differentially

expressed genes (DEGs) were found between cluster 1 and cluster 2.

To further verify the biological processes related to these DEGs

between the two clusters, GO enrichment analysis was performed

using the cluster profiler to explore relevant biological process

(Figure 8A). Several biological processes, such as epidermis

development, muscle system process, skin development,

regulation of peptidase activity, keratinocyte differentiation,

epidermal cell differentiation, maintenance of location in cell,

antimicrobial humoral response, keratinization, neuron cellular

homeostasis were enriched.

Based on these gene expression profiling, the weighted co-

expression network was constructed using WGCNA. The results

showed that co-expression network conforms to the scale-free

network, that is, the log (K) of the node with K connectivity is

negatively correlated with the log (p (K)) of the probability of the

node occurrence, and the correlation coefficient is greater than 0.8.

To ensure that the network was scale-free network, we chose

optimal b = 7 (> 0.85, Figure 8B). The next step was to convert

the expression matrix to an adjacency matrix, which was then

converted to a topological matrix. We used average-linkage

hierarchical clustering to cluster genes according to the criteria of

mixed dynamic shear trees, and set the minimum number of genes

to 30 per gene network module. After identifying gene modules

using the dynamic shear method, we calculated the eigengenes of

each module once and then performed cluster analysis on the
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modules, merging the closer modules into the new module with a

set height = 0.25, a total of 23 modules were obtained (Figure 8C).

Pearson correlation coefficients were calculated for the ME of each

module and the phenotypic characteristics of the sample, with higher

values representing the module being more important. The rows in

Figure 8D represent the feature vector genes for each module, and the

columns represent the sample phenotypic characteristics, and the

correlation coefficients decrease from high to low in descending order

from red to blue. The numbers in each box represent the coefficient of

correlation between the gene module and the phenotypic

characteristics of the sample, and the numbers in parentheses

indicate the significance of the P value. Turquoise and yellow were

chosen as the key modules. According to the criterion that is module

membership (MM) > 0.6 and gene significance (GS) > 0.5, a total of

385 module hub genes (Figures 8E, F) were obtained. Finally, a total of

102 hub DEGs were obtained by crossing the 385 hub genes with the

357 DEGs between CRG-based clusters (Figure 8G).
3.6 Potential therapeutic strategies

PPI network was constructed based on the above identified hub

DEGs (based on STRING database) (Figure 9A). Hub nodes in PPI

network were investigated using MCC method of Cytoscape, and 10

genes were obtained as the key hub genes, including YWHAE, CALM1,

MYC, RBM15, RUVBL1, YWHAZ, ALYREF, BECN1, GRB1, IQGAP1

(Figure 9B). Further, the interactions between these key genes with
FIGURE 6

The enrichment difference of GO pathway (A) and KEGG pathway (B) between the two CRG clusters.
TABLE 1 Breakdown of early- vs adult-onset samples in clusters 1 and 2.

CRGs-based
subtype

Age-based
subgroup

Cluster 1 (38) Cluster 2 (41)

Adult-Onset 26 (68.4%) 15 (36.6%)

Early-Onset 12 (31.6%) 26 (63.4%)
Statistical Test: Significant association between clusters and age groups (c2 = 6.7822, P<0.05).
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drugs were explored based on the DGIDB database v4.2.0 (https://

www.DGIdb.org/), and 3 genes, including YWHAE, CALM1, and

MYC, were confirmed that can interact with the specific drugs in

the DGlDB database, and these corresponding drugs may be the

potential target drugs for addressing AD (Figure 10). Future studies

should evaluate drug responses in subtype-specific models.
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4 Discussion

Atopic dermatitis is a refractory inflammatory skin disease

manifested as dry skin, intense itching, and intense itch, bringing

increasing medical burden worldwide in the past few decades (25). It

has multiple risk factors involved in the interaction between genetic
FIGURE 7

Different immune infiltration characteristics among CRG cluster 1 and 2. (A) Box plot showing immune cell infiltration levels in two CRG clusters.
(B) Box plot demonstrating HLA expressions in two CRG clusters. (C) Box plot illustrating immune reaction in two CRG clusters. ns: no significance;
*P < 0.05; **P<0.01; ****P<0.0001, calculated by ssGSEA algorithm.
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susceptibility and various environmental stimuli (26, 27). Due to the

unclear etiopathogenesis and complex pathophysiological process of

AD, its prevention and treatment remain challengeable. Therefore, a

comprehensive understanding of the genetic backgrounds and

cutaneous immune microenvironment is essential for the

prevention, treatment, and prognosis evaluation of AD.

Cuprotosis is a newly reported cell death form dependent on

mitochondrial respiration and TCA cycle (11). It has been widely

studied in various tumor and inflammatory disorders since its
Frontiers in Immunology 11
mechanism first being clarified by Tsvetkov et al. in 2022.

Recently, several studies have confirmed that cuprotosis-related

genes (CRGs) exhibit critical regulatory effects on the immune

microenvironment of a variety of inflammatory disorders, such as

rheumatoid arthritis, Crohn’s disease, and ulcerative colitis (12, 13,

28, 29). In psoriasis, as a cutaneous immune-mediated

inflammatory disease (cIMID), cuproptosis has been confirmed

being associated with mitochondrial metabolism and facilitated

through protein lipoylation (14). However, in AD, another well-
FIGURE 8

Hub genes screening by WGCNA. (A) Biological characteristics of the differentially expressed genes between two clusters were revealed by GO
functional enrichment analysis. (B) Analysis of network topology for various soft-thresholding powers. (C) Gene tree map obtained by hierarchical
clustering, with color lines below the tree showing the allocation of modules determined by dynamic tree cutting, which identified 23 modules.
(D) Heat map of module feature correlation (E) Turquoise scatter map of the genes in the module with MM and GS, with GS and MM showing
relatively significant correlation. (F) yellow scatter map of the genes in the module with MM and GS, with GS and MM showing relatively significant
correlation. (G) Venn map of 385 hub genes with the 357 DEGs between CRG-based clusters.
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known cIMID, the specific mechanisms and regulatory roles of

CRGs have never been investigated.

In the present study, we conducted the first comprehensive

analysis of the differential expression of CRGs between healthy and

AD patients. Consequently, 3 out of 10 CRGs, including MTF1,

DLD, and GLS, were identified as the differentially expressed genes

between AD and healthy samples, and all of them were upregulated

in AD samples, suggesting the close association of these CRGs with

the development of AD. Previous studies reported that DLD and

MTF1 expression positively correlated with activated CD8T cells,

activated CD4T cells, eosinophils, type 2 T helper cells, and type 17

T helper cells (30). Notably, these immune cells are all the key

drivers in the immune microenvironment of AD (31, 32), further

confirming our findings that DLD and MTF1 play a critical role in

the development of AD by regulating the immune infiltration.

In addition, as an essential molecule for Th17 cell production

(29), the upregulation of GLS expression in AD samples

demonstrated the potential roles of Th17 pathway in the

pathogenesis of AD. Notably, previous research demonstrated

that GLS can also promote the occurrence of inflammatory bowel

diseases (IBD) (33), and thus the AD patients may have an

increased risk of IBD, which has been confirmed by a study

conducted on the risk of inflammatory bowel disease in patients

with AD (34). These findings fully indicate that GLS gene can be

used as a promising target, which can not only intervene in the

Th17 pathway, thereby inhibiting inflammatory response, but also

effectively prevent and treat AD patients with IBD.

Similarly, we also explored and identified the differentially

expressed CRGs between early-onset and adult-onset AD

samples. Among them, the expressions of LIPT1, PDHA1, and

CDKN2A were upregulated in adult-onset sample, while the

expression of LIAS was upregulated in early-onset sample. A
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study conducted on ulcerative colitis (UC) revealed that both

LIPT1 and PDHA1 are key genes to promote cuproptosis, which

can induce the abnormal death of intestinal epithelial cells and lead

to the occurrence of UC (28). According to the results in our study,

both LIPT1 and PDHA1 were significantly upregulated in adult-

onset AD samples. Thus, we deduce that the adult-onset AD

patients may have increased risk of UC compared to early-onset

AD patients. This speculation was confirmed by a study conducted

on the risk of inflammatory bowel disease that adult-onset AD had a

32% increased risk of UC, while early-onset AD did not have

increased risk of UC (34). These evidence demonstrate that

LIPT1 and PDHA1 may act as the shared targets for the

diagnosis, prognosis and treatment of AD and UC.

Several studies have demonstrated that AD is a common disease

that is associated with atopic and nonatopic comorbidities, such as s

asthma, rhinitis, and food allergy, psychiatric, autoimmune,

cardiovascular diseases, and certain cancers (35–38). Considering

the critical roles of cuproptosis in these diseases (10, 37, 39, 40),

CRGs may provide a novel perspective on the underlying

mechanisms of AD comorbidity with these diseases.

Notably, LIAS, also a key gene that promotes cuproptosis, was

significantly upregulated in early-onset AD samples. LIAS encoded

components of the lipoic acid pathway and synthesized a potent

antioxidant termed a-Lipoic acid (LA) in mitochondria and it was

found to be associated with oxidative stress and inflammation.

Previous studies demonstrated that LIAS expression was highly

correlated with the infiltration of immune cells, such as Treg cells,

Th1 cells, Th2 cells, NK cells, CD4 T cells, CD8 T cells, neutrophil,

macrophages, and et al. (41). The result that LIAS was the only

CRGs upregulated in early-onset AD sample suggests the different

immune-related characteristics between early-onset and adult-onset

AD group. This helps us to recognize the different pathogenesis of
FIGURE 9

Key hub genes screening. (A) PPI network map of hub DEG genes. (B) PPI network map of TOP10 genes using MCC methods of Cytoscape.
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adult-onset and early-onset AD and to conduct different

treatment strategies.

What’s more, the immune landscape, including immune cell

infiltration, immune response and HLA genes, in AD samples was

analyzed using ssGSEA. Most of CRGs exhibited positive

correlation with enhanced infiltration and activation of immune

cells and immune-related signaling. Among them, there was a
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significant positive correlation between GLS gene expression and

activated CD4 T cell as well as a significant negative correlation

between LIPT1 gene expression and neutrophil. CD4+ T cells are

known as the principal drivers of AD, and neutrophils can produce

reactive oxygen species and led to skin barrier damage in AD.

The concept of precision medicine has promoted the clustering

of individual subjects (42). In this study, we performed an
FIGURE 10

Interactions between hub key genes with drugs identified in DGlDB database.
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unsupervised clustering analysis based on CRG expression levels

and identified two biological clusters in AD samples. The

expressions of CRGs exhibited significant difference between the

two clusters. Three differentially expressed CRGs, namely FDX1,

LIAS, and DLAT, were expressed at significantly higher levels in

cluster 2 than cluster 1 and had higher levels of immune infiltration

in activated dendritic cell, gamma delta T cell, immature dendritic

cell, mast cell, monocyte, and neutrophil. Similarly, there were

significant differences of gene expression in HLA-A, HLA-DMB,

HLA-DMA, and HLA-DRA between the two clusters, and cluster 1

showed higher expression in HLA-A, HLA-DMB, and HLA-DMA

than cluster 2. Pathway enrichment analysis also revealed a number

of immune-related pathways that were significantly activated in

cluster 2. Taken together, these findings demonstrated that different

cuprotosis activation status exhibit distinct immune infiltration

characteristics (innate-immunity predominant or adaptive-

immunity predominant). Hence, CRGs may regulate the

pathological process of AD by mediating these classical pathways

associated with cell death, metabolism, and immune response.

Future work should also investigate transcriptional regulators

(e.g., NF-kB, HIF-1a) and epigenetic modifiers (e.g., DNA

methylation, histone acetylation) that govern CRG expression in

AD. Single-cell ATAC-seq or ChIP-seq in CRG-defined subtypes

could elucidate regulatory networks linking copper metabolism to

immune dysfunction.

We further performed the breakdown of early- versus adult-

onset samples in clusters 1 and 2 and identified a significant

correlation between CRG-based subtypes and age-based

subgroups. The observed similarities between cluster 1 and adult-

onset cases, as well as cluster 2 and early-onset cases, suggest that

CRG clusters can be approximately inferred from the age of AD

patients, potentially facilitating targeted management strategies for

AD. Nonetheless, the presence of early-onset AD patients in cluster

1 and adult-onset, including elderly AD patients, in cluster 2

indicates that classification based solely on clinical age is

imprecise. Therefore, classifying AD through CRG analysis may

offer more effective guidance for clinical treatment and prognosis.

Furthermore, the 10 hub genes identified (e.g., MYC, CALM1,

YWHAE) are mechanistically linked to AD pathogenesis. MYC, a

master transcriptional regulator, drives Th17 differentiation and IL-17

production—a cytokine pivotal in AD-associated skin inflammation

(43, 44). CALM1 modulates calcium signaling, which is critical for

epidermal barrier integrity; its dysregulation may exacerbate

transepidermal water loss in AD. YWHAE, a 14-3–3 protein,

regulates apoptosis and T cell activation, potentially influencing

AD’s chronicity (45). Clinically, these genes offer therapeutic

potential. For example, Vorinostat—an HDAC inhibitor targeting

MYC—suppresses Th17 responses in preclinical models of psoriasis

(46, 47), suggesting repurposing potential for AD. Similarly, insulin,

which interacts with CALM1, may restore barrier function via calcium

homeostasis (48). Future studies should prioritize validating these

targets in AD-specific models and clinical trials.

This study is the first to examine the potential roles of

cuproptosis and CRGs in AD. Cuproptosis is a unique form of

cell death that relies on mitochondrial respiration. Understanding
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the role of CRGs in the immune microenvironment of AD could

shed light on the disease’s development. However, there were still

some limitations in our study. First, the predominance of European

patients in GSE107361 limits the generalizability of our findings to

other ethnic groups. Future studies should validate CRG signatures

in diverse cohorts, including Asian and African populations, to

account for genetic and environmental heterogeneity. Second, the

modest cohort size of GSE107361 (79 AD patients, 29 controls)

restricts robust stratification of AD subtypes by clinical severity or

comorbidities. Larger, prospectively collected cohorts are needed to

validate the prognostic utility of CRG clusters. Third, while

bioinformatics approaches robustly identify associations, they

cannot establish causality; experimental validation (e.g., CRISPR

knockout of DLD or MTF1 in AD models) is essential to confirm

mechanistic roles. Lastly, although drug-gene interactions were

predicted, their efficacy and safety in AD require rigorous

preclinical testing. Addressing these limitations will strengthen

the translational relevance of our findings.
5 Conclusion

This study is the first to examine CRGs in AD and their impact

on the immune microenvironment. It identified three CRGs (DLD,

MTF1, GLS) with differential expression between AD and healthy

samples, and four CRGs (LIAS, LIPT1, PDHA1, CDKN2A) with

significant expression differences between early-onset and adult-

onset AD. These genes could be crucial for understanding AD’s

immunological mechanisms. AD samples were classified into two

molecular subtypes based on cuproptosis, corresponding to

adaptive or innate immunity predominance. Using WGCNA and

gene-drug interaction analysis, 10 hub genes and potential

therapeutic drugs, such as acivicin and lithium, were identified for

AD management. All these findings suggest that CRGs may play a

pivotal role in AD pathogenesis, and ultimately, the identification of

CRGs could be a novel perspective on biological markers of

diagnosis and treatment of AD.
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