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Introduction: Kidney clear cell carcinoma (KIRC) is the most common subtype of

renal malignancy with a high mortality rate. It is difficult to treat and often leads to

death due to its genomic heterogeneity, metastatic nature, and limited

effectiveness of targeted and immunotherapies. Recent studies showed that the

progression of KIRC is frequently accompanied by significant changes in

necroptosis while these studies were limited by small gene sets, which increases

the risk of missing low-expressed yet important genes.

Methods: This study focused on necroptosis-associated genes within the context

of KIRC and performed a complete closed-loop studies by gene screening, gene

expression analysis, model validation and experimental translation.

Results: Among screened nine core biomarkers (RIPK1, RIPK3, MLKL,CASP8, ZBP1,

TLR3, PYGL, TRPM7, PGAM5), CASP8 and TRPM7 were identified as new potential

biomarkers. The predictive performance of risk prognostic model for 5-year

survival (AUC: 0.77 and 0.89 in training and independent/external validation

cohort) outperformed prior studies by 5.5% and 17.1%, respectively. A more

pronounced immune response was found with high-risk cohort, underscoring

the immunosuppressive properties of tumor immune microenvironments, which

evidenced by increased immune cell infiltration and elevated immunogenicity.

Drug sensitivity analysis revealed that doxorubicin could serve as a promising

therapeutic agent for KIRC. Furthermore, BFTC909 and CAL54 were identified as

the most suitable cell lines for in vitro experimental translation, and highlighting

three functionally significant target genes (CASP8, PGAM5, and CPT2).

Conclusion: This study offers multi-dimensional data that support novel

mechanistic investigations and provide valuable insights for developing precision

immunotherapy strategies in KIRC.
KEYWORDS

KIRC, necroptosis, biomarkers, prognostic, immune microenvironment,
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Introduction

Renal cell carcinomas (RCC) are a diverse group of cancers

originating from renal tubular epithelial cells, accounting for

approximately 2% of all cancer diagnoses (1–3). Among these,

kidney clear cell carcinoma (KIRC) is the predominant subtype,

representing about 80% of RCC cases (2, 4). Studies have showed

that KIRC typically arises from mutations in the VHL gene located

on the short arm of chromosome 3 (3p), leading to VHL protein

inactivation (5, 6). This inactivation results in the overexpression of

hypoxia-inducible factors (HIF-1 and HIF-2) or epigenetic silencing

through promoter methylation (6, 7). Additional mutational

silencing of other tumor suppressor genes on chromosome

3p may contribute to KIRC pathogenesis (8, 9). However,

understanding the pathogenesis of KIRC remains limited due to

its complex progression. Therefore, it is crucial to investigate the

pathological development of KIRC, elucidate its prognostic features,

and identify novel therapeutic targets.

Recent studies have shown that KIRC progression is frequently

accompanied by significant alterations in necroptosis. Necroptosis, a

distinct form of programmed cell death, is mediated by activating key

signaling molecules, such as RIPK1, RIPK3 and MLKL) (10, 11). This

process results in cell membrane rupture and the release of damage-

associated molecular patterns (DAMPs), which stimulate immune

responses and link necroptosis to inflammation (12–14). Necroptosis

plays a dual role in cancer: in some contexts, it suppresses tumor

growth by inducing cell death, while in others, it promotes tumor

progression through inflammation and immune modulation. For

example, the decrease in RIPK3 expression allows cancer cells to

evade necroptosis and correlates with poor prognosis in colorectal

cancer (15). Conversely, RIPK1, RIPK3 and MLKL expression levels

in hepatocellular carcinoma are linked to improved survival (16). In

pancreatic cancer, elevated RIPK1 and RIPK3 levels enhance tumor

migration and invasion, while low MLKL expression is associated

with worse outcomes (17, 18). In addition to the core biomarkers

(RIPK1, RIPK3, and MLKL), other functionally significant genes,

such as ZBP1, TLR3, and PYGL, are also associated with KIRC

progression and play important roles in promoting tumor

proliferation during disease development (19–21).

Necroptosis also shapes immune responses within the tumor

microenvironment. For instance, RIPK3-mediated PGAM5

activation can boost antitumor immunity via natural killer T cells,

independent of necroptosis (22). Additionally, fibroblasts in the

tumor microenvironment can drive immune responses through

necroptosis-induced NF-kB signaling rather than MLKL-mediated

DAMPs release (23). By regulating inflammation, angiogenesis, and

metastasis, necroptosis influences both tumor progression and the

immune landscape. Understanding these mechanisms is vital for

advancing tumor immunotherapy and identifying innovative

therapeutic targets.

Compared to other programmed cell death pathways, necroptosis

may play a more biologically significant role in KIRC progression.

Current research indicates that risk prognostic models based on

pyroptosis and ferroptosis have certain limitations and reduced

biological relevance, such as the use of relatively small initial gene
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sets (e.g., n = 60) (24), the lower proportion of differentially expressed

genes (DEGs, only 5.29% of total genes) (25), moderate predictive

performance (5-year AUC values of 0.68 to 0.76), lack of

independent/external validation cohorts (26, 27). In contrast,

necroptosis-associated genes can more robustly predict KIRC

patient prognosis and show significant correlations with tumor

immune microenvironment features, including upregulation of

immune checkpoint molecules and regulation of T cell infiltration.

These findings highlight their potential as immunotherapy targets

and underscore the need to explore alternative biomarkers. However,

methodological challenges have greatly hindered the exploration of

novel alternative biomarkers, due to the limited scale of available gene

sets (<100 genes) and a lack of in-depth mechanistic understanding

(3, 26–28). Therefore, expanding necroptosis-related gene sets,

validating their predictive performance across diverse populations,

and investigating their roles in immune regulation in KIRC are of

great scientific and clinical significance.

This study focused on necroptosis-associated genes in the context

of KIRC. Using high-throughput computational data, we conducted a

complete closed-loop investigation encompassing gene screening →

gene expression analysis → model validation → experimental

translation. Specifically, we identified necroptosis-related mRNA

biomarkers in KIRC samples through transcriptomic analysis,

established a risk prognostic model, examined tumor immune

microenvironment characteristics and drug responsiveness, and

highlighted promising therapeutic candidates along with optimal

cell lines for drug-target research. This work not only provides

multi-dimensional data to support novel pathological mechanisms

of KIRC but also offers valuable insights for developing precise,

personalized immunotherapy strategies.
Materials and methods

Data source

The initial gene set, comprising 930 necroptosis-associated

genes, was obtained from the GeneCards database (https://

www.genecards.org/). Based on this gene set, gene expression data

—including RNA-seq profiles and associated clinical information—

were collected from 542 KIRC tumor tissues and 72 matched

normal tissues in The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov). Using patient ID numbers, the

transcriptome data were matched with clinical information by

removing duplicates and mismatched entries. This curation

resulted in a final dataset comprising complete gene expression

profiles and clinical data for 533 KIRC patients and 72 normal

individuals, forming “TCGA cohort”. Clinical information

comprised demographic characteristics (sex, age), TNM staging,

and survival outcomes (status and overall survival time).

Construction of the risk prognostic model required a “training

cohort”, which we derived from gene expression data in TCGA

KIRC tumor samples. The genes included in the final risk

prognostic model were defined as “parameter genes”. To evaluate

the model ’s reliability and generalizability, we used an
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“independent/external validation cohort”. After systematic

evaluation of multiple datasets (including ICGC and GEO), we

selected the Pan-Cancer Analysis of Whole Genomes (PCAWG)

dataset from the UCSC Xena Genomics Platform (https://

xenabrowser.net/datapages/) as the independent/external

validation cohort. The PCAWG cohort was chosen because (1): it

provided complete clinical data including overall survival, unlike

other datasets with missing information; (2) By utilizing 68

previously unanalyzed KIRC samples from the PCAWG cohort,

we effectively circumvent sample overlap concerns that could arise

when using other datasets in conjunction with TCGA samples; (3) it

featured uniformly processed gene expression data, ensuring

analytical consistency. Furthermore, for the independent external

validation cohort, a post-hoc power analysis was conducted to assess

the adequacy of the sample scale by utilizing the Wilcoxon-Mann-

Whitney test implemented in G*Power software (version 3.1.9.7).

To verify the transcriptome data from TCGA tissue samples, we

also incorporated candidate cell lines and potential gene targets.

The Cancer Cel l Line Encyc lopedia (CCLE, https : / /

sites.broadinstitute.org/ccle/) and the Human Protein Atlas (HPA,

https://www.proteinatlas.org/) provide comprehensive resources.

After excluding incomplete samples and cell lines, we obtained

528 TCGA KIRC tumor samples and 23 KIRC-related cell lines,

providing robust data for analysis, including uniform manifold

approximation and projection (UMAP) matrices from the TCGA

cohort, metabolite profiles (225 metabolite levels), gene expression

similarity scores, and mRNA/protein expression data. These

datasets offer high homogeneity and excellent reproducibility

from KIRC-related tumor cell lines, fully meeting the

requirements for in vitro validation studies.
Identification of differentially expressed
genes

Differential expression analysis was performed on 930

necroptosis-associated genes. Genes with zero expression were

excluded, leaving 908 genes for which log2 fold-change (FC) and

p-values were calculated. After removing 37 genes lacking

unambiguous Ensembl IDs, 574 DEGs were identified using

DESeq2, with a significance threshold of FDR (Benjamini-

Hochberg adjusted p-value) < 0.001 and |log2FC| > 1.

Subsequently, Gene Ontology (GO) enrichment analysis was

conducted on 551 DEGs with valid Ensembl IDs using the

clusterProfiler R package, with the entire annotated protein-

coding genome as the background. Gene Set Enrichment Analysis

(GSEA) was also performed on 871 necroptosis-associated genes

with Ensembl IDs, utilizing genome-wide expression profiles as the

background. To ensure statistical robustness, GSEA was restricted

to predefined gene sets containing between 10 and 1000 genes.

Based on the results for GeneRatio and adjusted p-values (p-adjust),

we identified 26 key DEGs that play a significant role in the

necroptotic process in KIRC. These key DEGs were prioritized for

further investigation into their functional impact and potential as

biomarkers or therapeutic targets.
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KEGG-necroptosis pathway DEGs:
rendering analysis and PPI analysis

The necroptotic signaling pathway network from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (http://

www.genome.jp/kegg/) were extracted and Pathview R package was

used for visualization and analysis. This analysis identified nine core

DEGs associated with necroptosis. To explore their intrinsic

interactions, we conducted a protein–protein interaction (PPI)

network analysis using the STRINGdb R package. The resulting

network revealed functional relationships and potential regulatory

roles of these core DEGs within the necroptotic signaling pathway.
Establishment and validation of a risk
prognostic model for necroptosis
associated genes

To assess the prognostic value of necroptosis-associated genes,

we conducted univariate Cox regression analysis on 930 genes

associated with necroptosis to evaluate the correlation between

genes and survival status in the training cohort. The analysis was

performed using the glmnet R package. We applied selection

criteria of p-value < 0.05 and a change in hazard ratio (dHR)

greater than 0.05% (> 0.05%), identifying 38 candidate genes

significantly associated with survival and suitable for prognostic

modeling. After analyzing the expression data from the TCGA

cohort, the 533 tumor samples were stratified into high-risk and

low-risk groups based on risk score analysis. Survival analysis was

then conducted using the survminer R package. In addition, a 5-

year receiver operating characteristic (ROC) curve was generated

using the timeROC R package to evaluate predictive performance.

Centroid-based principal component analysis (PCA) was

performed with the FactoMineR and factoextra R packages to

visualize the distribution of risk groups. To facilitate prognostic

modeling, we further employed LASSO regression (using the

glmnet R package) and multivariate Cox regression analysis

(using the survival R package) to narrow the range of candidate

genes, ultimately retaining 6 candidate genes as modeling

parameters. In the PCAWG cohort, the normalization of the gene

expression matrix, target screening, and other treatments was

consistent with that in the TCGA cohort, and all subsequent

validation analyses, including risk score analysis, were conducted

using only these six determined modeling genes.
Gene mutation analysis

To conduct a more comprehensive risk assessment for KIRC,

we used the maftools R package to analyze mutation profiles of the

necroptosis-related gene set, based on gene expression data from

high-risk and low-risk groups. The overall mutation landscape of

the TCGA KIRC cohort was visualized using data from the iCoMut

Beta tool on FireBrowse Platform (http://firebrowse.org/iCoMut/?

cohort=KIRC) (29).
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Tumor immune microenvironment analysis

The tumor immune microenvironment analysis was divided

into three components: immune infiltration, immune checkpoint

expression, and immune phenotyping scores (IPS). To evaluate

immune cell infiltration, gene set variation analysis (GSVA) was

applied to the expression matrix of the necroptosis-related gene set

from 533 tumor samples (high- and low-risk groups). This analysis

utilized the “single sample Gene Set Enrichment Analysis

(ssGSEA)” tool on the Cloud-Bioinformatics platform (http://

www.biocloudservice.com/home.html). Immune checkpoint and

immune phenotyping score analyses were performed using the

IOBR R package. Data visualization was conducted using the

ggplot2 and pheatmap R packages.
Drug sensitivity analysis

To evaluate the potential therapeutic responsiveness of stratified

patient groups, we assessed drug sensitivity in high- and low-risk

KIRC cohorts using compounds with established clinical relevance.

A total of 37 apoptosis-associated agents were initially retrieved

from the Genomics of Drug Sensitivity in Cancer (GDSC) database

(https://www.cancerrxgene.org/). From these, nine clinically

relevant compounds were selected based on their current or

potential therapeutic applications in KIRC treatment. Drug

response was predicted using the pRRophetic R package, which

estimates the half-maximal inhibitory concentration (IC50) based

on gene expression profiles. Comparative analysis of predicted drug

sensitivity between risk groups was conducted, and results were

visualized using the ggplot2 R package.
Immunohistochemical analysis

To further clarify the clinical relevance and feasibility of the

nine DEGs identified as core markers in KIRC, along with the six

parameter genes included in the prognostic risk model, we retrieved

immunohistochemical (IHC) staining data for these genes from the

HPA database. For sample selection, we prioritized tumor tissues

from individuals approximately 60 years of age, ensuring gender

consistency across samples. This strategy was informed by the

demographic distribution of KIRC cases, in which individuals

aged 60 and above accounted for over 54.03% of cases, while

those aged 55–65 comprised more than 33.02%.
Screening for model cell lines

UMAP analysis was first performed on these candidates to

achieve dimensionality reduction clustering and visualize

differences among samples. Orthogonal-partial least squares

discriminant analysis [(O)PLS-DA] was performed on 23 KIRC-
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related cell lines, utilizing three inputs: cluster consistency results,

risk analysis outcomes, and a gene expression similarity matrix. The

resulting VIP values were utilized for downstream selection of

candidate cell lines, with a threshold of average VIP score > 1

(calculated by integrating both cluster- and risk-VIP scores). The

candidate cell lines underwent differential analyses of gene

expression and metabolite profiles. To further prioritize targets,

paired mRNA and protein expression profiles from HPA database

were utilized to identify top candidate cell lines and necroptosis-

related potential gene targets for experimental validation.
Results

Screening of DEGs and analysis of their
interaction networks

In the GeneCards database, we obtained 930 genes associated

with the process of necroptosis. We identified 343 upregulated and

231 downregulated DEGs on the basis of the criteria of p-value <

0.001 and |log2FC| > 1 (Figure 1A). We subsequently conducted

enrichment analysis on these DEGs. The GO enrichment results

revealed that the enrichment rates for biological processes (BP)

related to the necroptotic process, programmed necrotic cell death,

and necrotic cell death, as well as for cellular components (CC),

such as the cytosolic ribosome and the cytosolic large ribosomal

subunit, exceeded 30%. In terms of the absolute number of genes

enriched, BPs such as the cytokine-mediated signaling pathway, the

cellular response to chemical stress, the regulation of the response to

biotic stimulus, and the positive regulation of cytokine production

were enriched in more than 50 genes, but the enrichment rates were

less than 20% (Figures 1B, C). GSEA further revealed 21 gene

functional groups that met specific criteria (NES > 1, p-adjust <

0.05, enrichment score > 0), accounting for approximately 0.25% of

the GSEA classifiable gene functional groups, which could be

categorized into related disease categories such as kidney diseases,

neurological disorders, and muscle and movement disorders

(Figure 1D). To identify key DEGs involved in the process of

necroptosis, we conducted a secondary enrichment analysis (to

distinguish this analysis from the GO analysis of 574 DEGs shown

in Figure 1B). This analysis ultimately identified 26 key DEGs

(Figures 1E, F). Through analysis of the interaction network

(Figure 1G), we found that compared with the normal group, the

tumor group had 19 genes whose expression was significantly

upregulated and 7 genes whose expression was significantly

downregulated, both with p-value < 0.05. Furthermore, through

KEGG-necroptosis signaling pathway rendering analysis

(Supplementary Figure 1), we identified 9 core DEGs, including

RIPK1, RIPK3, and MLKL. Although RIPK1 and RIPK3 were not

among the 26 key DEGs, they were still classified as core genes due

to their indispensable roles in necroptosis. Other core DEGs

included CASP8, ZBP1, TLR3, PYGL, TRPM7, and PGAM5.

Finally, we conducted a PPI analysis on these 9 core DEGs to

elucidate their interactions (Figure 1H).
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FIGURE 1

Identification of differentially expressed genes (DEGs) in the TCGA cohort and analysis of their interaction networks. (A) Volcano plot showing DEGs
within the necroptosis gene set. (B) Circular diagram illustrating results of GO enrichment analysis. (C) GO enrichment analysis of 574 necroptosis-
related DEGs. (D) GSEA enrichment analysis highlighting key pathways. (E) Correlation analysis between DEGs and metabolic pathways. (F) GO
enrichment analysis of 26 key DEGs. (G) Interaction network of the 26 key DEGs. (H) PPI network analysis of 9 core DEGs. Node colors represent
different annotations: green—KEGG necroptosis pathway (hsa04217); red—biological processes associated with necroptosis (GO:0070266); purple—
necroptotic signaling pathway (GO:0097527).
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Tumor sample typing and survival analysis
based on DEGs

To explore the relationships between the 26 DEGs associated

with necroptosis and the subtypes of KIRC, we performed a

consistency clustering analysis on 72 normal and 542 tumor

samples (Figure 2A). By incrementally increasing the value of the

clustering variable “k”, we find that when k=3, the similarity within

groups is the highest, and the similarity between groups is the

lowest. These findings indicate that these samples could be divided

into three distinct clusters (C1-C3) on the basis of the 26 DEGs. We

subsequently conducted a heatmap analysis of tumor samples to

visualize the gene expression profiles and clinical characteristics of

these samples, including age, sex, survival status, and clinical staging

information (Figure 2B). The results revealed that, under the

influence of various clinical factors, there were no significant

differences in the clinical characteristics among the 533 samples.

However, in terms of gene function regulation, the upregulated and

downregulated genes presented distinct clustering characteristics.
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Further survival analysis of these three clusters (Figures 2C, D)

revealed a highly significant difference in survival rates between the

clusters (p-value < 0.0001). The survival rates were 20.0%, 31.6%,

and 42.6% for clusters C1, C2, and C3, respectively, during the 50-

month follow-up period.
Establishment of a risk prognostic model in
the TCGA cohort

To explore the prognostic value of necroptosis-associated genes,

we first standardized the tumor sample data from 533 patients in

the TCGA cohort whose complete gene expression and clinical

information were available. We subsequently applied LASSO-Cox

regression analysis to identify 38 candidate genes associated with

survival that are suitable for prognostic modeling, using selection

criteria that included a p-value less than 0.05 and a change in the

hazard ratio (HR) greater than 0.05% (dHR > 0.05%). After

performing risk analysis (Figure 3A), we identified 240 high-risk
FIGURE 2

Sample classification and survival analysis in the TCGA cohort. (A) Consensus clustering analysis of normal and tumor samples based on necroptosis-
related DEGs. (B) Hierarchical clustering heatmap of 26 key DEGs in tumor samples. (C) Kaplan–Meier survival analysis of tumor samples stratified by
consensus clustering results. (D) Distribution of tumor sample counts across different survival time points.
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samples and 293 low-risk samples. Compared with the other

groups, the low-risk group had a longer survival time and a lower

mortality rate. On the basis of this risk stratification, we
Frontiers in Immunology 07
subsequently conducted intergroup survival analysis, time-

dependent receiver operating characteristic (timeROC) curve

analysis, and centroid PCA (Figures 3B–E). The results revealed a
FIGURE 3

Prognostic modeling and convergence analysis of feature genes in the TCGA cohort. (A) Risk score distribution of tumor samples. (B) Kaplan–Meier
survival analysis comparing high- and low-risk groups. (C) Temporal distribution of tumor samples in high- and low-risk groups over survival time.
(D) Time-dependent ROC (timeROC) curve analysis for 5-year survival prediction. (E) Principal component analysis (PCA) of high- and low-risk
groups. (F) Convergence analysis of candidate prognostic genes using LASSO regression and multivariate Cox regression. (G) Subgroup survival
analysis of high- and low-risk groups (additional results shown in Supplementary Figure 2). (H) Nomogram-based risk score analysis of tumor
samples.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1545486
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1545486
highly significant difference between the high-risk and low-risk

groups (p-value < 0.0001). Additionally, the area under the

timeROC curve from 1–5 years indicated no significant difference

in the sensitivity of the test samples over this period. The centroid

PCA results revealed that the sample distribution showed little

difference. To optimize the model and account for the correlation

between gene functional expression, we performed a secondary

convergence analysis using LASSO regression and multivariate Cox

regression on the candidate genes for modeling (Figure 3F, Table 1,

Supplementary Table 1, Supplementary Table 2), ultimately

retaining 6 candidate genes (IL4, CDC7, IGF2BP3, CASP9,

TYRO3, and CPT2) as modeling parameters (multivariate Cox

regression screening threshold: p-value < 0.05). The expression of

the multivariate Cox regression model is as follows: f

tð jx) = f0(t)� exp (coef1 · gene1 + coef2 · gene2 +⋯+coefn · genen),

where f t x)jð is the risk function at time; f0(t) is the baseline risk

function; coefn is the coefficient of each predictive variable

factor; and gene2 is the necroptosis-associated gene affecting

survival. In this model, the risk score can be expressed as f (t ∣ x) =
f0(t)� exp(0:8940 · IL4 + 1:5176 · CDC7 + 0:4019 · IGF2BP3 +

1:8612 · CASP9 − 0:8737 · TYRO3 − 1:0633 · CPT2) F ina l l y , we

conducted subgroup analysis on other factors in the model

(Figure 3G, Supplementary Figure 2). Although there were no

significant differences in clinical factors between the high- and

low-risk groups, after each factor was subgrouped, the differences

between the high- and low-risk groups reached significant (p-value

< 0.05) or highly significant levels (p-value < 0.01). Considering the

risk score, age, sex, and clinical stage of the patients, we found that

the total risk score (Figure 3H) could serve as an important

indicator for predicting survival rates. When the score is less than

80, the expected one-year survival rate for patients exceeds 80%, and

the five-year survival rate is approximately 30%.
External validation of the risk prognostic
model in the PCAWG cohort

For external validation, we utilized 68 KIRC patient samples

from the PCAWG cohort in the UCSC database. Before conducting

the sample analysis, we performed the same data normalization and

filtering as with the TCGA cohort, and the gene matrix included

expression data for only the 6 genes used for modeling. Using risk

score analysis (Figure 4A), we categorized the samples into a high-
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risk group (29 cases) and a low-risk group (39 cases). The results

indicated that patients in the low-risk group presented longer

survival times and lower mortality rates than did those in the

high-risk group. Further survival analysis (Figures 4B, C) revealed a

highly significant difference (p-value < 0.0001) between the high-

and low-risk groups. Additionally, the area under the curve (AUC)

of the 5-year timeROC analysis exceeded 0.89, which demonstrates

the good predictive performance of our model (Figure 4D). Finally,

we performed a heatmap clustering analysis of gene expression and

clinical information (Figure 4E), revealing that the 6 modeling

genes were primarily grouped into two clusters: one consisting of

IL4, CDC7, and IGF2BP3 and the other consisting of CASP9,

TYRO3, and CPT2. The post-hoc statistical power analysis

(Table 2) confirmed that the PCAWG cohort had strong

sensitivity for detecting clinically significant differences, with a

power (1 − b error probability) of 0.9999, exceeding the

commonly accepted threshold of 0.9.
Mutation analysis of necroptosis gene sets
in the TCGA cohort

To conduct a more comprehensive risk assessment for KIRC,

we utilized the TCGA cohort to perform mutation analysis on the

necroptosis gene set. The analysis results (Figures 5A, B) revealed

that among the high-risk and low-risk samples, 136 and 235

samples, respectively, could be matched with the mutation

database, with matching rates of 56.67% and 80.20%. In the

matched samples, the mutation rates for the high-risk group and

the low-risk group were 95.59% and 85.11%, respectively. The

primary mutated genes in both groups were VHL and PBRM1,

with mutation rates reaching 40%. The VHL gene primarily affects

tumor development by regulating the hypoxia response, whereas

the PBRM1 gene contributes to tumor development through

chromatin remodeling and immune regulation. The combined

loss of both genes synergistically promotes the occurrence of

renal cancer. The secondary mutated genes include SETD2 and

TTN, with a mutation rate of 10%. Additionally, BAP1 andMUC16

are secondary mutated genes in high-risk samples. The

comprehensive analysis of sample mutations (Figures 5C, D,

Supplementary Figure 3) revealed that chromosomal mutation

copy losses were primarily concentrated at the 3p25.3, 3p22.2,

and 3p12.3 loci, whereas copy gains were primarily concentrated

at the 5q35.1 locus. These loci are related to the occurrence and

development of tumors, particularly renal cell carcinoma. The

genetic changes at these loci are closely associated with the

biological behavior and prognosis of the tumor.
Tumor immune microenvironment analysis

To delve deeper into the interactions between KIRC and the

immune system, we initially conducted an immune infiltration

analysis on the high-risk and low-risk groups within the TCGA

cohort. The analysis revealed significant differences in 21 out of 28
TABLE 1 Results of multivariate Cox analysis (p-value < 0.05).

Gene ID Coef HR HR.95 L HR.95H p-value

IL4 0.8940 2.4448 1.3065 4.5751 0.0052

CDC7 1.5176 4.5612 1.4920 13.9442 0.0078

IGF2BP3 0.4019 1.4946 1.0951 2.0400 0.0113

CASP9 1.8612 6.4312 1.4640 28.2512 0.0137

TYRO3 -0.8737 0.4173 0.1846 0.9439 0.0359

CPT2 -1.0633 0.3453 0.1268 0.9407 0.0376
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FIGURE 4

Validation of the prognostic model in the PCAWG cohort. (A) Risk score distribution of tumor samples. (B) Kaplan–Meier survival analysis of high-
and low-risk groups. (C) Temporal distribution of high- and low-risk groups over survival time. (D) Time-dependent ROC (timeROC) curve analysis
for 5-year survival. (E) Hierarchical clustering heatmap of the six model genes in tumor samples.
TABLE 2 Post-hoc statistical power analysis based on ROC-AUC (PCAWG cohort).

Item No. Parameters Value Explanation

Input

1 Tail (s) One

2 Parent distribution Normal

3 a err prob 0.05

4 Effect size d* / Automated export

◼ Mean group 1 (Low-risk group) -0.659
Risk score

◼ Mean group 2 (High-risk group) 0.887

◼ SD s within each other(SDpooled) 0.636 Formula-derived

5 Sample size group 1 (Low-risk group) 20
Number of 50% samples

6 Sample size group 2 (High-risk group) 15

Output

7 Noncentrality parameter d 6.956

8 Critical t 1.695

9 Df 31.423

10 Power (1-b error probability) 0.9999
F
rontiers in Immunology
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*Effect size d: was automatically computed by the analytical software, incorporating the mean group 1, mean group 2, and the pooled standard deviation (SDpooled). The SDpooled was from
following Cohen’s d formula:

SDpooled =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nLow − 1)� SD2

Low + (nHigh − 1)� SD2
High

nLow + nHigh − 2

s

n: sample size. SD, standard deviation.
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immune cell types (Figure 6A) between the two groups (p-value <

0.05), with 15 showing extremely significant differences (p-value <

0.001). Specifically, the high-risk group typically exhibited increased

levels of immune cell infiltration (Figure 6C), particularly in

activated B cells, activated CD4+ T cells, activated CD8+ T cells,

activated dendritic cells (DCs), and myeloid-derived suppressor

cells (MDSCs). Further analysis of 13 immune signaling pathways

(Figure 6B) revealed all pathways presented extremely significant

differences between the high- and low-risk groups (p-value < 0.001),

with the high-risk group generally having a greater infiltration

capacity in these pathways. These results suggest that in terms of

the immune response, the high-risk group generally has a stronger

immune response capability than the low-risk group does, which

has significant implications for the prognosis and therapeutic

response of KIRC patients.

In the PCAWG cohort (Figure 6D), significant differences were

observed in the infiltration of activated CD4+ T cells, CD56dim

natural killer (NK) cells, natural killer T (NKT) cells, and

neutrophils between the high- and low-risk groups (p-value <
Frontiers in Immunology 10
0.05). Compared with the TCGA cohort, the high-risk cohort

presented a greater infiltration capacity for activated CD4+ T cells

and NKT cells, and the differences in activated CD4+ T cells and

NKT cells between the groups were even more pronounced (p-value

< 0.02). Therefore, we believe that the high-risk group in the

PCAWG cohort possesses stronger immunogenicity and higher

activity in terms of immune cell infiltration. The lack of prominent

characteristics in the data may be attributed to the small

sample size.

Next, we analyzed the immune checkpoint and immune

phenotype scores (IPS) of the samples. Among the nine immune

checkpoints closely associated with KIRC (Figure 7A), the expression

levels of immune checkpoints were generally lower in the low-risk

group. In comparisons between the groups, the expression levels of

CTLA4, PD-1, CD72, LAG3, and TIGIT were extremely significantly

different (p-value < 0.0001). According to the immune phenotype

score analysis (Figure 7B), there was no significant difference in scores

between the high-risk and low-risk groups when there was no

response to either CTLA4 or PD-1 antibodies (p-value > 0.05).
FIGURE 5

Gene mutation analysis in the TCGA cohort. (A) Mutation landscape in tumor samples from the high-risk group. (B) Mutation landscape in tumor
samples from the low-risk group. (C) Summary of gene mutation types and chromosomal localization across 533 tumor samples. (D) Chromosomal
localization and somatic copy number alterations (SCNAs) across 533 tumor samples.
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However, when there was a response to either or both antibodies,

there was an extremely significant difference in scores between the

groups (p-value < 0.001), with the high-risk group scoring higher

than the low-risk group. This result further confirms that the high-
Frontiers in Immunology 11
risk group has a greater degree of immune cell infiltration and

stronger immunogenicity and suggests that the tumor

microenvironment in the high-risk group may be more active and

potentially more responsive to immunotherapy.
FIGURE 6

Immune cell infiltration analysis in the TCGA cohort. (A) Comparison of infiltration levels for 28 immune cell types between high- and low-risk
groups. (B) Comparison of 13 immune-related signaling pathways between high- and low-risk groups. (C) Heatmap showing the infiltration levels of
28 immune cell types in high- and low-risk groups. (D) Immune cell infiltration analysis in the PCAWG cohort. *indicates p-value < 0.05; **indicates
p-value < 0.01; ***indicates p-value < 0.001; ****indicates p-value < 0.0001.
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Analysis of drug response sensitivity based
on gene expression matrices

To predict how different patient populations, respond to drugs

and to identify subgroups that respond well to specific drugs,

thereby obtaining more targeted treatment plans, we conducted a
Frontiers in Immunology 12
drug sensitivity analysis on both high- and low-risk groups. For the

analysis, we selected drugs commonly used to treat advanced KIRC,

including sunitinib, pazopanib, axitinib, and temsirolimus;

sorafenib and paclitaxel for KIRC treatment; and cisplatin,

doxorubicin, and gemcitabine, which can treat a variety of

cancers. The analysis results (Figure 8) revealed extremely
FIGURE 7

Immune checkpoint and immune score analysis in the TCGA cohort. (A) Expression analysis of immune checkpoint genes. (B) Immune score
comparison between high- and low-risk groups. *indicates p-value < 0.05; **indicates p-value < 0.01; ***indicates p-value < 0.001.
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significant differences in the response to sunitinib, sorafenib,

cisplatin, and doxorubicin between the high- and low-risk groups

(p-value < 0.001). With the exception of doxorubicin, the other

three drugs exhibited stronger sensitivity in the low-risk group and

stronger resistance in the high-risk group. Compared with drugs,

doxorubicin has the highest sensitivity, followed by sunitinib. This

finding suggests that in the process of treating KIRC, in addition to

sunitinib, which is currently the most widely used agent,

doxorubicin also holds potential as a therapeutic agent for KIRC.
Frontiers in Immunology 13
Analysis of immunohistochemical staining
based on gene expression

Based on the above findings, we further evaluated the clinical

relevance of the nine core genes and the six genes included in the

prognostic risk model by analyzing their IHC staining patterns in

KIRC (Figure 9). The analysis revealed that most core genes

exhibited consistent expression trends between normal and tumor

tissues. Notably, RIPK1 and RIPK3 were highly expressed in normal
FIGURE 8

Drug response sensitivity analysis based on gene expression profiles. Prediction of chemotherapeutic and targeted drug sensitivity according to the
expression matrix of risk model genes.
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tissues, suggesting their potential roles as tumor suppressors in

KIRC progression. In contrast, the remaining seven core genes

showed elevated expression in tumor tissues, indicating possible

oncogenic functions. Among the prognostic risk model genes,
Frontiers in Immunology 14
TYRO3 and CPT2 demonstrated strong tumor-suppressive

potential, aligning with mRNA-level analyses in which both genes

showed negative correlation coefficients within the risk model—

further supporting their protective roles in KIRC.
FIGURE 9

Immunohistochemical analysis of necroptosis-related core DEGs (A) and six risk prognostic genes (B) in KIRC. Expression levels are shown as
normalized transcripts per million (nTPM). RIPK3 and MLKL are excluded from panel A due to unavailable IHC data. ***indicates p-value < 0.001.
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Screening analysis of model cell lines

In the process of searching for cell lines suitable for modeling

KIRC, we first employed UMAP analysis for dimensionality

reduction, clustering, and visualization of the TCGA cohort

tumor samples. This analysis revealed significant differences

among the samples, as shown in Supplementary Figure 4. The

results indicated that sex did not affect the spatial distribution of the

three subtypes: C1, C2, and C3. Specifically, the C2 and C3 subtypes

presented closely related spatial positions, whereas the C1 subtype

presented a unique distribution characteristic. We subsequently

screened 23 candidate cell lines and, through (O)PLS-DA), found

that the similarity score matrix of gene expression patterns
Frontiers in Immunology 15
displayed distinct clustering differences among subgroups within

groups, with smaller differences within subgroups, as depicted in

Figures 10A, C. In the confidence test analyses, as shown in

Figures 10B, D, Q2Y and R2Y represent the prediction rate and

explanation rate of the model, respectively. Although both values

were less than 0.4, the predicted values were consistently lower than

the original values, and both pQ2Y and pR2Y were less than 0.05,

indicating a certain degree of reliability and stability for the model.

Finally, based on the VIP average values from the (O)PLS-DA

(where the absolute VIP values were greater than 1, as detailed in

Table 3 and Supplementary Table 3), we selected four cell lines,

A704, BFTC909, CLA54, and UO31, as model cell lines. The

differential analysis of gene expression and metabolite levels
FIGURE 10

Selection and characterization of KIRC model cell lines in the TCGA cohort. (A) (O)PLS-DA based on consensus clustering results. (B) Validation of
(O)PLS-DA model using permutation testing. (C) (O)PLS-DA based on high- and low-risk group classification. (D) Confidence test for (O)PLS-DA in
high- and low-risk groups. (E) Differential expression analysis of model cell lines. (F) Analysis of differentially abundant metabolites in selected model
cell lines.
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revealed no significant differences among these four cell lines

(Figures 10E, F), allowing subsequent research to choose different

cell lines for validation studies on the basis of specific

research characteristics.
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Finally, we used BFTC909 and CAL54 as the optimal cell-line

models for dissecting phenotypic heterogeneity in mechanistic and

drug-development studies, and we highlight three novel targets

(CASP8, PGAM5, and CPT2) for further investigation (Figure 11).

Three independent lines of evidence support this conclusion (1). An

integrated analysis of core/risk prognostic gene expression (mRNA

and protein) with cluster-VIP and risk-VIP profiles ranked the lines

BFTC909 > CAL54 > A704 > UO31 (Table 3; Supplementary

Table 3). (2) CASP8 and PGAM5 displayed stable RNA-protein

co-expression in BFTC909 and CAL54, confirming that these lines

faithfully recapitulate key pathway activity. (3) CPT2 showed

marked transcript-protein discordance (high mRNA, low

protein), offering a unique system for studying post-

transcriptional regulation. Together, our analytical framework—
TABLE 3 VIP values of the four model cell lines analyzed by (O)PLS-DA.

Cell lines Cluster-VIP Risk-VIP Average-VIP

A704 3.3033 1.1168 2.2101

BFTC909 1.6551 1.2100 1.4326

CAL54 1.3201 0.9087 1.1144

UO31 1.6238 1.0257 1.3248
FIGURE 11

Expression of necroptosis-related core genes and risk model parameter genes in KIRC cell lines. mRNA expression is presented as normalized
transcripts per million (nTPM), and protein expression as normalized relative protein expression (nRPX, log2 scale). Grey circles indicate undetected
or missing protein data (Pan-Cancer Atlas MS data).
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which combines cell-line-specific profiling, clinical-risk

stratification (cluster- and risk-VIP), and multi-omics validation

(RNA [nTPM]-protein [nRPX] concordance analysis) - not only

enabled robust model selection but also systematically prioritized

targets with both biological significance and clinical translatability.
Discussion

KIRC is one of the most prevalent subtypes of RCC,

characterized by heterogenous cancers of renal tubular epithelial

origin (2). It is often associated with mutations in the VHL gene,

leading to overexpression of HIF1 and HIF2 or the silencing of

other tumor suppressor genes (5, 7, 8). Despite advances in

treatment, KIRC remains associated with high mortality and

tumor metastasis (2, 30, 31). Necroptosis, a regulated form of cell

death distinct from apoptosis and necrosis, is mediated by RIPK1,

RIPK3, and MLKL (10, 32, 33). It plays a critical role in tumor

progression and immune regulation by inducing cell membrane

rupture and releasing DAMPs (18). Meanwhile, necroptosis

activates immune responses via the NF-kB pathway, further

linking it to tumor immunity (23, 34). Given the critical role of

necroptosis in tumor progression and immune regulation, recent

research has increasingly focused on its potential as a prognostic

biomarker and therapeutic target in KIRC.

Recent evidence indicates that necroptosis-related biomarkers

may surpass other programmed cell death pathways in predicting

KIRC prognosis and informing immunotherapy approaches.

Compared with pyroptosis- or ferroptosis-based models,
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necroptosis signatures exhibit greater prognostic reliability in

KIRC and show stronger assoc iat ions with immune

microenvironment characteristics, such as immune checkpoint

upregulation and regulatory T cell infiltration (24, 25). However,

existing studies remain constrained by the use of limited gene

panels and a lack of comprehensive mechanistic investigation (3,

26–28). Future research should prioritize expanding necroptosis-

related gene sets, validating predictive models across diverse

cohorts, and clarifying the immune-regulatory mechanisms of

necroptosis to strengthen its potential as a therapeutic target.

Through our research (the overall flow diagram is shown in

Figure 12), we identified nine core DEGs associated with KIRC—

RIPK1, RIPK3, MLKL, CASP8, ZBP1, TLR3, PYGL, TRPM7, and

PGAM5—all integral to the necroptotic signaling pathway. CASP8

and PGAM5 were identified as potential biomarkers among these,

while previous studies have shown that ZBP1, TLR3, and PYGL

contribute to tumor progression in KIRC (19–21). These genes are

connected through intermediates such as TICAM1, TRADD,

GSDMD, FADD, and CASP10. TICAM1 (TRIF) acts as an

adaptor protein for TLR3, activating NF-kB and promoting

interferon-b production in response to dsRNA, while

contributing to necroptosis (20, 35). TRADD, involved in TNFR1

signaling, facilitates programmed cell death through its interaction

with TRAF2 (36). GSDMD, a gasdermin family member, triggers

cell membrane rupture upon activation, a hallmark of necroptosis

(37). FADD, primarily associated with apoptosis, may influence

necroptotic pathways, and CASP10, a cysteine protease, participates

in programmed cell death but requires further characterization (38,

39). By applying a stringent differential gene screening threshold of
FIGURE 12

Schematic workflow of the study. Overview of the computational and experimental workflow used for model development, validation, and
functional exploration.
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p-value < 0.001—stricter than the commonly used p-value < 0.05—

and integrating KEGG pathway analyses, we ensured that selected

genes were not only statistically significant but also biologically

relevant to necroptosis. This comprehensive approach enhances the

reliability of our findings.

For prognostic analysis, we developed a predictive model

incorporating six necroptosis-associated genes: IL4, CDC7,

IGF2BP3, CASP9, TYRO3, and CPT2. This model effectively

predicts KIRC patient survival. Notably, IL4 is a cytokine that

promotes B-cell activity and antigen presentation (40); CDC7 is an

essential gene for the DNA replication process (41); IGF2BP3

regulates mRNA stability and microRNA synthesis (42, 43); and

CASP9, while central to apoptosis, promotes necroptosis when

inhibited (44). Overexpression of TYRO3, a receptor tyrosine

kinase, supports tumor proliferation and migration (45).

Compared to traditional gene-selection approaches based on p-

values, our method integrated HR changes rates for secondary

screening, yielding a more refined and concise model. TimeROC

analysis of the 6-gene signature demonstrated strong predictive

performance, with 5-year survival AUC values of 0.77 in the

training cohort and 0.89 in the independent/external validation

cohort—surpassing the prognostic correlations of KIRC and other

gene sets by at least 5.5% and 7.0%, respectively. Notably, within

necroptosis-related gene sets, the independent/external validation

cohort achieved an AUC improvement exceeding 17.1% (26, 46–

48). In the mutational analysis, we analyzed TCGA-standardized

VCF/MAF files using both maftools R package and iCoMut Beta

tool on FireBrowse Platform. This approach successfully identified

clinically significant driver mutations and yielded reliable

prognostic biomarkers. However, as the analysis was based on

exome sequencing data, it had certain detection limitations for

low-frequency variants (VAF < 5%) and non-coding region

alterations. To obtain more comprehensive genomic profiles,

future studies may benefit from incorporating whole-genome

sequencing or other advanced detection methods.

Tumor immune microenvironment analysis revealed greater

immune cell infiltration and higher immunogenicity in high-risk

groups, suggesting enhanced tumor microenvironment activity and

better responsiveness to immunotherapy. This observation was

validated in the PCAWG cohort and supported by existing

literature (46). The immunosuppressive core in high-risk patients

arised from MDSC-dominated metabolic inhibition and checkpoint

amplification, rather than conventional Treg-mediated suppression.

It created a paradoxical “high infiltration-low function” immune

microenvironment. This microenvironment was characterized by

elevated infiltration of functionally impaired CD8+ T cells alongside

increased DCs and MDSCs, despite upregulation of immune

pathways and heightened checkpoint expression (PD-1, CTLA4,

CD72). Notably, Tregs were significantly reduced (p-value = 0.011),

excluding their dominant role in immune suppression. CD8+ T cell

exhaustion (mediated by PD-1/CTLA4) promoted MDSCs

recruitment, while deletion at the 9p21.3 locus and VHL mutation-

driven metabolic reprogramming (via HIF-1a/LDHA up-regulation)

established a hypoxic, glycolytic niche that facilitated both MDSCs

expansion and lactate-mediated T cell suppression (5–7, 49).
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Furthermore, tumor cell-derived PD-L1 reinforced this

immunosuppressive cascade through positive feedback, ultimately

explaining the coexistence of robust immune infiltration with

profound functional impairment. Drug sensitivity analysis

identified doxorubicin as a potential therapeutic option for KIRC.

IHC analysis also revealed the protein-level spatial distribution

patterns of nine core genes and risk model parameters, thereby

validating the prognostic model’s risk stratification. Through

systematic screening of cell lines and target genes, our study

identified BFTC909 and CAL54 as the most suitable model for

subsequent experimental validation and revealed three novel target

genes, including CASP8, PGAM5 and CPT2, warranting

further investigation.

In conclusion, our study establishes a strong connection

between necroptosis and KIRC, uncovering significant differences

in necroptosis-associated gene expression between normal and

cancerous tissues. The six-gene prognostic model provides a

valuable tool for predicting patient survival and underscores the

potential of targeting necroptosis in KIRC treatment. We also

highlight doxorubicin as a promising therapeutic agent and

nominate the CAL54 through integrated RNA/protein analysis as

the optimal cell line model along with three target genes for

mechanistic studies. These findings contribute to a deeper

understanding of KIRC’s molecular mechanisms, pave the way

for innovative therapeutic strategies, and provide a data

foundation for future exploration of liquid biopsy alternatives,

validation of tissue-based scoring in treatment response, and

development of simplified detection protocols.
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SUPPLEMENTARY FIGURE 1

Rendering analysis of core DEGs in the KEGG-necroptotic signaling pathway.

Colored genes represent core DEGs in the KEGG necroptosis pathway.
Green: downregulated in tumors; red: upregulated. Color intensity

indicates fold-change magnitude.

SUPPLEMENTARY FIGURE 2

Multifactorial subgroup survival analysis in the TCGA cohort.

SUPPLEMENTARY FIGURE 3

Genes Mutation diagram with clinical annotations for 533 TCGA samples.

SUPPLEMENTARY FIGURE 4

UMAP distribution of the TCGA cohort based on consensus clustering typing.
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