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Introduction: Kidney clear cell carcinoma (KIRC) is the most common subtype of
renal malignancy with a high mortality rate. It is difficult to treat and often leads to
death due to its genomic heterogeneity, metastatic nature, and limited
effectiveness of targeted and immunotherapies. Recent studies showed that the
progression of KIRC is frequently accompanied by significant changes in
necroptosis while these studies were limited by small gene sets, which increases
the risk of missing low-expressed yet important genes.

Methods: This study focused on necroptosis-associated genes within the context
of KIRC and performed a complete closed-loop studies by gene screening, gene
expression analysis, model validation and experimental translation.

Results: Among screened nine core biomarkers (RIPK1, RIPK3, MLKL, CASP8, ZBP1,
TLR3, PYGL, TRPM7, PGAMS5), CASP8 and TRPM7 were identified as new potential
biomarkers. The predictive performance of risk prognostic model for 5-year
survival (AUC: 0.77 and 0.89 in training and independent/external validation
cohort) outperformed prior studies by 5.5% and 17.1%, respectively. A more
pronounced immune response was found with high-risk cohort, underscoring
the immunosuppressive properties of tumor immune microenvironments, which
evidenced by increased immune cell infiltration and elevated immunogenicity.
Drug sensitivity analysis revealed that doxorubicin could serve as a promising
therapeutic agent for KIRC. Furthermore, BFTC909 and CAL54 were identified as
the most suitable cell lines for in vitro experimental translation, and highlighting
three functionally significant target genes (CASP8, PGAMS5, and CPT2).
Conclusion: This study offers multi-dimensional data that support novel
mechanistic investigations and provide valuable insights for developing precision
immunotherapy strategies in KIRC.
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Introduction

Renal cell carcinomas (RCC) are a diverse group of cancers
originating from renal tubular epithelial cells, accounting for
approximately 2% of all cancer diagnoses (1-3). Among these,
kidney clear cell carcinoma (KIRC) is the predominant subtype,
representing about 80% of RCC cases (2, 4). Studies have showed
that KIRC typically arises from mutations in the VHL gene located
on the short arm of chromosome 3 (3p), leading to VHL protein
inactivation (5, 6). This inactivation results in the overexpression of
hypoxia-inducible factors (HIF-1 and HIF-2) or epigenetic silencing
through promoter methylation (6, 7). Additional mutational
silencing of other tumor suppressor genes on chromosome
3p may contribute to KIRC pathogenesis (8, 9). However,
understanding the pathogenesis of KIRC remains limited due to
its complex progression. Therefore, it is crucial to investigate the
pathological development of KIRC, elucidate its prognostic features,
and identify novel therapeutic targets.

Recent studies have shown that KIRC progression is frequently
accompanied by significant alterations in necroptosis. Necroptosis, a
distinct form of programmed cell death, is mediated by activating key
signaling molecules, such as RIPK1, RIPK3 and MLKL) (10, 11). This
process results in cell membrane rupture and the release of damage-
associated molecular patterns (DAMPs), which stimulate immune
responses and link necroptosis to inflammation (12-14). Necroptosis
plays a dual role in cancer: in some contexts, it suppresses tumor
growth by inducing cell death, while in others, it promotes tumor
progression through inflammation and immune modulation. For
example, the decrease in RIPK3 expression allows cancer cells to
evade necroptosis and correlates with poor prognosis in colorectal
cancer (15). Conversely, RIPK1, RIPK3 and MLKL expression levels
in hepatocellular carcinoma are linked to improved survival (16). In
pancreatic cancer, elevated RIPK1 and RIPK3 levels enhance tumor
migration and invasion, while low MLKL expression is associated
with worse outcomes (17, 18). In addition to the core biomarkers
(RIPKI, RIPK3, and MLKL), other functionally significant genes,
such as ZBP1, TLR3, and PYGL, are also associated with KIRC
progression and play important roles in promoting tumor
proliferation during disease development (19-21).

Necroptosis also shapes immune responses within the tumor
microenvironment. For instance, RIPK3-mediated PGAMS5
activation can boost antitumor immunity via natural killer T cells,
independent of necroptosis (22). Additionally, fibroblasts in the
tumor microenvironment can drive immune responses through
necroptosis-induced NF-«B signaling rather than MLKL-mediated
DAMPs release (23). By regulating inflammation, angiogenesis, and
metastasis, necroptosis influences both tumor progression and the
immune landscape. Understanding these mechanisms is vital for
advancing tumor immunotherapy and identifying innovative
therapeutic targets.

Compared to other programmed cell death pathways, necroptosis
may play a more biologically significant role in KIRC progression.
Current research indicates that risk prognostic models based on
pyroptosis and ferroptosis have certain limitations and reduced
biological relevance, such as the use of relatively small initial gene

Frontiers in Immunology

10.3389/fimmu.2025.1545486

sets (e.g., n = 60) (24), the lower proportion of differentially expressed
genes (DEGs, only 5.29% of total genes) (25), moderate predictive
performance (5-year AUC values of 0.68 to 0.76), lack of
independent/external validation cohorts (26, 27). In contrast,
necroptosis-associated genes can more robustly predict KIRC
patient prognosis and show significant correlations with tumor
immune microenvironment features, including upregulation of
immune checkpoint molecules and regulation of T cell infiltration.
These findings highlight their potential as immunotherapy targets
and underscore the need to explore alternative biomarkers. However,
methodological challenges have greatly hindered the exploration of
novel alternative biomarkers, due to the limited scale of available gene
sets (<100 genes) and a lack of in-depth mechanistic understanding
(3, 26-28). Therefore, expanding necroptosis-related gene sets,
validating their predictive performance across diverse populations,
and investigating their roles in immune regulation in KIRC are of
great scientific and clinical significance.

This study focused on necroptosis-associated genes in the context
of KIRC. Using high-throughput computational data, we conducted a
complete closed-loop investigation encompassing gene screening —
gene expression analysis — model validation — experimental
translation. Specifically, we identified necroptosis-related mRNA
biomarkers in KIRC samples through transcriptomic analysis,
established a risk prognostic model, examined tumor immune
microenvironment characteristics and drug responsiveness, and
highlighted promising therapeutic candidates along with optimal
cell lines for drug-target research. This work not only provides
multi-dimensional data to support novel pathological mechanisms
of KIRC but also offers valuable insights for developing precise,
personalized immunotherapy strategies.

Materials and methods
Data source

The initial gene set, comprising 930 necroptosis-associated
genes, was obtained from the GeneCards database (https://
www.genecards.org/). Based on this gene set, gene expression data
—including RNA-seq profiles and associated clinical information—
were collected from 542 KIRC tumor tissues and 72 matched
normal tissues in The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov). Using patient ID numbers, the
transcriptome data were matched with clinical information by
removing duplicates and mismatched entries. This curation
resulted in a final dataset comprising complete gene expression
profiles and clinical data for 533 KIRC patients and 72 normal
individuals, forming “TCGA cohort”. Clinical information
comprised demographic characteristics (sex, age), TNM staging,
and survival outcomes (status and overall survival time).

Construction of the risk prognostic model required a “training
cohort”, which we derived from gene expression data in TCGA
KIRC tumor samples. The genes included in the final risk
prognostic model were defined as “parameter genes”. To evaluate
the model’s reliability and generalizability, we used an
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“independent/external validation cohort”. After systematic
evaluation of multiple datasets (including ICGC and GEO), we
selected the Pan-Cancer Analysis of Whole Genomes (PCAWG)
dataset from the UCSC Xena Genomics Platform (https://
xenabrowser.net/datapages/) as the independent/external
validation cohort. The PCAWG cohort was chosen because (1): it
provided complete clinical data including overall survival, unlike
other datasets with missing information; (2) By utilizing 68
previously unanalyzed KIRC samples from the PCAWG cohort,
we effectively circumvent sample overlap concerns that could arise
when using other datasets in conjunction with TCGA samples; (3) it
featured uniformly processed gene expression data, ensuring
analytical consistency. Furthermore, for the independent external
validation cohort, a post-hoc power analysis was conducted to assess
the adequacy of the sample scale by utilizing the Wilcoxon-Mann-
Whitney test implemented in G*Power software (version 3.1.9.7).

To verify the transcriptome data from TCGA tissue samples, we
also incorporated candidate cell lines and potential gene targets.
The Cancer Cell Line Encyclopedia (CCLE, https://
sites.broadinstitute.org/ccle/) and the Human Protein Atlas (HPA,
https://www.proteinatlas.org/) provide comprehensive resources.
After excluding incomplete samples and cell lines, we obtained
528 TCGA KIRC tumor samples and 23 KIRC-related cell lines,
providing robust data for analysis, including uniform manifold
approximation and projection (UMAP) matrices from the TCGA
cohort, metabolite profiles (225 metabolite levels), gene expression
similarity scores, and mRNA/protein expression data. These
datasets offer high homogeneity and excellent reproducibility
from KIRC-related tumor cell lines, fully meeting the
requirements for in vitro validation studies.

Identification of differentially expressed
genes

Differential expression analysis was performed on 930
necroptosis-associated genes. Genes with zero expression were
excluded, leaving 908 genes for which log2 fold-change (FC) and
p-values were calculated. After removing 37 genes lacking
unambiguous Ensembl IDs, 574 DEGs were identified using
DESeq2, with a significance threshold of FDR (Benjamini-
Hochberg adjusted p-value) < 0.001 and [log,FC| > 1.
Subsequently, Gene Ontology (GO) enrichment analysis was
conducted on 551 DEGs with valid Ensembl IDs using the
clusterProfiler R package, with the entire annotated protein-
coding genome as the background. Gene Set Enrichment Analysis
(GSEA) was also performed on 871 necroptosis-associated genes
with Ensembl IDs, utilizing genome-wide expression profiles as the
background. To ensure statistical robustness, GSEA was restricted
to predefined gene sets containing between 10 and 1000 genes.
Based on the results for GeneRatio and adjusted p-values (p-adjust),
we identified 26 key DEGs that play a significant role in the
necroptotic process in KIRC. These key DEGs were prioritized for
further investigation into their functional impact and potential as
biomarkers or therapeutic targets.
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KEGG-necroptosis pathway DEGs:
rendering analysis and PPI analysis

The necroptotic signaling pathway network from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (http://
www.genome.jp/kegg/) were extracted and Pathview R package was
used for visualization and analysis. This analysis identified nine core
DEGs associated with necroptosis. To explore their intrinsic
interactions, we conducted a protein-protein interaction (PPI)
network analysis using the STRINGdb R package. The resulting
network revealed functional relationships and potential regulatory
roles of these core DEGs within the necroptotic signaling pathway.

Establishment and validation of a risk
prognostic model for necroptosis
associated genes

To assess the prognostic value of necroptosis-associated genes,
we conducted univariate Cox regression analysis on 930 genes
associated with necroptosis to evaluate the correlation between
genes and survival status in the training cohort. The analysis was
performed using the glmnet R package. We applied selection
criteria of p-value < 0.05 and a change in hazard ratio (HR)
greater than 0.05% (> 0.05%), identifying 38 candidate genes
significantly associated with survival and suitable for prognostic
modeling. After analyzing the expression data from the TCGA
cohort, the 533 tumor samples were stratified into high-risk and
low-risk groups based on risk score analysis. Survival analysis was
then conducted using the survminer R package. In addition, a 5-
year receiver operating characteristic (ROC) curve was generated
using the timeROC R package to evaluate predictive performance.
Centroid-based principal component analysis (PCA) was
performed with the FactoMineR and factoextra R packages to
visualize the distribution of risk groups. To facilitate prognostic
modeling, we further employed LASSO regression (using the
glmnet R package) and multivariate Cox regression analysis
(using the survival R package) to narrow the range of candidate
genes, ultimately retaining 6 candidate genes as modeling
parameters. In the PCAWG cohort, the normalization of the gene
expression matrix, target screening, and other treatments was
consistent with that in the TCGA cohort, and all subsequent
validation analyses, including risk score analysis, were conducted
using only these six determined modeling genes.

Gene mutation analysis

To conduct a more comprehensive risk assessment for KIRC,
we used the maftools R package to analyze mutation profiles of the
necroptosis-related gene set, based on gene expression data from
high-risk and low-risk groups. The overall mutation landscape of
the TCGA KIRC cohort was visualized using data from the iCoMut
Beta tool on FireBrowse Platform (http://firebrowse.org/iCoMut/?
cohort=KIRC) (29).
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Tumor immune microenvironment analysis

The tumor immune microenvironment analysis was divided
into three components: immune infiltration, immune checkpoint
expression, and immune phenotyping scores (IPS). To evaluate
immune cell infiltration, gene set variation analysis (GSVA) was
applied to the expression matrix of the necroptosis-related gene set
from 533 tumor samples (high- and low-risk groups). This analysis
utilized the “single sample Gene Set Enrichment Analysis
(ssGSEA)” tool on the Cloud-Bioinformatics platform (http://
www.biocloudservice.com/home.html). Immune checkpoint and
immune phenotyping score analyses were performed using the
IOBR R package. Data visualization was conducted using the
ggplot2 and pheatmap R packages.

Drug sensitivity analysis

To evaluate the potential therapeutic responsiveness of stratified
patient groups, we assessed drug sensitivity in high- and low-risk
KIRC cohorts using compounds with established clinical relevance.
A total of 37 apoptosis-associated agents were initially retrieved
from the Genomics of Drug Sensitivity in Cancer (GDSC) database
(https://www.cancerrxgene.org/). From these, nine clinically
relevant compounds were selected based on their current or
potential therapeutic applications in KIRC treatment. Drug
response was predicted using the pRRophetic R package, which
estimates the half-maximal inhibitory concentration (IC50) based
on gene expression profiles. Comparative analysis of predicted drug
sensitivity between risk groups was conducted, and results were
visualized using the ggplot2 R package.

Immunohistochemical analysis

To further clarify the clinical relevance and feasibility of the
nine DEGs identified as core markers in KIRC, along with the six
parameter genes included in the prognostic risk model, we retrieved
immunohistochemical (THC) staining data for these genes from the
HPA database. For sample selection, we prioritized tumor tissues
from individuals approximately 60 years of age, ensuring gender
consistency across samples. This strategy was informed by the
demographic distribution of KIRC cases, in which individuals
aged 60 and above accounted for over 54.03% of cases, while
those aged 55-65 comprised more than 33.02%.

Screening for model cell lines

UMAP analysis was first performed on these candidates to
achieve dimensionality reduction clustering and visualize
differences among samples. Orthogonal-partial least squares
discriminant analysis [(O)PLS-DA] was performed on 23 KIRC-
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related cell lines, utilizing three inputs: cluster consistency results,
risk analysis outcomes, and a gene expression similarity matrix. The
resulting VIP values were utilized for downstream selection of
candidate cell lines, with a threshold of average VIP score > 1
(calculated by integrating both cluster- and risk-VIP scores). The
candidate cell lines underwent differential analyses of gene
expression and metabolite profiles. To further prioritize targets,
paired mRNA and protein expression profiles from HPA database
were utilized to identify top candidate cell lines and necroptosis-
related potential gene targets for experimental validation.

Results

Screening of DEGs and analysis of their
interaction networks

In the GeneCards database, we obtained 930 genes associated
with the process of necroptosis. We identified 343 upregulated and
231 downregulated DEGs on the basis of the criteria of p-value <
0.001 and [log,FC| > 1 (Figure 1A). We subsequently conducted
enrichment analysis on these DEGs. The GO enrichment results
revealed that the enrichment rates for biological processes (BP)
related to the necroptotic process, programmed necrotic cell death,
and necrotic cell death, as well as for cellular components (CC),
such as the cytosolic ribosome and the cytosolic large ribosomal
subunit, exceeded 30%. In terms of the absolute number of genes
enriched, BPs such as the cytokine-mediated signaling pathway, the
cellular response to chemical stress, the regulation of the response to
biotic stimulus, and the positive regulation of cytokine production
were enriched in more than 50 genes, but the enrichment rates were
less than 20% (Figures 1B, C). GSEA further revealed 21 gene
functional groups that met specific criteria (NES > 1, p-adjust <
0.05, enrichment score > 0), accounting for approximately 0.25% of
the GSEA classifiable gene functional groups, which could be
categorized into related disease categories such as kidney diseases,
neurological disorders, and muscle and movement disorders
(Figure 1D). To identify key DEGs involved in the process of
necroptosis, we conducted a secondary enrichment analysis (to
distinguish this analysis from the GO analysis of 574 DEGs shown
in Figure 1B). This analysis ultimately identified 26 key DEGs
(Figures 1E, F). Through analysis of the interaction network
(Figure 1G), we found that compared with the normal group, the
tumor group had 19 genes whose expression was significantly
upregulated and 7 genes whose expression was significantly
downregulated, both with p-value < 0.05. Furthermore, through
KEGG-necroptosis signaling pathway rendering analysis
(Supplementary Figure 1), we identified 9 core DEGs, including
RIPK1, RIPK3, and MLKL. Although RIPKI and RIPK3 were not
among the 26 key DEGs, they were still classified as core genes due
to their indispensable roles in necroptosis. Other core DEGs
included CASP8, ZBP1, TLR3, PYGL, TRPM7, and PGAMS5.
Finally, we conducted a PPI analysis on these 9 core DEGs to
elucidate their interactions (Figure 1H).
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Tumor sample typing and survival analysis
based on DEGs

To explore the relationships between the 26 DEGs associated
with necroptosis and the subtypes of KIRC, we performed a
consistency clustering analysis on 72 normal and 542 tumor
samples (Figure 2A). By incrementally increasing the value of the
clustering variable “k”, we find that when k=3, the similarity within
groups is the highest, and the similarity between groups is the
lowest. These findings indicate that these samples could be divided
into three distinct clusters (C1-C3) on the basis of the 26 DEGs. We
subsequently conducted a heatmap analysis of tumor samples to
visualize the gene expression profiles and clinical characteristics of
these samples, including age, sex, survival status, and clinical staging
information (Figure 2B). The results revealed that, under the
influence of various clinical factors, there were no significant
differences in the clinical characteristics among the 533 samples.
However, in terms of gene function regulation, the upregulated and
downregulated genes presented distinct clustering characteristics.

10.3389/fimmu.2025.1545486

Further survival analysis of these three clusters (Figures 2C, D)
revealed a highly significant difference in survival rates between the
clusters (p-value < 0.0001). The survival rates were 20.0%, 31.6%,
and 42.6% for clusters C1, C2, and C3, respectively, during the 50-
month follow-up period.

Establishment of a risk prognostic model in
the TCGA cohort

To explore the prognostic value of necroptosis-associated genes,
we first standardized the tumor sample data from 533 patients in
the TCGA cohort whose complete gene expression and clinical
information were available. We subsequently applied LASSO-Cox
regression analysis to identify 38 candidate genes associated with
survival that are suitable for prognostic modeling, using selection
criteria that included a p-value less than 0.05 and a change in the
hazard ratio (HR) greater than 0.05% (8HR > 0.05%). After
performing risk analysis (Figure 3A), we identified 240 high-risk
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FIGURE 3
Prognostic modeling and convergence analysis of feature genes in the TCGA cohort. (A) Risk score distribution of tumor samples. (B) Kaplan—Meier
survival analysis comparing high- and low-risk groups. (C) Temporal distribution of tumor samples in high- and low-risk groups over survival time.
(D) Time-dependent ROC (timeROC) curve analysis for 5-year survival prediction. (E) Principal component analysis (PCA) of high- and low-risk
groups. (F) Convergence analysis of candidate prognostic genes using LASSO regression and multivariate Cox regression. (G) Subgroup survival
analysis of high- and low-risk groups (additional results shown in Supplementary Figure 2). (H) Nomogram-based risk score analysis of tumor
samples.

samples and 293 low-risk samples. Compared with the other  subsequently conducted intergroup survival analysis, time-
groups, the low-risk group had a longer survival time and a lower ~ dependent receiver operating characteristic (timeROC) curve
mortality rate. On the basis of this risk stratification, we  analysis, and centroid PCA (Figures 3B-E). The results revealed a
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highly significant difference between the high-risk and low-risk
groups (p-value < 0.0001). Additionally, the area under the
timeROC curve from 1-5 years indicated no significant difference
in the sensitivity of the test samples over this period. The centroid
PCA results revealed that the sample distribution showed little
difference. To optimize the model and account for the correlation
between gene functional expression, we performed a secondary
convergence analysis using LASSO regression and multivariate Cox
regression on the candidate genes for modeling (Figure 3F, Table 1,
Supplementary Table 1, Supplementary Table 2), ultimately
retaining 6 candidate genes (IL4, CDC7, IGF2BP3, CASP9,
TYRO3, and CPT2) as modeling parameters (multivariate Cox
regression screening threshold: p-value < 0.05). The expression of
the multivariate Cox regression model is as follows: f
(t|x) = fo(t) x exp (coef, - gene; + coef, - gene, + -+ +coef, - gene,,),
where f(t|x) is the risk function at time; fy(¢) is the baseline risk
function; coef, is the coefficient of each predictive variable
factor; and gene, is the necroptosis-associated gene affecting
survival. In this model, the risk score can be expressed as f(f|x) =
fo(t) x exp(0.8940 - IL4 + 1.5176 - CDC7 + 0.4019 - IGF2BP3 +
1.8612 - CASP9 — 0.8737 - TYRO3 — 1.0633 - CPT2) Finally, we
conducted subgroup analysis on other factors in the model
(Figure 3G, Supplementary Figure 2). Although there were no
significant differences in clinical factors between the high- and
low-risk groups, after each factor was subgrouped, the differences
between the high- and low-risk groups reached significant (p-value
< 0.05) or highly significant levels (p-value < 0.01). Considering the
risk score, age, sex, and clinical stage of the patients, we found that
the total risk score (Figure 3H) could serve as an important
indicator for predicting survival rates. When the score is less than
80, the expected one-year survival rate for patients exceeds 80%, and
the five-year survival rate is approximately 30%.

External validation of the risk prognostic
model in the PCAWG cohort

For external validation, we utilized 68 KIRC patient samples
from the PCAWG cohort in the UCSC database. Before conducting
the sample analysis, we performed the same data normalization and
filtering as with the TCGA cohort, and the gene matrix included
expression data for only the 6 genes used for modeling. Using risk
score analysis (Figure 4A), we categorized the samples into a high-

TABLE 1 Results of multivariate Cox analysis (p-value < 0.05).

GenelD Coef HR HRO95L HRO95H p-value
L4 0.8940 | 2.4448 1.3065 45751 0.0052
cDC7 15176 4.5612 1.4920 13.9442 0.0078
IGF2BP3 | 04019 14946 1.0951 2.0400 0.0113
CASP9 18612 64312 1.4640 28.2512 0.0137
TYRO3 -0.8737  0.4173 0.1846 0.9439 0.0359
CPT2 -1.0633 | 0.3453 0.1268 0.9407 0.0376
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risk group (29 cases) and a low-risk group (39 cases). The results
indicated that patients in the low-risk group presented longer
survival times and lower mortality rates than did those in the
high-risk group. Further survival analysis (Figures 4B, C) revealed a
highly significant difference (p-value < 0.0001) between the high-
and low-risk groups. Additionally, the area under the curve (AUC)
of the 5-year timeROC analysis exceeded 0.89, which demonstrates
the good predictive performance of our model (Figure 4D). Finally,
we performed a heatmap clustering analysis of gene expression and
clinical information (Figure 4E), revealing that the 6 modeling
genes were primarily grouped into two clusters: one consisting of
IL4, CDC7, and IGF2BP3 and the other consisting of CASPY,
TYRO3, and CPT2. The post-hoc statistical power analysis
(Table 2) confirmed that the PCAWG cohort had strong
sensitivity for detecting clinically significant differences, with a
power (1 — P error probability) of 0.9999, exceeding the
commonly accepted threshold of 0.9.

Mutation analysis of necroptosis gene sets
in the TCGA cohort

To conduct a more comprehensive risk assessment for KIRC,
we utilized the TCGA cohort to perform mutation analysis on the
necroptosis gene set. The analysis results (Figures 5A, B) revealed
that among the high-risk and low-risk samples, 136 and 235
samples, respectively, could be matched with the mutation
database, with matching rates of 56.67% and 80.20%. In the
matched samples, the mutation rates for the high-risk group and
the low-risk group were 95.59% and 85.11%, respectively. The
primary mutated genes in both groups were VHL and PBRM]I,
with mutation rates reaching 40%. The VHL gene primarily affects
tumor development by regulating the hypoxia response, whereas
the PBRMI gene contributes to tumor development through
chromatin remodeling and immune regulation. The combined
loss of both genes synergistically promotes the occurrence of
renal cancer. The secondary mutated genes include SETD2 and
TTN, with a mutation rate of 10%. Additionally, BAPI and MUCI6
are secondary mutated genes in high-risk samples. The
comprehensive analysis of sample mutations (Figures 5C, D,
Supplementary Figure 3) revealed that chromosomal mutation
copy losses were primarily concentrated at the 3p25.3, 3p22.2,
and 3p12.3 loci, whereas copy gains were primarily concentrated
at the 5q35.1 locus. These loci are related to the occurrence and
development of tumors, particularly renal cell carcinoma. The
genetic changes at these loci are closely associated with the
biological behavior and prognosis of the tumor.

Tumor immune microenvironment analysis

To delve deeper into the interactions between KIRC and the
immune system, we initially conducted an immune infiltration
analysis on the high-risk and low-risk groups within the TCGA
cohort. The analysis revealed significant differences in 21 out of 28
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Validation of the prognostic model in the PCAWG cohort. (A) Risk score distribution of tumor samples. (B) Kaplan—Meier survival analysis of high-
and low-risk groups. (C) Temporal distribution of high- and low-risk groups over survival time. (D) Time-dependent ROC (timeROC) curve analysis

for 5-year survival. (E) Hierarchical clustering heatmap of the six model genes in tumor samples.

TABLE 2 Post-hoc statistical power analysis based on ROC-AUC (PCAWG cohort).

Iy~ ——

I BN ENN BN N 0 0N NN I Sex
. 1 R |

I W W M Risk score

<40
L4 I 40<age<60
I =60
I ICDC7 Sex
Female
1GF2Bp3 = M
Survival
CPT2 M Alive
Dead
TYRO3 Risk score
Low
CASP9 m High

1-Specificity
.
Age 2 0 2 4

Survival Age

Item [\ [o} Parameters Value Explanation
1 Tail (s) One
2 Parent distribution Normal
3 o err prob 0.05
4 Effect size d* / Automated export
Input W Mean group 1 (Low-risk group) -0.659
Risk score
W Mean group 2 (High-risk group) 0.887
B SD G within each other(SDgorea) 0.636 Formula-derived
5 Sample size group 1 (Low-risk group) 20
Number of 50% samples
6 Sample size group 2 (High-risk group) 15
7 Noncentrality parameter § 6.956
8 Critical t 1.695
Output
9 Df 31.423
10 Power (1-B error probability) 0.9999

*Effect size d: was automatically computed by the analytical software, incorporating the mean group 1, mean group 2, and the pooled standard deviation (SDpooreq). The SDpoorea Was from

following Cohen’s d formula:

High

o \/(nm ~1) x 8D}, + (g, — 1) % SD}
pooled =

NLow + Npigh — 2

n: sample size. SD, standard deviation.

Frontiers in Immunology 09

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1545486
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

10.3389/fimmu.2025.1545486

Altered in 130 (95.59%) of 136 High risk samples
VHI
PBRM1 \ 554
BAP1 o .
SETD2 E
TN bt oo adam it bwiaebt. O o of sampled
muc1e 0=i A o —
MTOR T iy L= ]
AHNAK2 1 m I }““““illlll %, m—
LRP2 L | A L 1o E—
ADGRG4 ! I|| I I i 1 =
FBN2 e ] I i ]
g (i | 1 n
:‘;l’t‘rf”(_,?_% i i |III III| i i III E
NF2 | I I O o
SYNE1 by ! 1 IIII ll 'I it |I E
C\I/-IVEV),; e Lh I i g E
gL L i
1 I (IO O 1 ]
CSMD3 I i i i I| i i ||"| P
DNAH9 b |
ESPL1 i i I i ' HL i 2 E
KDM5C it i LA |
MAI%%E = Missense_Mutation  In_Frame_Del
MTUS?2 = Frame_Shift_Ins = Translation_Start_Site
N%’fgg = Splice_Site Nonstop_Mutation
SPEN = Nonsense_Mutation = Multi_Hit
VPS13C = Frame_Shift_Del
Gene mutation types
I I \/HL
|Essms] I PBRM1
=
W KDM5C
N SYNET
Im PTEN
om ATM
B SMARCA4
g
[ ZFY?/EZG
B PTCHT
No Mutation |= %E;:H
= Synonymous = Mezn
m In-frame INDEL § ADCY8
[] Otlher non-Synolnymous i ffééziz\lgm
[ ] Mlslsensle mutatlc?n 1 NUDTTT
m Splice Site mutation 1 [FDP2
Frameshift mutation I| E,@’,%g 2
= Nonsense mutation = AR’GL‘A; 8
| ERRC
, . . , 1 ECHDC2
200 150 100 50 0
Mutations

FIGURE 5

B

Altered in 200 (85.11%) of 235 Low risk samples

VHL
PBRM1
TIN
SETD2
M

12

N

Jas]
=
[=

0 105
LNo. of samples ;
= =

ATM HH \}}\\\\HIHW\HIW\H\HI I HWI LRI

ELH

L
1] [

g
N

I
S
=
=

! I‘ ‘ 1 e [
| I I L0} l 1
BRCA2 L] [ I I I
= Frame_Shift_Del = Frame_Shift_Ins
= Missense_Mutation = Translation_Start_Site
= Nonsense_Mutation = In_Frame_lIns
In_Frame_Del Nonstop_Mutation
= Splice_Site = Multi_Hit

Somatic Copy Number Alterations

[ 9p21.3
Bl 2937.3
[ 6926
[ 1p36.13
No Change ] 9p23
® Deletion ] 8p23.2
u Loss N or12.3
® Gain o 1p314
® Amplification [T 3p12.2
NA Il 4934.3
I 14931.1
265 200 100 0
SCNAs

e 5q35.1
BN 000000000 3q2632
BT Xq11.2

0

[ T
24 20 10
SCNAs

Gene mutation analysis in the TCGA cohort. (A) Mutation landscape in tumor samples from the high-risk group. (B) Mutation landscape in tumor
samples from the low-risk group. (C) Summary of gene mutation types and chromosomal localization across 533 tumor samples. (D) Chromosomal
localization and somatic copy number alterations (SCNAs) across 533 tumor samples.

immune cell types (Figure 6A) between the two groups (p-value <
0.05), with 15 showing extremely significant differences (p-value <
0.001). Specifically, the high-risk group typically exhibited increased
levels of immune cell infiltration (Figure 6C), particularly in
activated B cells, activated CD4" T cells, activated CD8* T cells,
activated dendritic cells (DCs), and myeloid-derived suppressor
cells (MDSCs). Further analysis of 13 immune signaling pathways
(Figure 6B) revealed all pathways presented extremely significant
differences between the high- and low-risk groups (p-value < 0.001),
with the high-risk group generally having a greater infiltration
capacity in these pathways. These results suggest that in terms of
the immune response, the high-risk group generally has a stronger
immune response capability than the low-risk group does, which
has significant implications for the prognosis and therapeutic
response of KIRC patients.

In the PCAWG cohort (Figure 6D), significant differences were
observed in the infiltration of activated CD4" T cells, CD56dim
natural killer (NK) cells, natural killer T (NKT) cells, and
neutrophils between the high- and low-risk groups (p-value <
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0.05). Compared with the TCGA cohort, the high-risk cohort
presented a greater infiltration capacity for activated CD4"™ T cells
and NKT cells, and the differences in activated CD4* T cells and
NKT cells between the groups were even more pronounced (p-value
< 0.02). Therefore, we believe that the high-risk group in the
PCAWG cohort possesses stronger immunogenicity and higher
activity in terms of immune cell infiltration. The lack of prominent
characteristics in the data may be attributed to the small
sample size.

Next, we analyzed the immune checkpoint and immune
phenotype scores (IPS) of the samples. Among the nine immune
checkpoints closely associated with KIRC (Figure 7A), the expression
levels of immune checkpoints were generally lower in the low-risk
group. In comparisons between the groups, the expression levels of
CTLA4, PD-1, CD72, LAG3, and TIGIT were extremely significantly
different (p-value < 0.0001). According to the immune phenotype
score analysis (Figure 7B), there was no significant difference in scores
between the high-risk and low-risk groups when there was no
response to either CTLA4 or PD-1 antibodies (p-value > 0.05).
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Immune cell infiltration analysis in the TCGA cohort. (A) Comparison of infiltration levels for 28 immune cell types between high- and low-risk

groups. (B) Comparison of 13 immune-related signaling pathways between high- and low-risk groups. (C) Heatmap showing the infiltration levels of
28 immune cell types in high- and low-risk groups. (D) Immune cell infiltration analysis in the PCAWG cohort. *indicates p-value < 0.05; **indicates
p-value < 0.01; ***indicates p-value < 0.001; ****indicates p-value < 0.0001.

However, when there was a response to either or both antibodies,
there was an extremely significant difference in scores between the
groups (p-value < 0.001), with the high-risk group scoring higher
than the low-risk group. This result further confirms that the high-
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risk group has a greater degree of immune cell infiltration and
stronger immunogenicity and suggests that the tumor
microenvironment in the high-risk group may be more active and
potentially more responsive to immunotherapy.
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FIGURE 7

Immune checkpoint and immune score analysis in the TCGA cohort. (A) Expression analysis of immune checkpoint genes. (B) Immune score
comparison between high- and low-risk groups. *indicates p-value < 0.05; **indicates p-value < 0.01; ***indicates p-value < 0.001.

Analysis of drug response sensitivity based
on gene expression matrices

To predict how different patient populations, respond to drugs

and to identify subgroups that respond well to specific drugs,
thereby obtaining more targeted treatment plans, we conducted a
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drug sensitivity analysis on both high- and low-risk groups. For the
analysis, we selected drugs commonly used to treat advanced KIRC,
including sunitinib, pazopanib, axitinib, and temsirolimus;
sorafenib and paclitaxel for KIRC treatment; and cisplatin,
doxorubicin, and gemcitabine, which can treat a variety of
cancers. The analysis results (Figure 8) revealed extremely
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FIGURE 8

Drug response sensitivity analysis based on gene expression profiles. Prediction of chemotherapeutic and targeted drug sensitivity according to the

expression matrix of risk model genes.

significant differences in the response to sunitinib, sorafenib,
cisplatin, and doxorubicin between the high- and low-risk groups
(p-value < 0.001). With the exception of doxorubicin, the other
three drugs exhibited stronger sensitivity in the low-risk group and
stronger resistance in the high-risk group. Compared with drugs,
doxorubicin has the highest sensitivity, followed by sunitinib. This
finding suggests that in the process of treating KIRC, in addition to
sunitinib, which is currently the most widely used agent,
doxorubicin also holds potential as a therapeutic agent for KIRC.
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Analysis of immunohistochemical staining
based on gene expression

Based on the above findings, we further evaluated the clinical
relevance of the nine core genes and the six genes included in the
prognostic risk model by analyzing their IHC staining patterns in
KIRC (Figure 9). The analysis revealed that most core genes
exhibited consistent expression trends between normal and tumor
tissues. Notably, RIPK1 and RIPK3 were highly expressed in normal
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Immunohistochemical analysis of necroptosis-related core DEGs (A) and six risk prognostic genes (B) in KIRC. Expression levels are shown as
normalized transcripts per million ("TPM). RIPK3 and MLKL are excluded from panel A due to unavailable IHC data. ***indicates p-value < 0.001.

tissues, suggesting their potential roles as tumor suppressors in ~ TYRO3 and CPT2 demonstrated strong tumor-suppressive
KIRC progression. In contrast, the remaining seven core genes  potential, aligning with mRNA-level analyses in which both genes
showed elevated expression in tumor tissues, indicating possible  showed negative correlation coefficients within the risk model—
oncogenic functions. Among the prognostic risk model genes,  further supporting their protective roles in KIRC.
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Screening analysis of model cell lines

In the process of searching for cell lines suitable for modeling
KIRC, we first employed UMAP analysis for dimensionality
reduction, clustering, and visualization of the TCGA cohort
tumor samples. This analysis revealed significant differences
among the samples, as shown in Supplementary Figure 4. The
results indicated that sex did not affect the spatial distribution of the
three subtypes: C1, C2, and C3. Specifically, the C2 and C3 subtypes
presented closely related spatial positions, whereas the C1 subtype
presented a unique distribution characteristic. We subsequently
screened 23 candidate cell lines and, through (O)PLS-DA), found
that the similarity score matrix of gene expression patterns
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displayed distinct clustering differences among subgroups within
groups, with smaller differences within subgroups, as depicted in
Figures 10A, C. In the confidence test analyses, as shown in
Figures 10B, D, Q2Y and R2Y represent the prediction rate and
explanation rate of the model, respectively. Although both values
were less than 0.4, the predicted values were consistently lower than
the original values, and both pQ2Y and pR2Y were less than 0.05,
indicating a certain degree of reliability and stability for the model.
Finally, based on the VIP average values from the (O)PLS-DA
(where the absolute VIP values were greater than 1, as detailed in
Table 3 and Supplementary Table 3), we selected four cell lines,
A704, BFTC909, CLA54, and UO31, as model cell lines. The
differential analysis of gene expression and metabolite levels
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(O)PLS-DA model using permutation testing. (C) (O)PLS-DA based on high- and low-risk group classification. (D) Confidence test for (O)PLS-DA in
high- and low-risk groups. (E) Differential expression analysis of model cell lines. (F) Analysis of differentially abundant metabolites in selected model

cell lines.
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TABLE 3 VIP values of the four model cell lines analyzed by (O)PLS-DA.

Cell lines Cluster-VIP Risk-VIP Average-VIP
A704 33033 1.1168 22101
BFTC909 1.6551 1.2100 1.4326
CAL54 1.3201 0.9087 1.1144
U031 1.6238 1.0257 1.3248

revealed no significant differences among these four cell lines
(Figures 10E, F), allowing subsequent research to choose different
cell lines for validation studies on the basis of specific
research characteristics.
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Finally, we used BFTC909 and CAL54 as the optimal cell-line
models for dissecting phenotypic heterogeneity in mechanistic and
drug-development studies, and we highlight three novel targets
(CASP8, PGAMS5, and CPT2) for further investigation (Figure 11).
Three independent lines of evidence support this conclusion (1). An
integrated analysis of core/risk prognostic gene expression (nRNA
and protein) with cluster-VIP and risk-VIP profiles ranked the lines
BFTC909 > CAL54 > A704 > UO31 (Table 3; Supplementary
Table 3). (2) CASP8 and PGAMS5 displayed stable RNA-protein
co-expression in BFTC909 and CAL54, confirming that these lines
faithfully recapitulate key pathway activity. (3) CPT2 showed
marked transcript-protein discordance (high mRNA, low
protein), offering a unique system for studying post-
transcriptional regulation. Together, our analytical framework—
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which combines cell-line-specific profiling, clinical-risk
stratification (cluster- and risk-VIP), and multi-omics validation
(RNA [nTPM]-protein [nRPX] concordance analysis) - not only
enabled robust model selection but also systematically prioritized
targets with both biological significance and clinical translatability.

Discussion

KIRC is one of the most prevalent subtypes of RCC,
characterized by heterogenous cancers of renal tubular epithelial
origin (2). It is often associated with mutations in the VHL gene,
leading to overexpression of HIF1 and HIF2 or the silencing of
other tumor suppressor genes (5, 7, 8). Despite advances in
treatment, KIRC remains associated with high mortality and
tumor metastasis (2, 30, 31). Necroptosis, a regulated form of cell
death distinct from apoptosis and necrosis, is mediated by RIPKI,
RIPK3, and MLKL (10, 32, 33). It plays a critical role in tumor
progression and immune regulation by inducing cell membrane
rupture and releasing DAMPs (18). Meanwhile, necroptosis
activates immune responses via the NF-xB pathway, further
linking it to tumor immunity (23, 34). Given the critical role of
necroptosis in tumor progression and immune regulation, recent
research has increasingly focused on its potential as a prognostic
biomarker and therapeutic target in KIRC.

Recent evidence indicates that necroptosis-related biomarkers
may surpass other programmed cell death pathways in predicting
KIRC prognosis and informing immunotherapy approaches.
Compared with pyroptosis- or ferroptosis-based models,

Frontiers in Immunology

necroptosis signatures exhibit greater prognostic reliability in
KIRC and show stronger associations with immune
microenvironment characteristics, such as immune checkpoint
upregulation and regulatory T cell infiltration (24, 25). However,
existing studies remain constrained by the use of limited gene
panels and a lack of comprehensive mechanistic investigation (3,
26-28). Future research should prioritize expanding necroptosis-
related gene sets, validating predictive models across diverse
cohorts, and clarifying the immune-regulatory mechanisms of
necroptosis to strengthen its potential as a therapeutic target.
Through our research (the overall flow diagram is shown in
Figure 12), we identified nine core DEGs associated with KIRC—
RIPK1, RIPK3, MLKL, CASP8, ZBP1, TLR3, PYGL, TRPM7, and
PGAMb5—all integral to the necroptotic signaling pathway. CASP8
and PGAM>5 were identified as potential biomarkers among these,
while previous studies have shown that ZBPI, TLR3, and PYGL
contribute to tumor progression in KIRC (19-21). These genes are
connected through intermediates such as TICAMI, TRADD,
GSDMD, FADD, and CASP10. TICAM1 (TRIF) acts as an
adaptor protein for TLR3, activating NF-kB and promoting
interferon-f production in response to dsRNA, while
contributing to necroptosis (20, 35). TRADD, involved in TNFR1
signaling, facilitates programmed cell death through its interaction
with TRAF2 (36). GSDMD, a gasdermin family member, triggers
cell membrane rupture upon activation, a hallmark of necroptosis
(37). FADD, primarily associated with apoptosis, may influence
necroptotic pathways, and CASP10, a cysteine protease, participates
in programmed cell death but requires further characterization (38,
39). By applying a stringent differential gene screening threshold of
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p-value < 0.001—stricter than the commonly used p-value < 0.05 —
and integrating KEGG pathway analyses, we ensured that selected
genes were not only statistically significant but also biologically
relevant to necroptosis. This comprehensive approach enhances the
reliability of our findings.

For prognostic analysis, we developed a predictive model
incorporating six necroptosis-associated genes: IL4, CDC7,
IGF2BP3, CASP9, TYRO3, and CPT2. This model effectively
predicts KIRC patient survival. Notably, IL4 is a cytokine that
promotes B-cell activity and antigen presentation (40); CDC7 is an
essential gene for the DNA replication process (41); IGF2BP3
regulates mRNA stability and microRNA synthesis (42, 43); and
CASP9, while central to apoptosis, promotes necroptosis when
inhibited (44). Overexpression of TYRO3, a receptor tyrosine
kinase, supports tumor proliferation and migration (45).
Compared to traditional gene-selection approaches based on p-
values, our method integrated HR changes rates for secondary
screening, yielding a more refined and concise model. TimeROC
analysis of the 6-gene signature demonstrated strong predictive
performance, with 5-year survival AUC values of 0.77 in the
training cohort and 0.89 in the independent/external validation
cohort—surpassing the prognostic correlations of KIRC and other
gene sets by at least 5.5% and 7.0%, respectively. Notably, within
necroptosis-related gene sets, the independent/external validation
cohort achieved an AUC improvement exceeding 17.1% (26, 46—
48). In the mutational analysis, we analyzed TCGA-standardized
VCF/MAF files using both maftools R package and iCoMut Beta
tool on FireBrowse Platform. This approach successfully identified
clinically significant driver mutations and yielded reliable
prognostic biomarkers. However, as the analysis was based on
exome sequencing data, it had certain detection limitations for
low-frequency variants (VAF < 5%) and non-coding region
alterations. To obtain more comprehensive genomic profiles,
future studies may benefit from incorporating whole-genome
sequencing or other advanced detection methods.

Tumor immune microenvironment analysis revealed greater
immune cell infiltration and higher immunogenicity in high-risk
groups, suggesting enhanced tumor microenvironment activity and
better responsiveness to immunotherapy. This observation was
validated in the PCAWG cohort and supported by existing
literature (46). The immunosuppressive core in high-risk patients
arised from MDSC-dominated metabolic inhibition and checkpoint
amplification, rather than conventional Treg-mediated suppression.
It created a paradoxical “high infiltration-low function” immune
microenvironment. This microenvironment was characterized by
elevated infiltration of functionally impaired CD8" T cells alongside
increased DCs and MDSCs, despite upregulation of immune
pathways and heightened checkpoint expression (PD-1, CTLA4,
CD?72). Notably, Tregs were significantly reduced (p-value = 0.011),
excluding their dominant role in immune suppression. CD8" T cell
exhaustion (mediated by PD-1/CTLA4) promoted MDSCs
recruitment, while deletion at the 9p21.3 locus and VHL mutation-
driven metabolic reprogramming (via HIF-10/LDHA up-regulation)
established a hypoxic, glycolytic niche that facilitated both MDSCs
expansion and lactate-mediated T cell suppression (5-7, 49).
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Furthermore, tumor cell-derived PD-L1 reinforced this
immunosuppressive cascade through positive feedback, ultimately
explaining the coexistence of robust immune infiltration with
profound functional impairment. Drug sensitivity analysis
identified doxorubicin as a potential therapeutic option for KIRC.

IHC analysis also revealed the protein-level spatial distribution
patterns of nine core genes and risk model parameters, thereby
validating the prognostic model’s risk stratification. Through
systematic screening of cell lines and target genes, our study
identified BFTC909 and CAL54 as the most suitable model for
subsequent experimental validation and revealed three novel target
genes, including CASP8, PGAMS5 and CPT2, warranting
further investigation.

In conclusion, our study establishes a strong connection
between necroptosis and KIRC, uncovering significant differences
in necroptosis-associated gene expression between normal and
cancerous tissues. The six-gene prognostic model provides a
valuable tool for predicting patient survival and underscores the
potential of targeting necroptosis in KIRC treatment. We also
highlight doxorubicin as a promising therapeutic agent and
nominate the CAL54 through integrated RNA/protein analysis as
the optimal cell line model along with three target genes for
mechanistic studies. These findings contribute to a deeper
understanding of KIRC’s molecular mechanisms, pave the way
for innovative therapeutic strategies, and provide a data
foundation for future exploration of liquid biopsy alternatives,
validation of tissue-based scoring in treatment response, and
development of simplified detection protocols.
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