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Metabolomic machine learning-
based model predicts efficacy
of chemoimmunotherapy for
advanced lung squamous
cell carcinoma
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Fang Hu3,4, Meili Ma1, Lei Cheng1, Jun Lu1, Bo Zhang1,
Jianlin Xu1, Ying Li1, Yinchen Shen1, Wei Zhang1, Runbo Zhong1,
Tianqing Chu1, Baohui Han1, Xiaoxuan Zheng1,5*,
Hua Zhong1* and Xueyan Zhang1*

1Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 2Department of Ultrasonography, Shanghai Chest
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 3Department of
Thoracic Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences
(Zhejiang Cancer Hospital), Zhejiang, Hangzhou, China, 4Hangzhou Institute of Medicine (HlM),
Chinese Academy of Sciences, Zhejiang, Hangzhou, China, 5Department of Respiratory Endoscopy,
Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Background: Unlike lung adenocarcinoma, patients with advanced squamous

carcinoma exhibit a low proportion of driver gene positivity, with fewer effective

treatment strategies available. Chemoimmunotherapy has now become the

standard first-line treatment for individuals diagnosed with advanced lung

squamous carcinoma. Serum metabolomics holds significant potential for

application in predicting responses to chemoimmunotherapy and is capable of

identifying and validating potential biomarkers. The aim of our study was to

establish a model that can predict the prognosis of chemoimmunotherapy in

patients with advanced lung squamous cell carcinoma, integrating

metabolomics with machine learning techniques.

Methods: We collected 79 serum samples from patients with advanced lung

squamous cell carcinoma before receiving combined immunotherapy and

performed untargeted metabolomics analysis. Patients were divided into non-

response (NR) and response (R) groups according to overall survival (OS), and

prognostic models were constructed and validated using different machine

learning methods. The patients were further categorized into high-risk and

low-risk groups based on the median risk score, to assess the model's

predictive performance.

Results: There were significant differences in metabolites and metabolic

pathways between NR and R groups, and 117 differential metabolites were

preliminarily screened (p < 0.05, VIP > 1). Further, least absolute shrinkage and

selection operator (LASSO) and random forest (RF) were used to identify

metabolites, and then their common metabolites were used as the best

biomarkers to build a prediction model containing 8 differential metabolites.

Based on these biomarkers, RF, support vector machine (SVM) and logistic
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regression were used to randomly divide patients into training and validation sets

in a 7:3 ratio, respectively. We found that the RF method resulted in area under

curves (AUCs) of 0.973 and 0.944 for the training and validation sets, respectively,

with the best predictive performance. Subsequently, both OS and progression-

free survival (PFS) were notably reduced in the high-risk group when contrasted

with the low-risk group.

Conclusions: We developed a model containing 8 metabolites based on

metabolomics and machine learning that may predict survival outcomes in

patients with advanced lung squamous cell carcinoma undergoing

chemoimmunotherapy, helping to more accurately assess efficacy and

prognosis in clinical practice.
KEYWORDS

metabolomics, machine learning, chemoimmunotherapy, predictive model,
tumor biomarkers
1 Background

Lung cancer is one of the malignant tumors with the highest

incidence rate and mortality in the world (1, 2). Non-small cell lung

cancer (NSCLC) accounts for about 80%-85%, including histological

subtypes such as adenocarcinoma and squamous cell carcinoma (3).

Among them, squamous cell carcinoma accounts for about 30% of

NSCLC and is a common type of lung cancer (4). Moreover,

squamous cell carcinoma often remains asymptomatic in its initial

stages. However, by the time it is detected, the disease may have

advanced to a later stage, resulting in a less favorable prognosis (5).

Compared to patients with lung adenocarcinoma, due to the limited

number of driver gene mutations in patients with advanced lung

squamous cell carcinoma, the options for targeted therapy are

limited, and chemotherapy was once the main treatment method

(6, 7). However, patients receiving chemotherapy alone often develop

drug resistance quickly and have some adverse effects. With the

development of immunotherapy, the treatment strategies for lung

squamous cell carcinoma have undergone significant changes.

Immunotherapy, which activates or enhances the patient's own

immune system to attack tumor cells, has become an important

component of the treatment of lung squamous cell carcinoma (8).

In recent years, multiple clinical studies have shown that

immunotherapy combined with chemotherapy can significantly

improve the survival of patients with lung squamous cell

carcinoma, such as the CheckMate 017 (9) and CheckMate 078

studies (10). Immunotherapy biomarkers for lung squamous cell

carcinoma mainly include PD-L1 (programmed cell death ligand 1)

expression levels and tumor mutation burden (TMB). However, it

has been shown that PFS was significantly superior in the

combination arm regardless of PD-L1 expression level (11). This

suggests that the efficacy of the combined regimen in patients with

advanced squamous cell carcinoma cannot be predicted based on
02
PD-L1 expression levels alone. TMB is also controversial as a

biomarker to predict the efficacy of immunotherapy plus

chemotherapy, especially there is no uniform standard for the

selection of TMB detection methods and thresholds (12).

Therefore, it is crucial to discover more new biomarkers to more

accurately identify which advanced lung squamous cell carcinoma

patients with negative driver genes are most likely to benefit from

immune combination therapy.

Traditional biomarkers tend to be obtained from tumor

specimens at a single time point, are invasive, cannot dynamically

monitor changes in the tumor immune microenvironment, and

there is heterogeneity in tumor tissues, which are limitations of past

biomarkers. Blood specimens can be obtained more easily, causing

less trauma and discomfort to the patient, and repeated and

multiple sampling can be performed (13). It is also able to track

the dynamic changes during treatment, reflect tumor and host

microenvironment changes, and compensate for the limitations of

biopsy or puncture samples that cannot obtain the full picture of the

tumor (14). Metabolites in blood identify early biochemical changes

in disease and have been widely used in disease prediction (15).

With the development of omics technology, especially

metabolomics technology, it has become a hot spot to use

multiple metabolomics feature profiles and integrate multiple

biomarkers based on Artificial Intelligence (AI) modeling to

improve disease prediction accuracy (16). We found that previous

studies have constructed early screening models for lung cancer

based on metabolomics (17, 18), but there is still a lack of

exploration in constructing models to predict the efficacy of

immunotherapy combined with chemotherapy for advanced lung

squamous cell carcinoma.

Therefore, our study aimed to compare metabolic pathways and

metabolite differences between different efficacy in driver gene-

negative advanced squamous cell carcinoma of the lung patients
frontiersin.org
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receiving first-line immunotherapy combined with chemotherapy

using serum untargeted metabolomics. Prediction models were

constructed based on various methods such as least absolute

shrinkage and selection operator (LASSO), random forest (RF),

support vector machine (SVM), and logistic regression (LR) to

explore potential biomarkers that may predict survival outcomes in

patients with advanced squamous cell carcinoma of the lung who

are driver gene negative.
2 Materials and methods

2.1 Patients

We retrospectively screened 3124 patients treated at Shanghai

Chest Hospital from July 2020 to July 2021, and finally included 79

patients who met the criteria and ended follow-up on April 31,

2024. All patients provided written informed consent, which was

approved by the Ethics Committee and Institutional Review Board

of Shanghai Chest Hospital (Reference number: LS1808). The

inclusion criteria were: (1) histologically or cytologically

confirmed squamous cell carcinoma of the lung; (2) stage IIIB to

IV according to the ninth version of TNM, which was not suitable

for radical surgery; (3) having measurable lesions; and (4) receiving

first-line PD-1 (programmed cell death 1) inhibitor combination

chemotherapy. (5) Eastern Cooperative Oncology Group (ECOG)

performance status (PS) score between 0 and 1. Exclusion criteria

were: (1) presence of driver gene mutations; (2) surgical treatment

after immunotherapy; (3) active infection, such as HIV, hepatitis B,

hepatitis C, etc.; (4) incomplete clinical data or did not complete the

necessary systemic examination; (5) patients with other primary

active malignancies; (6) patients with a history of autoimmune

diseases, severe cardiopulmonary dysfunction or other

serious complications.

We collected clinical information on patients' age, sex, smoking

history, TNM stage, PD-L1 expression, ECOG PS, etc. via the

hospital 's electronic system of medical records. Patients were

treated with PD-1 inhibitors combined with chemotherapeutic

agents administered every 3-4 weeks as a cycle until disease

progression or serious adverse reactions or death. Immunologic

medications included pembrolizumab, tislelizumab, cariselizumab,

and sintilimab at a single dose of 200 mg. According to the patient 's

body surface area and tolerance, the specific chemotherapy drug

administration regimen was generally platinum-based doublet,

platinum drugs included carboplatin, cisplatin, lobaplatin or

nedaplatin, drugs used in combination with platinum drugs

included paclitaxel drugs, gemcitabine or docetaxel; for patients

not suitable for platinum drugs, gemcitabine combined with

vinorelbine or gemcitabine combined with docetaxel is given.

Patients' condition will be assessed before each cycle by chest

computed tomography (CT), abdominal ultrasound, bone scan,

brain enhanced magnetic resonance imaging (MRI) or positron

emission tomography-computed tomography (PET-CT), and

progression will be judged by at least one professional radiologist

and clinical medicine.
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2.2 Serum samples collection and
pretreatments

Our serum samples were obtained with prior approval from the

Shanghai Chest Hospital Clinical Biobank and could be investigated

with these samples. Serum samples were previously stored in a -80°C

freezer, and we obtained serum samples and performed untargeted

metabolomic analysis within 4 weeks before patients received

immune combination therapy by consulting patients' blood

collection time records.

Serum samples stored in a -80°C freezer were preprocessed for

analysis, first thawed on ice and vortexed, and 50 mL of sample was

mixed with 300 mL of extraction solution (acetonitrile: methanol =

1:4, volume ratio) in a 2 mL microfuge tube. Vortex again,

centrifuge, collect 200 mL of supernatant, place the collected

supernatant at -20°C for 30 mins, then centrifuge to obtain 180

mL of supernatant for liquid chromatography-mass spectrometry

(LC-MS) analysis (19).
2.3 Untargeted metabolomics study

Pretreated serum samples were analyzed by LC-MS in the next

step, where the specific setting of the chromatographic part was the

column Waters ACQUITY UPLC BEH C18, 1.8 µm particle size,

2.1 mm inner diameter x 100 mm length; the column temperature

was 40°C, the flow rate was 0.4 mL/min, and the volume of sample

injected into the column was 2 mL. Gradient elution was performed

in a solvent system containing 0.1% formic acid in water (mobile

phase A) and 0.1% formic acid in acetonitrile (mobile phase B) in

steps. That is, 5% mobile phase B started at 0 min; within 11 min, a

linear gradient to 90% mobile phase B; 90% mobile phase B was

held for 1 min; return to 5% mobile phase B within 0.1 min and

hold for 1.9 min to quickly return to starting conditions and prepare

for the next injection.

The mass spectrometer was TripleTOF 6600, the data

acquisition software was Analyst TF 1.7.1 (Sciex, Concord, ON,

Canada), the mass spectrometry acquisition mode was information-

dependent acquisition (IDA) mode, and appropriate parameters

were set to ensure high sensitivity and resolution of LC-MS analysis.

In addition, we prepared a pooled human serum sample from all

study participants as a consistent quality control (QC) sample.

Then, a blank solvent was used as a negative control. These QC

samples were evenly distributed throughout the analysis batches.

Specifically, they were inserted every 10 samples to monitor the

stability and consistency of the analytical process. For the pooled

human serum, we monitored the relative standard deviation (RSD)

of the peak areas for major metabolites. An RSD threshold of 30%

was set, and any metabolite exceeding this threshold was excluded

from further analysis. For the blank solvent, we checked for any

carryover effects by ensuring no significant peaks were observed

that could indicate contamination from previous samples. It can be

used to assess the quality of the data and also to monitor within-run

and between-run variability during the analysis. Sample handling

and repeatability of the analytical method can be assessed by
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comparing the results of QC samples analyzed at different

time points.

Raw data files generated by the mass spectrometer such as

mzML or raw format were converted to mzXML format using

ProteoWizard software. Peak extraction was performed using

XCMS software and extracted peaks were aligned to correct for

minor differences in retention times due to variations in

experimental conditions. Peak areas were corrected using the

"Support Vector Regression" (SVR) method, and peaks with

greater than 50% missing in each group of samples were filtered.

Metabolite identification information is then obtained through

various libraries such as self-built libraries and public databases as

well as using metDNA methods.
2.4 Study design

The primary endpoint of this study is overall survival (OS),

defined as the time from the start of the first treatment until the

patients' death from any cause. The secondary endpoint was

progression-free survival (PFS), defined as the time from the start

of the first treatment to the patients' tumor progression (in any way)

or death (in any way). We noticed that several papers mentioned

24-month survival rates and used this as a basis to assess the efficacy

of lung cancer immunotherapy (20, 21), so combining the actual

survival of 79 patients, we divided patients into Response (R = 41)

and Non-Response (NR = 38) groups using 24-month cutoff values.

Serum was collected from patients within four weeks prior to

chemoimmunotherapy for untargeted metabolomics analysis.

Combined with variable impact projection (VIP) and P values,

differential metabolites were initially selected, and then the

differential metabolites finally included in the model were further

selected by LASSO and RF methods (22). Patients were randomly

divided into training and validation sets at a ratio of 7:3, modeled

using multiple machine learning methods such as RF, SVM, and LR,

and then receiver operating characteristic (ROC) curves were

plotted to assess model performance. The best model tested by

different machine learning methods was selected, then the risk score

was calculated, and the total population was divided into low-risk

and high-risk groups using the median as the cutoff. Comparison of

prognostic differences between high-risk and low-risk groups

further assessed model performance.
2.5 Data analysis and statistical methods

Baseline characteristics of patients were compared using Chi-

square test or Fisher 's exact test. OS and PFS were calculated using

Kaplan-Meier method and log-rank test. Univariate and

multivariate Cox regression were used to assess the impact of

different factors on OS and PFS. ROC curves were utilized to

evaluate the predictive capability of each factor. Specifically, the

model's classification ability was demonstrated by plotting the
Frontiers in Immunology 04
relationship between the true positive rate (sensitivity) and the

false positive rate (1-specificity). The area under the curve (AUC)

was subsequently calculated, with a higher AUC value indicating a

stronger predictive ability of the model. Specifically, we followed the

procedure outlined below: we generated 1000 bootstrap samples

from our dataset. For each bootstrap sample, we calculated the

AUC. We sorted the AUC values obtained from the bootstrap

samples and determined the 2.5th and 97.5th percentiles to obtain

the 95% confidence interval (CI). Let AUC denote the area under

the ROC curve, and let CIlower and CIupper denote the lower and

upper bounds of the 95% CI, respectively. The results can be

expressed as: 95% CI=[CIlower,CIupper].

Orthogonal partial least squares discriminant analysis (OPLS-

DA) was used to demonstrate differences between groups, which

was accomplished using the MetaboAnalystR package in R

software. The volcano plot primarily serves to illustrate the

relative content disparities of metabolites between two sets of

samples, alongside the statistical significance of these differences.

Student's t-test was employed to analyze variables with a normal

distribution and equal variance between the two groups, whereas

the Mann-Whitney test was utilized for those with a non-normal

distribution. Significant differences in selecting differential

metabolites were determined by VIP > 1 and p-value < 0.05. The

annotation of metabolic pathways, encompassing the differential

metabolites, was executed with the aid of the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database. LASSO regression was

conducted using the glmnet, foreign, and tidyr packages in R,

while the RF method was executed via the varSelRF package in R.

The R package used by SVM is mainly e1071 package, and the R

package used by LR is mainly glm package.

All data analyses were conducted utilizing R version 4.4.1 and

SPSS version 26.0, and Adobe Illustrator 2022 was used for picture

drawing integration. A p-value less than 0.05 in a two-tailed test was

deemed statistically significant.
3 Results

3.1 Characteristics of the study set

The overall flow of our study was shown in Figure 1. There were

79 patients in our study who received combination therapy as their

first line of treatment. Their baseline clinical characteristics such as

age, sex, smoking history, ECOG PS score, TNM stage, number of

metastatic organs and PL-L1 expression were shown in Table 1. As

can be seen from the Table 1, our selected population was

concentrated at ≥ 65 years, male, with a history of smoking,

ECOG PS 0, TNM stage IV, and PD-L1 expression ≥ 1%. In

Table 2, after we divided 79 patients into NR (OS < 24 months)

and R (OS ≥ 24 months) groups according to OS, we then compared

the clinical characteristics of the two groups and performed a chi-

square test and found that these baseline characteristics were evenly

distributed in both groups without statistical difference (P > 0.05).
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3.2 Comparison of the serum metabolic
profiles between NR and R groups

In order to initially screen for differential metabolites between

the two groups, we first verified the rationality of grouping, and the

OPLS-DA model showed that the two groups could be significantly

separated (Figure 2A), demonstrating that patients with different

survival periods had different metabolic profiles. Based on the VIP

obtained from the OPLS-DA model (biological replicates ≥ 3),

combined with the P-value of univariate analysis (biological

replicates ≥ 2), we could initially screen 117 differential

metabolites between the two groups (VIP > 1 and P < 0.05).

Among them, as shown in volcano plot (Figure 2B), 70

differential metabolites were up-regulated and 47 differential

metabolites were down-regulated. In addition to performing

statistics on VIP values and P-values for differential metabolites,

we also calculated FC values for differential metabolites and plotted

radar plots for the top 10 metabolites with the largest difference, i.e.,

the largest absolute log2FC value. In Figure 2C, these 10 metabolites

were Moupinamide, 15(R)-17-Phenyl trinor prostaglandin F2alpha
Frontiers in Immunology 05
isopropyl ester, Guanabenz acetate, 5,6-dihydroxy-2-(4-

h yd r o x yph eny l ) - 7 -me t ho x y - 8 - [ 3 , 4 , 5 - t r i h yd r o x y - 6 -

( h y d r o x ym e t h y l ) o x a n - 2 - y l ] - 4H - p r o c e n - 4 - o n e , 5 -

Hydroxypseudobaptigenin, Lenticin, Dexmedetamide, Esprocarb,

Asn-Tyr, and Asn-Val-Phe-Lys. In addition, we also compared

metabolic pathways, and KEGG metabolic pathways were

significantly differentially enriched in metabolites between NR

and R groups. The closer the P-value is to 0, the more significant

the enrichment (Figure 2D). The first five pathways with the

smallest size from small to large were Chemical carcinogenesis-

receptor activation, Breast cancer, Progesterone-mediated oocyte

maturation, Oocyte meiosis, and Cortisol synthesis and secretion.
3.3 Analysis of clinical factors affecting the
efficacy of NR group and R group

In our study, the Figure 3A revealed that the median OS was 13

months (95% CI, 10.0-16.0) in the NR group, which was
FIGURE 1

Flowchart of the whole study. According to the inclusion and exclusion criteria, 79 of 3124 patients were enrolled and divided into Response (R = 41)
and Non-Response (NR = 38) groups based on overall survival. Serum was collected for untargeted metabolomics analysis before they underwent
immunotherapy combined with chemotherapy. Orthogonal partial least squares discriminant analysis (OPLS-DA), volcano plot and radar plot could
reflect the differences in metabolic characteristics between the two groups, and 117 differential metabolites were preliminarily selected according to
variable importance in projection (VIP) > 1, P < 0.05. Various machine learning algorithms were used to construct the best prediction model and test
the prediction performance in combination with clinical features.
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significantly shorter than that in the R group (P < 0.0001). In

addition, median PFS was 6.0 months (95% CI, 5.0-7.0) versus 19.0

months (95% CI, 12.7-25.3) in NR group and R group, respectively

(P < 0.0001). Therefore, OS was also significantly shorter in the NR

group than in the R group and the data was shown in Figure 3B. To

identify which clinical factors influence patient survival, we

performed univariate Cox regression analysis and found no

features to be significantly associated with survival (Figure 3C).
Frontiers in Immunology 06
3.4 Building biomarker models based on
machine learning

Because the univariate Cox analysis was not significant, we did

not include clinical characteristics in the model. Our preliminary

statistical screening with p < 0.05, VIP > 1 resulted in a large

number of metabolites, 117. To further screen more reliable

biomarkers, we first selected 46 metabolites using LASSO
TABLE 1 Baseline clinical characteristics.

Characteristic Patients

Total number 79

Age (years), n (%)

<65 27 (34.2)

≥65 52 (65.8)

Gender, n (%)

Male 73 (92.4)

Female 6 (7.6)

Smoking history

Never 15 (19.0)

Current/former 64 (81.0)

ECOG PS, n (%)

0 72 (91.1)

1 7 (8.9)

TNM stage, n (%)

IIIB-IIIC 25 (31.6)

IV 54 (68.4)

T stage, n (%)

0-2 33 (41.8)

3-4 46 (58.2)

N stage, n (%)

0-2 49 (62.0)

3 30 (38.0)

Number of metastatic organs, n (%)

0-1 55 (69.6)

≥ 2 24 (30.4)

PD-L1 expression, n (%)

TPS< 1% 17 (21.5)

1%≤ TPS≤ 49% 24 (30.4)

TPS≥ 50% 18 (22.8)

Unknown 20 (25.3)
ECOG PS, eastern cooperative oncology group performance status; PD-L1, programmed cell
death-ligand 1; TPS, tumor proportion score.
TABLE 2 Comparison of clinical characteristics between non-response
(NR) and response (R) groups.

Characteristic NR group (n=38) R group (n=41) P

Age (years), n (%)

< 65 14 (36.8) 13 (31.7) 0.631

≥ 65 24 (63.2) 28 (68.3)

Gender, n (%)

Male 34 (89.5) 39 (95.1) 0.420

Female 4 (10.5) 2 (4.9)

Smoking history

Never 8 (21.1) 7 (17.1) 0.652

Current/former 30 (78.9) 34 (82.9)

ECOG PS, n (%)

0 34 (89.5) 38 (92.7) 0.705

1 4 (10.5) 3 (7.3)

TNM stage, n (%)

IIIB-IIIC 13 (34.2) 12 (29.3) 0.637

IV 25 (65.8) 29 (70.7)

T stage, n (%)

0-2 18 (47.4) 15 (36.6) 0.332

3-4 20 (52.6) 26 (63.4)

N stage, n (%)

0-2 22 (57.9) 27 (65.9) 0.466

3 16 (42.1) 14 (34.1)

Number of metastatic organs, n (%)

0-1 30 (78.9) 25 (61.0) 0.083

≥ 2 8 (21.1) 16 (39.0)

PD-L1 expression, n (%)

TPS< 1% 7 (18.4) 10 (24.4) 0.896

1%≤ TPS≤ 49% 14 (36.8) 10 (24.4)

TPS≥ 50% 7 (18.4) 11 (26.8)

Unknown 10 (26.4) 10 (24.4)
frontier
NR, non-response; R, response; ECOG PS, eastern cooperative oncology group performance
status; PD-L1, programmed cell death-ligand 1; TPS, tumor proportion score.
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(Figures 4A, B) and then identified metabolites using RF, and their

cross-metabolites were candidate metabolites, and a total of 8

differential metabolites were identified as the best biomarkers. To

avoid over-fitting and false positives, 500 feature selections and 10

cross-validations were performed. These 8 differential metabolites

were Mevalonate, 1,2−Ethanedithiol, 4alpha−Hydroxymethyl

−4beta−methyl−5alpha−cholesta−8,24−dien−3beta−ol, Arg−Asp

−Leu−Tyr−Ser, Donhexocin, Glu−Cys−Ala, TG(10:0/14:0/a−15:0)

[rac], D−3−Hydroxykynurenine, respectively, and their predictive

performance was verified by AUC of ROC curves. As can be seen

from Figure 4C, the predictive performance of individual

differential metabolites is not sufficiently satisfactory (AUC <

0.75). However, the model formed by their combination had good

predictive performance, with AUC values reaching 0.915, (95% CI,

0.857-0.972), suggesting that this model may be used as a predictive
Frontiers in Immunology 07
panel to predict the efficacy of immunotherapy combined with

chemotherapy in patients with advanced lung squamous cell

carcinoma (Figure 4D).

Subsequently, patients (n = 79) were randomly divided into

training set (n = 55) and validation set (n = 24) in a 7:3 ratio, and

various machine learning models were employed for datasets

consisting of these eight metabolites, including RF model, SVM

model, and LR model. The comparison of the relative content of

these eight metabolites between the NR and R groups was generally

consistent in the training and validation sets, but most of them were

not significantly different (Figure 5), still suggesting that single

metabolites were not able to be biomarkers. However, the RF, SVM,

LR models constructed by the panel of eight metabolites showed

good predictive performance, with AUCs of 0.973, 0.938, and 0.934

in the training set and 0.944, 0.897, and 0.900 in the validation set
FIGURE 2

(A) Orthogonal partial least squares discriminant analysis (OPLS-DA) plots for non-response (NR) and response (R) groups. The abscissa represented
the score of the predicted component, and the abscissa direction could see the gap between groups; the ordinate represented the score of the
orthogonal component, and the ordinate direction could see the gap within the group; and the percentage represented the interpretation rate of
the component to the dataset. (B) Volcano plot of differential metabolites. Each point represented a metabolite, where green, yellow, and gray
points represented down-regulated, up-regulated, and metabolites that could be detected but were not significantly different, respectively; abscissa
represented the log value of the fold difference in the relative content of a metabolite between the two groups of samples, ordinate indicated the
level of significance of the difference, and the size of the dot represented the variable importance in projection (VIP) value. (C) Differential metabolite
radar plot. Grid lines correspond to log2FC, that was, the fold difference of differential metabolites was logarithmic-ally valued at the base of 2, and
yellow shading consisted of log2FC lines for each substance. (D) Differential metabolite Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment plot. The abscissa represented the Rich Factor corresponding to each pathway, the ordinate was the pathway name (sorted by P-value),
and the color of the dots was the P-value size, with red indicating more significant enrichment. The size of the dots represented the number of
differentially enriched metabolites.
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(Figure 6), with the RF model having the best predictive

performance. The accuracy, precision, recall and F1 values of RF

model in the training set were 0.98, and the accuracy, precision,

recall and F1 values in the validation set were 0.96, 1.00, 0.96 and

0.98, respectively.
3.5 Identifying patient survival outcomes
based on model

In Figure 7A, to further investigate the relationship between

relative combined metabolite panel content and patient survival

outcomes, we obtained risk scores by constructing a risk model and

divided patients into low-risk (n = 40) and high-risk (n = 39) groups

using the median of risk scores as the cutoff value. All baseline

factors and risk factors were included in the multivariate Cox

analysis (Figure 7B), and age > 65 years was significantly
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associated with shorter overall survival (HR, 2.990; 95% CI,

1.440-6.380; P = 0.005), whereas the low-risk group had

significantly longer survival than the high-risk group (HR, 0.280;

95% CI, 0.120-0.640; P = 0.003). Multivariate Cox regression

analysis indicated that risk score and age were independent

prognostic factors for OS. Figures 7C, D present OS and PFS

comparisons between the high-risk and low-risk groups. The

median OS in the high-risk group was 18.0 months (95% CI,

15.0-21.0), which was significantly shorter than that observed in

the low-risk group (P = 0.00023). In the high-risk group, median

PFS was 7.0 months (95% CI, 5.9-8.1), which was significantly lower

than PFS in the low-risk group, which was 15 months (95% CI,

10.0-20.0), and the difference was statistically significant (P <

0.0001). Time-dependent ROC curves indicated AUCs of 0.79,

0.90, and 0.73 at the 1-year, 2-year, and 3-year intervals,

respectively, for the risk factors in forecasting OS (Figure 6E).

These results indicated that our model could potentially predict

the survival outcomes of patients.
FIGURE 3

(A) Kaplan-Meier overall survival (OS) curves for non-response (NR) and response (R) groups. (B) Kaplan-Meier progression-free survival (PFS) curves
for NR and R groups. (C) Univariate Cox regression analysis of OS. NR, non-response; R, response; ECOG PS, eastern cooperative oncology group
performance status; PD-L1, programmed cell death-ligand 1; TPS, tumor proportion score.
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4 Discussion

In this investigation, we employed untargeted metabolomics to

explore metabolic changes in the serum of patients with advanced

lung squamous cell carcinoma who received chemoimmunotherapy

with varying degrees of effectiveness, aiming to identify biomarker

models that could potentially serve as prognostic indicators. In

particular, we used machine learning techniques to analyze serum

metabolites, thereby enhancing the precision of our identified

biomarkers. We developed a panel comprising 8 metabolites that

demonstrated high accuracy in both the training and validation sets.

Furthermore, the risk score derived from this model serves as an

independent prognostic marker, capable of effectively

differentiating patients with varying survival outcomes with

remarkable reliability and precision.

Lung cancer stands as a primary contributor to cancer-related

mortality in China and across the globe (23). Specifically, lung

squamous cell carcinoma presents a huge challenge in treatment

due to its complexity and heterogeneity (24). Moreover, lung
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squamous cell carcinoma exhibits fewer genetic mutations, which

often renders it less responsive to targeted therapies compared to

lung adenocarcinoma. Increasing studies have established the place

of immunotherapy combined with chemotherapy in the first-line

treatment of advanced lung squamous cell carcinoma (25, 26), and

this combined approach has been shown to substantially enhance

both patients’ survival rates and PFS. Consequently, it is imperative

to identify biomarkers capable of predicting the efficacy of

chemoimmunotherapy in patients with advanced lung squamous

cell carcinoma with greater accuracy and convenience. Combining

metabolomics and machine learning to construct biomarker models

has already shown potential in the field of lung cancer, and many

studies have made progress. In a recent study (27), the authors

performed metabolomics and lipidomics studies on serum samples

from 461 subjects (including NSCLC, SCLC, healthy participants)

to establish a metabolomics/lipid-based diagnostic model. The

machine learning algorithm was also used to validate the

screening results, and the performance of candidate metabolites

in the model was analyzed by ROC curves. The results showed that
FIGURE 4

(A) Mean squared error plot for least absolute shrinkage and selection operator (LASSO) binomial regression lambda values. The horizontal axis was
the logarithm of lambda, the vertical axis was the mean square error, and the two dashed lines were the maximum lambda value with the minimum
lambda value and the mean error within one standard deviation, respectively. As the lambda value increased, the mean square error increased.
(B) LASSO binomial regression lambda value coefficient plot. The horizontal axis was the log of lambda and the vertical axis was the coefficient of
variation. As lambda increased, the variable coefficients decreased continuously and some variable coefficients changed to 0. (C) Receiver operating
characteristic (ROC) analysis for each of 8 differential metabolites. (D) ROC analysis of models with 8 differential metabolite compositions. AUC, area
under curve; CI, confidence interval.
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the AUC of RF model was 0.93, indicating that the model had good

predictive ability. An another study employed supervised machine

learning algorithms to construct classification models using

metabolomics data (28). By contrasting the metabolomic profiles

of patients with NSCLC against those of individuals without cancer,

it was possible to pinpoint significant alterations in the

concentration levels of metabolites involved in tryptophan

metabolism, the tricarboxylic acid (TCA) cycle, the urea cycle,

and lipid metabolism. Utilizing these identified metabolites and
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their respective proportions, a machine learning classification

model with a remarkable ROC AUC value of 0.96 was

successfully developed. These studies suggested that it was feasible

to construct metabolomics and machine learning-based models to

predict the efficacy of immune combination therapy in the field of

lung squamous cell carcinoma, but we also found that previous

studies had mainly been diagnostic models and had not been

studied in predicting the direction of immunotherapy combined

with chemotherapy in advanced lung squamous cell carcinoma.
FIGURE 5

Differential metabolite violin plot of (A) Mevalonate; (B) 1,2−Ethanedithiol; (C) 4alpha−Hydroxymethyl−4beta−methyl−5alpha−cholesta−8,24−dien
−3beta−ol; D) Arg−Asp−Leu−Tyr−Ser; (E) Donhexocin; (F) Glu−Cys−Ala; (G) TG(10:0/14:0/a−15:0)[rac]; (H) D−3−Hydroxykynurenine in the training
and validation sets. Abscissa was sample grouping and ordinate was relative content of differential metabolites (original peak area). NR, non-
response; R, response.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1545976
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2025.1545976
Whereas our study considered the potential of metabolites as

prognostic markers, it highlighted the predictive value of

metabolites in immunotherapy combination therapy for advanced

lung squamous cell carcinoma. Untargeted metabolomics analysis

facilitated the measurement of thousands of metabolites, thereby

enabling the identification of a multitude of potential biomarkers.

Furthermore, we detected metabolites in peripheral blood, which

was readily obtainable, non-invasive, and imposed less discomfort

and risk on patients compared to invasive procedures requiring

tissue biopsy. Peripheral blood biomarkers could reflect changes in

the tumor and host microenvironment in real time and

dynamically, allowing repeated, multiple sampling and enabling

tracking of dynamic changes during treatment. Simultaneously, we

integrated machine learning algorithms to analyze complex omics

data, a process that proved to be swifter and more efficient than

conventional manual methods, while also enhancing the stability

and precision of our predictions (29, 30). In our study, we first

compared the serum metabolites of patients with different efficacy

using untargeted metabolomics, and it could be seen that the

metabolites of the two groups were significantly different, and

there were multiple differential metabolites and multiple

differential metabolic pathways. However, multivariate analysis

showed that clinical factors did not independently predict
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treatment outcome in these patients, so perhaps we could start

with differential metabolites to find biomarkers for immunotherapy

combination therapy.

To avoid overfitting, we first implemented the LASSO

regression algorithm to select 46 out of 117 metabolites in total.

Then, the RF algorithm was used to take their intersection, and the

prediction panel containing 8 metabolites was preliminarily

established. However, our results showed that the prediction

performance of a single differential metabolite was not good, and

only integrating these differential metabolites to build a model could

better predict the efficacy. In particular, our study utilized three

machine learning algorithms (RF, SVM and LR) to achieve the best

combination of models. This approach enhanced the overall

performance, leading to a more efficient and effective model. The

RF model had high accuracy and generalization ability. By

integrating multiple decision trees, it effectively reduced the risk

of overfitting and enhanced the model’s generalization capability. It

also demonstrated strong ability in processing high-dimensional

data and resisting noise, and it could automatically assess the

importance of features in prediction. However, it was

computationally expensive, especially when dealing with large-

scale datasets. Compared to LR, its prediction speed was slower.

The SVM method showed excellent performance in high-
FIGURE 6

Construction and validation of models based on different machine learning algorithms. Receiver operating characteristic (ROC) analysis of (A)
random forest (RF), (B) support vector machine (SVM) and (C) logistic regression (LR) models in the training set; ROC analysis of (D) RF, (E) SVM and
(F) LR models in the validation set. AUC, area under curve; CI, confidence interval.
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dimensional space and was suitable for handling complex problems.

It had strong generalization ability and could effectively deal with

both nonlinear and linear separable data. However, it was

characterized by high computational complexity and difficulty in

parameter tuning. Additionally, it lacked interpretability compared

to RF and LR. LR was simple, efficient, and interpretable. However,

as a linear classifier, it might not achieve good fitting effects for data

with complex nonlinear relationships between features and targets,

and it was prone to underfitting. Taking into account the size of the

dataset, prediction speed, and prediction performance in both the

training and validation sets, we ultimately decided on the RF model.

Eventually, we developed a model containing 8 metabolites,

including Mevalonate, 1,2-Ethanedithiol, 4alpha-Hydroxymethyl-

4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol, Arg-Asp-Leu-

Tyr-Ser, Donhexocin, Glu-Cy-Ala, TG(10:0/14:0/a-15:0) [rac], D-

3-Hydroxykynurenine. Some of these substances were well-known,

and others were unfamiliar metabolites that may be easily ignored
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or missed by traditional analytical methods. For example, the

mevalonate pathway involved in mevalonate is one of the

important pathways of cellular metabolism, which has been

reported to regulate adaptive immunity, and confirmed that this

pathway can be used as a new vaccine adjuvant and immunotherapy

drug target (31) . In addit ion, Donhexocin and D-3-

Hydroxykynurenine primarily function in neurodegenerative

diseases and are significant in the process of apoptosis (32, 33). In

contrast, other metabolites have received scant research attention.

We also discovered that eight metabolite biomarkers were poorly

correlated, and none of the substances alone had a good predictive

performance, which was related to the complexity of the tumor

microenvironment (34), and a single biomarker was not sufficient to

make a reliable prediction. Therefore, identifying a set of potential

biomarkers would be more clinically meaningful for predicting the

efficacy of immunotherapy, and kits could be developed based on

this prediction model in the future and applied in practical clinical
FIGURE 7

(A) Risk score triad plot. Patients were divided into low-risk (n = 40) and high-risk (n = 39) groups using the median of the risk score as the cutoff
value. (B) Univariate Cox regression analysis of overall survival (OS). (C) Kaplan-Meier OS curves for low-risk and high-risk groups. (D) Kaplan-Meier
progression-free survival (PFS) curves for low-risk and high-risk groups. Patients (n = 79) were divided into low-risk (n = 40) and high-risk (n = 39)
groups according to the median risk score (cutoff = 0.08). (E) Time-dependent receiver operating characteristic (ROC) curve analysis for the
prognostic value of the model for different years. NR, non-response; R, response; ECOG PS, eastern cooperative oncology group performance
status; PD-L1, programmed cell death-ligand 1; TPS, tumor proportion score; AUC, area under the curve.
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practice. Upon constructing the model, we conducted additional

validation. We computed the risk score for each patient and

employed the median risk score as a threshold to categorize them

into high-risk or low-risk cohorts (35). Survival analysis

demonstrated that patients in the high-risk group exhibited

significantly shorter PFS and OS compared to those in the low-

risk group, and Cox regression analysis confirmed that the risk

score served as an independent predictor of outcome. In addition,

this model also has good predictive performance for one-year, two-

year and three-year survival rates of patients. Therefore, the

excellent predictive value of this model was reconfirmed.

Certainly, there were some limitations to our study. First of all,

this study was retrospective, and the sample size was small, being a

single-center study, the results may have some bias, and a larger

sample size multicenter prospective study should be conducted.

Secondly, this study underwent internal validation only, with

external validation being absent. It is possible that future efforts

could further substantiate our findings through validation in an

additional cohort or via basic experiments. Additionally, although

our research indicated potential biomarkers for the combination of

immunotherapy and chemotherapy. it was imperative that further

functional studies be conducted to clarify metabolic mechanisms

and to confirm the correlation between these metabolites and the

progression of the disease.
5 Conclusions

To summarize, our study characterized the metabolic profile of

patients with lung advanced squamous cell carcinoma using

untargeted metabolomics and compared the accuracy of predictive

models for immunotherapy combined with chemotherapy,

constructed using three machine learning algorithms: RF, SVM, and

LR. Among these models, the RF model achieved an AUC of 0.973 on

the training set and 0.944 on the validation set, demonstrating the best

prediction performance. Consequently, we used this method to

construct a predictive model for the efficacy of immunotherapy

combined with chemotherapy, including eight differential

metabolites, which showed high accuracy in both the training

and validation sets. Additionally, based on this model, we

predicted survival outcomes for patients, revealing that survival was

significantly longer in the low-risk group compared to the high-

risk group (HR, 0.280; 95% CI, 0.120-0.640; P=0.003). Our study

highlighted the potential value of leveraging machine learning-driven

metabolomics to predict the effectiveness of chemoimmunotherapy

for advanced lung squamous cell carcinoma, thereby offering a

promising avenue for future clinical translation.
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