
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Sandip K. Wagh,
Sandip University, India

REVIEWED BY

Lin Chen,
Northwest University, China
Luca Ongaro,
Royal Free Hospital, United Kingdom
Haoxian Tang,
First Affiliated Hospital of Shantou University
Medical College, China

*CORRESPONDENCE

Shuchuan Miao

miaoshuchuan0@126.com

†These authors have contributed equally to
this work and share first authorship

RECEIVED 16 December 2024
ACCEPTED 07 April 2025

PUBLISHED 06 May 2025

CITATION

Wang X, Wen P, Gao F, Zhao J and Miao S
(2025) Microbiota-friendly diet ameliorates
hypoalbuminemia in chronic kidney disease:
evidence from NHANES.
Front. Immunol. 16:1546031.
doi: 10.3389/fimmu.2025.1546031

COPYRIGHT

© 2025 Wang, Wen, Gao, Zhao and Miao. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 06 May 2025

DOI 10.3389/fimmu.2025.1546031
Microbiota-friendly diet
ameliorates hypoalbuminemia
in chronic kidney disease:
evidence from NHANES
Xiaoyan Wang1†, Pengfei Wen2†, Fang Gao3, JinXiu Zhao4

and Shuchuan Miao5*

1Department of Clinical Nutrition, The First Affiliated Hospital of Chengdu Medical College, Chengdu,
Sichuan, China, 2Department of Dermatology, West China Hospital, Sichuan University,
Chengdu, China, 3Department of Nephrology, The First Affiliated Hospital of Chengdu Medical
College, Chengdu, Sichuan, China, 4Department of Vascular Surgery, The First Affiliated Hospital of
Chengdu Medical College, Chengdu, Sichuan, China, 5Department of Neurosurgery, Hospital of
Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
Chronic kidney disease (CKD) is a global health issue, affecting approximately 10%

of the population. Hypoalbuminemia, a common complication in advanced CKD,

is associated with poor prognosis. This study aimed to investigate the association

between a microbiota-friendly dietary scoring system (Dietary Index for Gut

Microbiota, DI-GM) and serum albumin levels in patients with CKD. We utilized a

cross-sectional cohort from the NHANES 2007–2018, which included 2,947

CKD patients. Multivariable logistic regression and restricted cubic spline models

were applied to analyze the relationship between DI-GM scores and serum

albumin. Higher DI-GM scores were significantly associated with increased

serum albumin levels (b = 0.18 g/L, 95% CI: 0.07–0.28, p = 0.002).

Furthermore, each 1-point increase in DI-GM score was linked to a 15%

reduction in the odds of hypoalbuminemia (OR: 0.85, 95% CI: 0.74–0.97, p =

0.014). The findings suggest that a high DI-GM diet may have beneficial effects in

managing hypoalbuminemia in CKD patients by modulating gut microbiota

composition and reducing inflammation. This diet pattern could be a

promising dietary intervention for improving clinical outcomes in CKD patients,

especially those at risk for malnutrition and inflammation.
KEYWORDS

CKD, dietary index for gut microbiota, serum albumin, hypoalbuminemia,
dietary pattern
Introduction

Chronic kidney disease (CKD) has emerged as a significant global health issue, affecting

approximately 10% of the population worldwide, with cases spanning early to advanced

stages of the disease, ranging from early to advanced stages of the disease (1, 2).One

common complication in CKD is hypoalbuminemia, characterized by low serum albumin
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levels, which affects about 30% to 50% of patients, especially those

in advanced stages (3). Albumin, the most abundant protein in

blood plasma, plays an essential role in maintaining colloidal

osmotic pressure and antioxidant capacity (4, 5). It also serves as

an indicator of chronic inflammation and protein-energy wasting

(PEW), a condition that poses additional health risks for CKD

patients (6).

The underlying causes of hypoalbuminemia are multifactorial

and complex, often involving reduced protein synthesis, increased

catabolism, oxidative stress, and nutritional deficiencies (7–9).

Research has shown that CKD patients frequently experience

significant shifts in gut microbiota, marked by a reduction in

beneficial bacteria and an increase in pathogenic species (10–14),

contributing to systemic oxidative stress, elevated inflammation (15,

16), and an exacerbation of hypoalbuminemia (4). Furthermore,

dietary modifications in CKD, such as low-protein diets and

restrictions on fruits and vegetables, may further disrupt gut

microbiota (17, 18), perpetuating a vicious cycle of microbial

imbalance and inflammation.

Given these concerns, optimizing gut microbiota composition

has emerged as a potential therapeutic strategy for addressing

hypoalbuminemia in CKD. Dietary management has become

critical in this context. The Dietary Index for Gut Microbiota

(DI-GM) is a novel dietary assessment tool developed to evaluate

diet’s impact on gut health by measuring microbial diversity and

short-chain fatty acid production. This index considers the intake of

14 food items, both beneficial (e.g., fermented dairy products, whole

grains) and detrimental (e.g., red and processed meats).Studies have

positively correlated DI-GM scores with biomarkers indicating gut

microbiota diversity, supporting its validity and applicability (19).

Based on existing literature, we hypothesize that the regulation

of gut microbiota by the Dietary Index (DI-GM) may be associated

with improved serum albumin levels in CKD patients. This study

aims to systematically analyze the association between DI-GM and

serum albumin levels in CKD patients and explore potential

underlying mechanisms. By examining the impact of this dietary

index, we hope to provide new evidence for future gut microbiota-

related interventions in CKD management.
Materials and methods

Participants

This cross-sectional study utilized data from the NHANES from

2007 to 2018, which was approved by the Institutional Review

Board of the National Center for Health Statistics. All participants

provided written informed consent, and the use of de-identified

public data exempted the study from further ethical review. The

study adheres to the Strengthening the Reporting of Observational

Studies in Epidemiology (STROBE) guidelines.

We included NHANES participants aged 18 years and older

(n=36580). Exclusions were applied for participants with missing

values to calculated albumin-to-creatinine ratio (ACR) and

estimated glomerular filtration rate (eGFR) data. Those lacking
Frontiers in Immunology 02
two-day dietary data, missing height or weight data, abnormal

energy intake (<800 or >4000 kcal/day for men; <500 or >3500

kcal/day for women), and individuals with a history of cancer or

dialysis, pregnant and not meeting the diagnostic criteria for CKD,

we also excluded the missing covariate data. The final analytic

cohort consisted of 2947 individuals, representing 19,690,044.94

U.S. CKD adults (Figure 1). Sociodemographic variables, lifestyle

variables, laboratory variables and dietary data were collected.
Definition

CKD classification was based on a urinary albumin-to-

creatinine ratio (≥30 mg/g or 3 mg/mmol) or estimated

glomerular filtration rate (eGFR) <60 mL/min/1.73 m² (20). eGFR

was calculated using the CKD-EPI- creatinine formula. Given that

nutritional interventions typically start at stage G3 (21), we

classified G1(eGFR ≥ 90 mL/min/1.73 m²)-G2(eGFR 60–89 mL/

min/1.73 m²) as early CKD and G3a-G5(G3a: eGFR 45–59 mL/

min/1.73 m², G3b: eGFR 30–44 mL/min/1.73 m², G4: eGFR 15–29

mL/min/1.73 m², G5:eGFR < 15 mL/min/1.73 m²) as advanced

CKD. Hypoalbuminemia is defined as a serum albumin level less

than 38 g/L (6).
FIGURE 1

Study Population and flowchart. #: Diagnosis of chronic kidney
disease (CKD): estimated glomerular filtration rate (eGFR) <60 mL/
min/1.73 m² or urinary albumin-to-creatinine ratio (UACR) ≥30 mg/g.
Complete and reliable dietary intake data for calculating DI-GM.
*Abnormal dietary records: <800 kcal/day or >4000 kcal/day for men;
<500 kcal/day or >3500 kcal/day for women.
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Dietary assessment

Dietary data from NHANES was collected through two 24-hour

recalls, spaced 3–10 days, utilizing the USDA’s Automated

Multiple-Pass Method. These recalls were conducted at MECs

and via telephone, respectively. Standardized tools aided in

portion size estimation. The USDA’s FNDDS was employed to

code all foods and beverages and their amounts (22). The DI-GM

was then constructed using the averaged intake from the two recalls.
DI-GM

To quantify dietary influence on gut microbiota, a scoring

system was developed (19). 14 foods or nutrients were identified

as components of the DI-GM, including fermented dairy, chickpeas,

soybean, whole grains, fiber, cranberries, avocados, broccoli, coffee,

and green tea as beneficial components, and red meat, processed

meat, refined grains, and high-fat diet (≥40% of energy from fat) as

unfavorable components. Each component was scored 0 or 1 based

on sex-specific median intakes, participants who met the criteria for

healthy intake (above the sex-specific median for beneficial

components, or below for unfavorable components) received a

score of 1. Those who did not meet these criteria received a 0.

The aggregate of these scores produced the DI-GM score, a measure

from 0 to 14, where higher values correlate with enhanced gut

microbiota health (Supplementary Table S1).

In this study, we divided DI-GM into tertiles based on score

ranges: the first tertile, T1(DI-GM scores 0-3, n=600), the second

tertile, T2 (DI-GM scores 4-5, n=1331), and the third tertile, T3

(DI-GM scores 6-10, n=1061).
Covariates

Covariates were selected based on existing literature and clinical

judgment. Binary logistic regression was used to identify

confounders that altered the initial coefficients by more 10%.

Multicollinearity was assessed with the variance inflation factor

(VIF), with VIF values ≥5 indicating multicollinearity. The final

covariates included age, sex, poverty-income ratio (PIR), Education

attainment, marital status, body mass index (BMI), smoking and

drinking status, hyperlipidemia history, eGFR, urinary albumin,

energy intake (kcal/kg/day), and protein intake (g/kg/day),

cardiovascular disease (CVD), hyperlipidemia, hypertension and

diabetes mellitus (DM).
Statistical analyses

Two-day dietary weights, adjusted for the six survey cycles, were

applied to represent the U.S. population aged 18 years and older,

accounting for the complex survey design and non-response bias.

Descriptive statistics were used to summarize baseline

characteristics, nutrient intake, dietary quality, and frailty incidence
Frontiers in Immunology 03
across different survey years. Continuous variables were presented as

mean ± standard error (SE) for normal distributed data, or as median

and interquartile range (IQR) for skewed data, while categorical

variables were reported as frequencies and percentages.

Weighted univariable and multivariable logistic regression models

were employed to assess the association between DI-GM and serum

albumin/hypoalbuminemia across CKD stages, with weighted odds

ratios (ORs) and 95% confidence intervals (CIs) calculated before and

after adjusting for confounders. Three models were developed to

adjusted for (1): age, sex, race (2); age, sex, race, education, marital

status, PIR, BMI, smoking status, drinking status; and (3) adding

hyperlipidemia, CVD, hypertension, DM, eGFR, urinary albumin,

energy, and protein daily intake (adjusted by standard body weight).

A weighted Restricted Cubic Spline (RCS) model with three

knots examined the potential non-linear relationship between DI-

GM and serum albumin, with 1,000 bootstrap replications for

robustness. Subgroup analyses stratified by age, sex, BMI,

smoking, CKD stage, diabetes, energy, and protein intake were

conducted using multivariable logistic regression to calculate ORs

(95% CI). Results were visualized using a forest plot.

We also conducted the further univariable and multivariable

analysis of components’ score in the DI-GM and their association

with serum albumin levels to find the most important details among

the components. We found the unfavorable components score of

refined grains was the most related factor, moreover, we further

explore the association between refined grain intake daily and

serum albumin level with univariable and multivariable logistic

regression analysis.

All analyses used weighted data, with statistical significance was

set at p<0.05. Statistical analyses were conducted using R (v4.4.1)

and Free Statistics software (version 1.9.2; Beijing Free Clinical

Medical Technology Co., Ltd.).
Results

A total of 2,947 participants, representing an estimated 19.60

million adults with CKD in the US, were included (Figure 1, Table 1).

Baseline characteristics of participants are shown in Table 1. The

mean age was 58.21 years, and 40.25% were male. Significant

sociodemographic differences were observed across DI-GM tertiles.

Non-Hispanic Black individuals comprised 18.01% of the lowest

tertile, while Non-Hispanic White individuals accounted for 74.51%

of the highest tertile (P < 0.001). Higher education levels were

associated with the highest tertile, with 63.89% being college-

educated (P <0.001), and the PIR was significantly lower in the

lowest tertile (P < 0.001). Regarding lifestyle factors, smoking

prevalence was highest in the middle tertile (20.05%) and lowest in

the highest tertile (13.47%; P =0.013). For clinical and laboratory

variables, albumin levels were highest in the top tertile (42.21 g/L in

T3; P = 0.001), whereas serum creatinine and uric acid levels were

significantly elevated in the lowest tertile (P = 0.029 and P = 0.015,

respectively). Serum bicarbonate levels were significantly lower in the

lowest tertile (P =0.003). No significant differences in comorbidity

incidence were found among the three tertiles (Table 1).
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TABLE 1 Baseline characteristics of adults with CKD from NHANES 2007-2018.

Variables Overall
Dietary Index for Gut Microbiota

P value
T1[0-3] T2[4-5] T3[6-10]

Unweighted Number 2947 600 1331 1016

Weighted Number 19690044.94 3598766.6 8131071.29 7960207.05

Sociodemographic variables

Age (year) 58.21 (16.80) 57.19 (17.33) 58.05 (16.91) 58.82 (16.43) 0.376

Sex (Male) (%) 40.25 42.77 41.23 38.1 0.38

Race (%) <0.001

Mexican American 7.7 7.84 8.83 6.47

Non-Hispanic Black 11.69 18.01 12.69 7.82

Non-Hispanic White 68.98 62.38 66.48 74.51

Other race 11.63 11.77 12 11.19

Marital Status (%) 0.296

Living with partner 61.18 56.33 63.21 61.30

Living alone 38.82 43.67 36.79 38.70

Education (%) <0.001

College 53.52 40.32 49.19 63.89

High School 26.1 32.77 26.83 22.34

Less than high school 20.38 26.9 23.97 13.76

Poverty-Income Ratio 2.79 (1.66) 2.46 (1.59) 2.63 (1.64) 3.09 (1.66) <0.001

Body Mass Index (kg/m2) 30.68 (7.64) 31.56 (8.62) 31.23 (7.64) 29.73 (7.04) 0.005

Lifestyle variables

Smoking (Yes) (%) 16.61 15.79 20.05 13.47 0.013

Drinking (Yes) (%) 66.38 62.69 66.19 68.25 0.275

Clinical variables

Chronic Kidney Disease (CKD) (%) 0.952

Early CKD 56.60 55.68 56.61 57.01

Advanced CKD 43.40 44.32 43.39 42.99

Cardiovascular Disease (Yes) (%) 21.2 20.81 22.01 20.56 0.81

Hypertension (Yes) (%) 64.54 63.81 67.29 62.06 0.25

Hyperlipidemia (Yes) (%) 82.63 85.61 82.75 81.16 0.378

Anemia (Yes) (%) 12.91 16.57 12.72 11.45 0.098

Diabetes Mellitus (Yes) (%) 34.5 38.58 36.03 31.09 0.099

Laboratory variables

Albumin (g/L) 41.86 (3.33) 41.17 (3.56) 41.83 (3.22) 42.21 (3.29) 0.001

Hypoalbuminemia (%) 0.013

Albumin<38(g/L) 7.46 10.88 7.95 5.42

Albumin≥38(g/L) 92.54 89.12 92.05 94.58

Serum Creatinine (umol/L) 91.23 (35.13) 96.38 (40.89) 90.39 (33.32) 89.75 (33.92) 0.029

(Continued)
F
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Dietary data and components of DI-GM

Dietary intake and food group consumption across tertiles of the

Dietary Index for Gut Microbiota (DI-GM) in participants with CKD

are summarized in Table 2. Energy and protein intake did not differ

significantly across tertiles. However, carbohydrate intake increased

progressively from the lowest to the highest tertile (P < 0.001), and

fiber intake was significantly higher in the highest tertile compared

with the other tertiles (P <0.001). Total fat intake and saturated fat

intake were highest in the lowest tertile (P = 0.036 and P =0.044,

respectively). As DI-GM scores increased, the proportion of

individuals with a score of 1 for specific food items also rose (P <

0.01 for all). Scores for all DI-GM components, including avocado,

broccoli, chickpea, coffee, cranberry, fermented dairy, fiber, green tea,

soybean, whole grains, refined grains, processed meat, and fat,

increased significantly across higher DI-GM tertiles (P < 0.001 for all).
Association between total DI-GM, the
components details and serum albumin
levels

Weighted univariable and multivariable analyses showed that

each 1-point increase in DI-GM score was significantly associated

with higher serum albumin levels across all models. In fully adjusted

Model 3, each 1-point increase in DI-GM corresponded to a 0.18 g/

L increase in serum albumin (95% CI, 0.07-0.28; P =0.002). When

analyzed by tertiles, participants in T2 (DI-GM 4-5) and T3 (DI-

GM 6-10) had significantly higher serum albumin levels compared

with T1 (DI-GM 0-3), with the most pronounced increase in T3 at

0.82 g/L in Model 3 (95% CI, 0.32-1.33; P = 0.002) (Table 3).
Frontiers in Immunology 05
For hypoalbuminemia (serum albumin < 38 g/L), weighted

univariable and multivariable analyses indicated that each 1-point

increase in DI-GM score was associated with a significant

reduction in the odds of hypoalbuminemia across all models. In

Model 3, each 1-point increase in DI-GM was associated with a

15% reduction in odds (OR, 0.85; 95% CI, 0.74-0.97; P = 0.014).

Categorically, participants in T3 showed the strongest inverse

association with hypoalbuminemia, with a 49% reduction in odds

compared with T1 in Model 3 (OR, 0.51; 95% CI, 0.29-0.91; P

=0.024) (Table 4).

The association between individual dietary components of the

DI-GM and serum albumin levels showed, in the crude model, a

score of 1 for refined grain intake was associated with a 0.56 g/L

increase in serum albumin (b = 0.56, 95% CI: 0.13, 0.98, p = 0.01).

This association remained significant in the adjusted model, with a

0.41 g/L increase in serum albumin (b = 0.41, 95% CI: 0.02, 0.80, p =

0.041). Regarding other components, in the crude model, only the

intake of whole grains above the sex-specific median (i.e., a score of

1) was associated with a 0.51 g/L increase in serum albumin (b =

0.51, 95% CI: 0.02, 1.01, p = 0.042). However, in the adjusted model,

this association was no longer significant (b = 0.41, 95% CI: -0.04,

0.85, p = 0.072). (Supplementary Table S2).
Association between score of refined grain,
refined grain intake and serum albumin
levels

A nuanced association between refined grain intake and serum

albumin levels in CKD patients. Got the score of refined grains

(score = 1) was positively associated with serum albumin levels
frontiersin.or
TABLE 1 Continued

Variables Overall
Dietary Index for Gut Microbiota

P value
T1[0-3] T2[4-5] T3[6-10]

Laboratory variables

Blood Urea Nitrogen (mmol/L) 6.04 (2.92) 6.32 (3.39) 5.99 (2.96) 5.97 (2.62) 0.252

eGFR (ml/min/1.73 m2) 76.50 (28.39) 75.24 (29.55) 77.37 (28.79) 76.19 (27.43) 0.572

Urinary Albumin (mg/L) 163.23 (456.98) 193.36 (517.04) 160.71 (384.07) 152.18 (494.85) 0.431

Urinary Creatinine (mg/L) 9770.29 (6468.87) 10438.91 (6133.73) 9965.19 (6566.06) 9268.92 (6483.90) 0.051

Uric Acid (umol/L) 354.56 (99.32) 369.30 (103.65) 356.97 (96.11) 345.45 (99.70) 0.015

Serum Sodium (mmol/L) 139.21 (2.69) 139.24 (2.79) 139.08 (2.77) 139.32 (2.55) 0.342

Serum Potassium (mmol/L) 4.08 (0.41) 4.09 (0.48) 4.06 (0.40) 4.09 (0.39) 0.393

Serum Phosphorus (mmol/L) 1.21 (0.18) 1.19 (0.19) 1.21 (0.18) 1.22 (0.18) 0.079

Serum Iron (umol/L) 14.63 (5.86) 14.36 (6.18) 14.69 (5.86) 14.69 (5.70) 0.802

Serum Calcium (mmol/L) 2.31 (0.10) 2.32 (0.10) 2.31 (0.10) 2.31 (0.10) 0.555

Serum Bicarbonate (mmol/L) 25.04 (2.41) 24.72 (2.52) 24.90 (2.35) 25.32 (2.39) 0.003
Continuous variables: mean ± standard deviation (SD), Categorical variables: frequencies and percentages.
eGFR, estimated glomerular filtration rate.
g
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across all models, with an increase of 0.41 g/L in the fully adjusted

model (95% CI: 0.02, 0.80, p = 0.041). However, when analyzed as a

continuous variable (oz. eq.), increased daily refined grain intake
Frontiers in Immunology 06
was inversely associated with serum albumin levels, with a 0.07 g/L

decrease per ounce equivalent in the fully adjusted model (95% CI:

-0.13, -0.01, p = 0.032) (Table 5).
TABLE 2 Nutrient and food group daily intake across tertiles of the dietary index for gut microbiota in CKD patients.

Variables Overall
Dietary Index for Gut Microbiota

P value
T1[0-3] T2[4-5] T3[6-10]

Unweighted Number 2947 600 1331 1016

Weighted Number 19690044.94 3598766.6 8131071.29 7960207.05

Energy intake (kcal/d) 1884.79 (717.01) 1826.47 (678.38) 1865.93 (754.08) 1930.42 (692.56) 0.221

Energy intake (kcal/kg/d) 31.09 (11.19) 30.35 (10.86) 30.85 (11.77) 31.66 (10.70) 0.387

Protein intake (g/d) 73.82 (33.28) 73.35 (31.25) 72.71 (36.68) 75.17 (30.37) 0.469

Protein intake (g/kg/d) 1.22 (0.52) 1.22 (0.52) 1.20 (0.57) 1.23 (0.48) 0.675

Protein-to-Energy Ratio 0.16 (0.05) 0.17 (0.05) 0.16 (0.05) 0.16 (0.05) 0.194

Carbohydrate (g/d) 223.86 (95.55) 194.09 (92.44) 217.26 (92.98) 244.06 (95.13) <0.001

Carbohydrate-to-Energy Ratio 0.48 (0.11) 0.43 (0.12) 0.48 (0.12) 0.51 (0.10) <0.001

Diet Fiber (g/d) 15.78 (9.22) 10.54 (6.42) 14.08 (8.21) 19.88 (9.53) <0.001

Total Fat (g/d) 73.46 (36.68) 78.75 (36.33) 73.17 (40.60) 71.38 (32.14) 0.036

Total Fat -to-Energy Ratio 0.35 (0.09) 0.39 (0.10) 0.34 (0.09) 0.33 (0.08) <0.001

SFA (g/d) 23.89 (13.19) 25.81 (13.18) 23.95 (13.86) 22.97 (12.39) 0.044

SFA -to-Energy Ratio 0.11 (0.04) 0.13 (0.04) 0.11 (0.04) 0.10 (0.04) <0.001

MUFA (g/d) 26.08 (14.29) 28.94 (14.32) 25.89 (15.82) 24.98 (12.34) 0.002

MUFA -to-Energy Ratio 0.12 (0.04) 0.14 (0.04) 0.12 (0.04) 0.12 (0.04) <0.001

PUFA(g/d) 16.87 (10.30) 16.96 (9.56) 16.67 (11.35) 17.02 (9.45) 0.878

PUFA -to-Energy Ratio 0.08 (0.03) 0.08 (0.04) 0.08 (0.04) 0.08 (0.03) 0.078

Dietary Index for Gut Microbiota 5.07 (1.72) 2.54 (0.66) 4.53 (0.50) 6.76 (0.92) <0.001

Score of avocado = 1 (%) 3.73 0.34 1.81 7.24 <0.001

Score of broccoli = 1 (%) 15.66 4.73 9.89 26.5 <0.001

Score of chickpea = 1 (%) 0.98 0.07 0.3 2.09 0.001

Score of coffee = 1 (%) 39.36 19.66 36.05 51.65 <0.001

Score of cranberry = 1 (%) 8.52 5 5.71 12.99 <0.001

Score of fermented dairy = 1 (%) 45.02 24.49 46.12 53.17 <0.001

Score of fiber = 1 (%) 53.6 18.15 45.99 77.39 <0.001

Score of green tea = 1 (%) 20.35 8.74 17.1 28.92 <0.001

Score of soybean = 1 (%) 23.02 6.08 15.42 38.45 <0.001

Score of whole grains = 1 (%) 30.96 3.89 18.86 55.56 <0.001

Refined grains (oz.eq.) 5.01 (3.36) 5.07 (3.04) 5.20 (3.48) 4.78 (3.35) 0.231

Score of refined grains = 1 (%) 56.65 49.65 53.08 63.45 0.009

Score of processed meat = 1 (%) 74.34 40.54 74.12 89.84 <0.001

Score of fat = 1 (%) 73.45 46.08 73.15 86.14 <0.001
Continuous variables: mean ± standard deviation (SD), Categorical variables: frequencies and percentages.
SFA, Saturated fatty acids; MUFA, Monounsaturated fatty acids; PUFA, Polyunsaturated fatty acids.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1546031
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1546031
Sensitive analysis

We conducted RCS to find the nonlinear relationship between

DI-GM, refined grains consumed and serum albumin level. As the

DI-GM score increases beyond the reference point (DI-GM = 5),

there is a significant increase in serum albumin levels.

A non-linear relationship between refined grains intake and

serum albumin levels (p for non-linearity = 0.013, p for overall =

0.006) was also found. At the reference point of approximately 5.28

oz. eq. of refined grains intake per day, albumin levels remain

relatively stable. However, increasing intake beyond this point is

associated with a decrease in serum albumin levels. (Figure 2).

The positive association between DI-GM and serum albumin

levels was consistent across most subgroups, with stronger effects

observed in males, smokers, individuals with lower BMI, and those

with diabetes. The significant interaction by smoking status suggests

that smoking may modify the relationship between DI-GM and

serum albumin. Refined grains intake is consistently associated with

lower serum albumin levels across most subgroups, with notable

variations in the strength of the association depending on age, BMI,

and sex. (Figure 3).
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Discussion

In this cross-sectional study, we explored the association between

the DI-GM and serum albumin levels in adults with CKD. Our

findings indicate a significant positive association between higher DI-

GM scores and increased serum albumin levels, with a consistent

reduction in the odds of hypoalbuminemia across all models.

Additionally, refined grain intake emerged as a key adverse factor,

showing a negative relationship with serum albumin levels. These

results provide novel insights into the potential role of gut

microbiota-targeted dietary interventions in CKD management.

The presence of hypoalbuminemia indicates a poor prognosis

and worsened clinical outcomes in patients with CKD, cancer, and

infections (23–27), due to its correlation with inflammatory and

catabolic processes. Dysbiosis of the gut microbiota is widely

reported in CKD (28–30) and has been associated with systemic

inflammation, oxidative stress (31–33), and reduced nutrient

absorption by nutritional management and complications control

(34). These factors collectively contribute to hypoalbuminemia and

poor clinical outcomes in CKD patients (35–38). Our study

supports previous findings by demonstrating that a high DI-GM
TABLE 3 Weighted univariable and multivariable analysis of the association between DI-GM and serum albumin levels in CKD patients.

Estimated DI-GM

Serum Albumin Levels (g/L)

Crude Model Model 1 Model 2 Model 3

b(95%CI) P value b(95%CI) P value b(95%CI) P value b(95%CI) P value

DI-GM (Continuous) 0.21(0.08, 0.34) 0.001 0.22(0.10, 0.34) <0.001 0.17(0.06, 0.28) 0.004 0.18(0.07, 0.28) 0.002

DI-GM (Category)

T1[0-3] Reference Reference Reference Reference

T2[4-5] 0.66(0.11,1.20) 0.018 0.65(0.11, 1.20) 0.019 0.65(0.11, 1.19) 0.019 0.64(0.11, 1.17) 0.019

T3[6-10] 1.04(0.49,1.60) <0.001 1.02(0.46, 1.59) <0.001 0.79(0.28, 1.30) 0.003 0.82(0.32, 1.33) 0.002
Model 1: Adjusted for Age, sex and race.
Model 2: Adjusted for Model 1+ PIR+Education+Marital Status +BMI+Smoking status+Drinking status.
Model 3: Adjusted for Model 2 + eGFR+ urinary albumin +Energy intake(kcal/kg/d) +Protein intake(g/kg/d) + cardiovascular disease +Hyperlipidemia+Hypertension+ Diabetes Mellitus.
Unweighted/weighted Number of groups: DI-GM T1[0-3]: 600/3598766.6; DI-GM T2[4-5]: 1331/813071.29; DI-GM T3[6-10]: 1061/7960207; Total number: 2947/19690044.94.
TABLE 4 Weighted univariable and multivariable analysis of the association between DI-GM and hypoalbuminemia in CKD patients.

Estimated DI-GM

Hypoalbuminemia (ALB <38g/L)

Crude Model Model 1 Model 2 Model 3

OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value

DI-GM (Continuous) 0.83(0.73, 0.94) 0.003 0.84(0.75, 0.95) 0.007 0.86(0.76, 0.97) 0.018 0.85(0.74, 0.97) 0.014

DI-GM (Category)

T1[0-3] Reference Reference Reference Reference

T2[4-5] 0.71(0.46, 1.10) 0.121 0.72(0.46, 1.14) 0.157 0.74(0.47, 1.16) 0.182 0.72(0.45, 1.15) 0.164

T3[6-10] 0.47(0.28, 0.80) 0.006 0.51(0.30, 0.88) 0.016 0.56(0.33, 0.95) 0.032 0.51(0.29, 0.91) 0.024
fr
Model 1:Adjusted for Age, sex and race.
Model 2:Adjusted for Model 1+ PIR+Education+Marital Status +BMI+Smoking status+Drinking status.
Model 3:Adjusted for Model 2 + eGFR+ urinary albumin +Energy intake(kcal/kg/d) +Protein intake(g/kg/d) + cardiovascular disease +Hyperlipidemia+Hypertension+ Diabetes Mellitus.
Unweighted/weighted Number of groups: DI-GM T1[0-3]: 600/3598766.6; DI-GM T2[4-5]: 1331/813071.29; DI-GM T3[6-10]: 1061/7960207; Total number: 2947/19690044.94.
Weighted number of events: Total event: 1468877.35, DI-GM T1[0-3]: 391545.81, DI-GM T2[4-5]: 646420.17, DI-GM T3[6-10]: 431443.
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diet, rich in fiber, whole grains, and plant-based foods, is associated

with improved serum albumin levels. The anti-inflammatory and

alkalizing effects of plant-based diets may help mitigate CKD-

associated acidosis (39, 40) and chronic inflammation (7, 41),

which are critical contributors to hypoalbuminemia.

Among the components of the DI-GM score, refined grains

emerged as a notable factor: a score of 1 for refined grains was

associated with elevated serum albumin levels (crude model:

b=0.56, (95%CI:0.13,0.98); adjusted model: b=0.41, (95%

CI:0.02,0.80)). To confirm the robustness of the association

between a refined grain score of 1 in the DI-GM and serum

albumin, we extended our analysis to investigate daily refined

grain intake as a continuous variable. Intriguingly, increased

refined grain intake was associated with decreased serum albumin

levels. Notably, this inverse association persisted in sensitivity

analyses across crude models (b=-0.06, (95%CI: -0.12, -0.01)) and
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models adjusted for covariates (b=-0.07, (95%CI: -0.13,-0.01)). The
negative association between refined grain intake and serum

albumin levels highlights the potential harm of diets high in

processed carbohydrates. Refined grains may exacerbate gut

microbiota dysbiosis by promoting the growth of pathogenic

bacteria, leading to increased production of uremic toxins and

systemic inflammation. This finding aligns with studies suggesting

that diets with a higher ratio of refined to whole grains are

associated with CKD progression and worse clinical outcomes

(42, 43).

Our findings suggest that the high DI-GM diet alleviates

hypoalbuminemia in CKD patients probably through a multi-target

mechanism involving gut microbiota-derived metabolites, with

significant clinical implications for patient management. At the

molecular level, Lactobacillus enrichment (e.g., L. johnsonii)

enhances indole-3-aldehyde production to antagonize AhR-
TABLE 5 Weighted univariable and multivariable analysis of the association between refined grains and serum albumin levels in CKD patients.

Estimated Refined
grains score
or intake

Serum Albumin Levels (g/L)

Crude Model Model 1 Model 2 Model 3

b(95%CI) P value b(95%CI) P value b(95%CI) P value b(95%CI) P value

Score of Refined grains

0 Reference Reference Reference Reference

1 0.56(0.13,0.98) 0.01 0.66(0.27, 1.06) 0.001 0.52(0.14, 0.89) 0.007 0.41(0.02,0.80) 0.041

Refined grains intake
(oz.eq.) (Continuous)

-0.06(-0.12, -0.01) 0.032 -0.11(-0.17, -0.06) <0.001 -0.09(-0.14, -0.03) 0.002 -0.07(-0.13, -0.01) 0.032
fro
Model 1:Adjusted for Age, sex and race.
Model 2:Adjusted for Model 1+ PIR+Education+Marital Status +BMI+Smoking status+Drinking status.
Model 3:Adjusted for Model 2 + eGFR+ urinary albumin +Energy intake(kcal/kg/d) +Protein intake(g/kg/d) + cardiovascular disease +Hyperlipidemia+Hypertension+ Diabetes Mellitus.
Unweighted/weighted Number of groups: DI-GM T1[0-3]: 600/3598766.6; DI-GM T2[4-5]: 1331/813071.29; DI-GM T3[6-10]: 1061/7960207; Total number: 2947/19690044.94.
FIGURE 2

The Relationship Between Dietary Index for Gut Microbiota (DI-GM) and Refined Grains Intake with Serum Albumin Levels in CKD Patients Using
Restricted Cubic Splines (RCS). DI-GM and Serum Albumin Levels: An RCS analysis revealed a nonlinear relationship (p = 0.004). Serum albumin
levels significantly increase as the DI-GM score exceeds 5. Refined Grain Intake and Serum Albumin Levels: An RCS analysis showed a nonlinear
relationship (p = 0.013). At approximately 5.28 oz. eq. of refined grains per day, albumin levels remain stable. However, intake beyond this point is
associated with a decrease in serum albumin levels.
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mediated renal inflammation and fibrosis (30, 44), while increased

short chain fatty acids (SCFAs) (e.g., butyrate) (45) attenuate oxidative

stress and NF-kB activation via histone deacetylase inhibition and G

protein-coupled receptor109A activation (46). Concurrently, reduced

uremic toxins (indoxyl sulfate) and endotoxins (lipopolysaccharide)

preserve glomerular filtration barrier integrity by suppressing reactive

oxygen species/transforming growth factor- b1 (ROS/TGF-b1)
signaling (46). This mechanistic framework is substantiated by

broader dietary intervention studies: plant-based diets rich in fiber

promote SCFA-producing bacteria (e.g., Roseburia) with anti-

inflammatory properties (13, 47–49), whereas red meat-heavy diets

exacerbate CKD progression by elevating protein fermentation

products (indoxyl sulfate, p-cresyl sulfate) and uremic toxins that

intensify inflammation (50–52), while simultaneously decreasing gut

microbiota diversity (50).

Clinically, high DI-GM diet implementation represents a

practical intervention to improve serum albumin levels, thereby

reducing the risk of complications such as protein-energy wasting

and cardiovascular events. Most notably, our subgroup analyses

revealed that the benefits of this dietary approach were more

pronounced in specific high-risk populations—males, smokers,

and individuals with diabetes (53, 54)—suggesting opportunities

for personalized nutritional strategies. Collectively, these findings

underscore that targeted dietary modulation of gut microbiota

composition and metabolic output constitutes a critical strategy

for mitigating proteinuria and hypoalbuminemia in CKD,

highlighting the importance of promoting microbiota-friendly
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dietary patterns in comprehensive CKD management, particularly

for vulnerable patient subgroups.

Furthermore, the lower DI-GM scores observed in non-

Hispanic Black individuals and those with lower educational

attainment underscore the need for culturally tailored dietary

education and interventions. Addressing socioeconomic and racial

disparities in dietary quality is essential for improving health

outcomes in CKD populations. Culturally appropriate dietary

strategies and accessible nutrition education programs should be

prioritized to ensure equitable health benefits.

Our study also highlights the role of dietary quality over

quantity. Although energy and protein intake did not differ

significantly across DI-GM tertiles, higher-quality diets with

increased fiber and whole grain intake were associated with

improved serum albumin levels. These findings emphasize the

importance of dietary composition and nutrient density in

managing CKD-related complications.

Despite its strengths, including the use of a nationally

representative sample and comprehensive adjustment for

confounders, this study has several limitations. First, the cross-

sectional design precludes causal inferences between DI-GM and

serum albumin levels. Longitudinal studies are needed to confirm

these associations and explore underlying mechanisms. Second,

dietary data were self-reported, which may introduce recall bias or

underreporting, particularly among older adults. Third, while we

adjusted for a wide range of confounders, residual confounding

cannot be entirely ruled out.
FIGURE 3

Subgroup Analysis of the relationship Between Dietary Index for Gut Microbiota (DI-GM), daily refined grain intake (oz.eq.) and Serum Albumin Levels
in CKD Patients (A, B). The positive association between DI-GM and serum albumin levels was consistent across most subgroups, with stronger
effects observed in males, smokers, individuals with lower BMI, and those with diabetes. The significant interaction by smoking status suggests that
smoking may modify the relationship between DI-GM and serum albumin (A). Additionally, refined grain intake is consistently associated with lower
serum albumin levels across most subgroups (B).
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Future research should focus on validating the long-term

effects of DI-GM-based diets on serum albumin levels and other

clinical outcomes in CKD patients. Interventional studies are also

needed to establish causality and assess the feasibility of

implementing DI-GM diets in clinical practice. Additionally,

exploring the molecular mechanisms underlying the observed

associations, such as changes in gut microbiota diversity, SCFA

production, and inflammatory pathways, could provide valuable

insights into the therapeutic potential of gut-targeted

dietary interventions.

In conclusion, a high DI-GM diet may provide a promising

dietary approach for managing hypoalbuminemia in CKD patients

by modulating gut microbiota composition and reducing systemic

inflammation. These findings underscore the importance of

personalized dietary interventions in CKD care and suggest

potential avenues for future research aimed at optimizing dietary

strategies to improve clinical outcomes in this vulnerable

population. By prioritizing microbiota-friendly dietary practices,

clinicians can improve patient outcomes and address the underlying

inflammatory and nutritional challenges associated with CKD.
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