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Integrative single-cell and
spatial transcriptomics analysis
reveals MDK-NCL pathway’s
role in shaping the
immunosuppressive environment
of lung adenocarcinoma
Yu Fu †, Song Li †, Yikang Zhao, Xiran Zhang, Xiaolu Mao
and Ran Xu*

Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
Objectives: The tumor microenvironment (TME) plays a critical role in the

progression of lung adenocarcinoma (LUAD). This study aims to investigate the

cellular composition of the TME in LUAD and assess the role of the MDK-NCL

signaling pathway.

Methods: We employed a multi-omics strategy to investigate LUAD, combining

single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), and bulk

RNA-seq datasets. Publicly available scRNA-seq data and ST data were utilized.

scRNA-seq data underwent quality control, dimensionality reduction, and

clustering to characterize cell populations and identify malignant epithelial

subtypes using the Seurat and inferCNV packages. Spatial transcriptomics data

facilitated the identification of distinct tumor niches, while immune infiltration

and ligand-receptor interactions were analyzed using MCPcounter and Niches.

Experimental validation was performed via real-time PCR and western blotting

on paired LUAD and adjacent normal tissue samples.

Results: scRNA-seq revealed the presence of multiple immune and stromal cell

populations, with malignant epithelial cells being subdivided into six clusters. The

MDK-NCL axis demonstrated high activity in malignant cells, showing strong

interactions with immune and stromal components. Spatial transcriptomics

revealed nine distinct tumor niches, with MDK-NCL signaling notably

upregulated at the tumor-immune interface, highlighting its role in establishing

an immunosuppressive microenvironment. In both the TCGA-LUAD cohort and

in-house cohort, MDK and NCL were significantly upregulated at the mRNA and

protein levels in tumor samples compared to normal tissues. High MDK-NCL

expression in the TCGA-LUAD cohort correlated with increased TMB, MSI, and

reduced immune cell infiltration. Elevated levels of immune checkpoint genes,

including PD-1 and CTLA-4, in patients with high MDK-NCL expression

suggested a potential resistance to immune checkpoint inhibitors. Moreover,

patients with high MDK-NCL expression exhibited poorer survival outcomes,

underscoring the pathway’s role in tumor progression and immune evasion.
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Conclusion: Our findings reveal that LUAD cells use the MDK-NCL signaling

pathway to shape the TME, suppressing immune activity and promoting

malignancy in epithelial cells. This study highlights the MDK-NCL axis as a

potential therapeutic target for LUAD, particularly for patients with high MDK-

NCL expression.
KEYWORDS
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Introduction

Lung adenocarcinoma (LUAD) is the most common subtype of

non-small cell lung cancer (NSCLC), accounting for approximately

40% of lung cancer cases (1). While targeted therapies and

immunotherapies have significantly improved the survival rates of

some LUAD patients, the overall prognosis remains poor. This is

primarily attributed to the tumor’s heterogeneity and the

complexity of its tumor microenvironment (TME) (2). The TME,

which consists of immune cells, stromal cells, extracellular matrix,

and various signaling molecules, plays a critical role in tumor

progression, immune evasion, and therapeutic resistance (3).

Therefore, gaining a deeper understanding of the interactions

between the tumor and its microenvironment is crucial for

uncovering the mechanisms underlying cancer development and

for the development of new therapeutic strategies.

Single-cell RNA sequencing (scRNA-seq) technology offers an

unprecedented level of detail for deciphering the cellular

heterogeneity and dynamic changes within tumors, enabling the

identification of distinct cell types and their specific roles in the

TME (4). In recent years, scRNA-seq has been widely employed in

LUAD research, leading to the discovery of multiple heterogeneous

cell subpopulations, including tumor cells, immune cells, and

stromal cells, further elucidating mechanisms of immune evasion

and the interactions between tumors and their microenvironment

(5, 6). Moreover, the application of spatial transcriptomics has

allowed for a more comprehensive understanding of the spatial

distribution of these cell populations within tumors and their

interactions, providing a more complete view of the TME (7, 8).

Among the many signaling pathways that influence the TME,

the Midkine (MDK)-Nucleolin (NCL) axis has garnered significant

attention in recent years. MDK, a pro-tumor growth factor, is highly

expressed in various types of cancer and has been shown to promote

cell proliferation, migration, and survival (9–11).In LUAD, MDK

expression correlates with poor prognosis, yet its potential role in

modulating immune suppression remains unclear (13). Unlike

TGF-b-mediated immunosuppression, which primarily acts via

Treg activation and myeloid suppression, MDK-NCL signaling

may establish a distinct immunosuppressive niche by interacting

with tumor-associated macrophages (TAMs) and fibroblasts.
02
Research has demonstrated that the MDK-NCL axis facilitates the

formation of an immunosuppressive microenvironment, thereby

promoting immune evasion by tumor cells and contributing to

tumor progression (12). Given these unique properties,

investigating the MDK-NCL axis may reveal novel mechanisms of

immune evasion in LUAD.

In this study, we utilized scRNA-seq and spatial transcriptomics

to deeply analyze the TME in LUAD and further classify malignant

cell populations. We identified that MDK-NCL signaling plays a

critical role in the interactions between maliganant cells and immune

cells, potentially driving immune evasion and reshaping the

microenvironment. Through spatial transcriptomic data, we further

revealed the differential spatial distribution of MDK-NCL signaling

across various tumor niches. Moreover, by integrating bulk RNA-seq

data from the TCGA-LUAD cohort, we investigated the relationship

between MDK-NCL expression, immune cell infiltration, and clinical

outcomes. This study provides new insights into the role of theMDK-

NCL axis in LUAD, particularly regarding its involvement in

microenvironmental remodeling and immune evasion. Our

findings offer a theoretical foundation for considering MDK-NCL

as a potential therapeutic target, with significant implications for

enhancing the efficacy of immunotherapy in clinical settings.
Results

ScRNA-seq and cell type identification of
LUAD

After correcting for batch effects, performing dimensionality

reduction, and clustering, we analyzed several key aspects of the

single-cell data (GSE131907). We visualized sample origins

(Figure 1A), transcript counts (Figure 1B), cell clusters

(Figure 1C), and cell type annotations (Figure 1D). Marker gene

expression patterns, used to identify different cell types, are depicted

in Figure 1E. Specifically, T cells were identified by TRAC,

monocyte-macrophages by LYZ, NK cells by NKG7, epithelial

cells by EPCAM, B cells by CD79A, fibroblasts by COL1A1, mast

cells by MS4A2, endothelial cells by PECAM1, conventional

dendritic cells (cDCs) by CD1C, and plasmacytoid dendritic cells
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(pDCs) by CLEC4C. The proportions of each cell type across

samples are shown in Figure 1F, with the absolute numbers in

Figure 1G, and transcript counts for each cell type detailed in

Figure 1H. The same cell annotation procedure was also performed

on the single-cell validation data GSE153935 (Supplementary

Figure S1A-E).
Malignant cell subpopulations in LUAD and
their characteristics

To infer malignancy within the epithelial cell populations, we

applied inferCNV analysis in GSE131907 and GSE153935
Frontiers in Immunology 03
(Figure 2A & Supplementary Figure S1F). In the GSE131907

dataset, malignant epithelial cells were subsequently extracted for

further dimensionality reduction and clustering, revealing six

distinct malignant cell subpopulations (clusters 0-5, Figure 2B).

Sample distribution across these malignant clusters is illustrated in

Figure 2C, highlighting both intra- and inter-sample heterogeneity

within LUAD tumors.

Using the FindAllMarkers function, we identified cluster-

specific markers for each malignant subpopulation (Figure 2D).

Functional enrichment analysis via ssGSEA using hallmark gene

sets revealed distinct biological pathways across clusters

(Figure 2E). For example, clusters 0 and 1 were enriched in

pathways related to metabolism and mitosis. Univariate Cox
FIGURE 1

Annotation Results of scRNA-seq for LUAD. (A) Sample origin of the single-cell data, 12 samples were identified without batch effect. (B) Transcript
counts in the single-cell dataset. (C) Clustering results of the single-cell data, totally 21 clusters were presented. (D) Cell type annotation based on
marker gene expression, including T cells, monocyte-macrophages, NK cells, epithelial cells, B cells, fibroblasts, mast cells, endothelial cells,
conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). (E) Expression profiles of representative markers for ten distinct cell
types. (F) Proportion of each cell type across samples. (G) Total number of cells for each identified cell type. (H) Transcript counts per cell type,
reflecting transcriptional activity at the single-cell level.
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FIGURE 2

Identification of malignant cell subtypes. (A) inferCNV heatmap displaying copy number variations (CNVs) across cells, with normal samples in the
upper panel and tumor samples in the lower panel. Red and blue indicate CNV gains and losses, respectively. (B) UMAP plot showing clustering of
malignant cells, revealing distinct subpopulations. (C) UMAP plot indicating the patient origin of malignant cells, highlighting inter-sample
heterogeneity. (D) Expression of representative marker genes for each malignant cluster: AGR2 (Cluster 0), S100A2 (Cluster 1), TPP2 (Cluster 2),
SCGB3A2 (Cluster 3), SFTPC (Cluster 4), and S100A9 (Cluster 5). (E) Heatmap of hallmark pathway activities across clusters, with red indicating
upregulation and blue indicating downregulation of pathways, such as hypoxia response and interferon signaling, cluster0 and cluster1 have more
upregulated pathways. (F) Univariate Cox analysis of key marker genes, with hazard ratios, confidence intervals, and P-values showing their
prognostic significance. Red indicates higher risk associations, while green indicates lower risk. (G) CNV scores of different malignant cell subtypes.
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regression survival analysis, based on the top five markers per

cluster, showed that markers from clusters 0, 1, and 5 were

associated with higher risk, while clusters 2, 3, and 4 were more

protective (Figure 2F). Meanwhile, clusters 0, 1, and 5 have higher

CNV scores, suggesting greater genomic instability (Figure 2G).

This suggests that clusters 0, 1, and 5 exhibit more aggressive,

malignant phenotypes.
The result of single-cell communication
analysis

Cell-to-cell communication was analyzed for both GSE131907

and GSE153935 using the CellChat package, which identified

receptor-ligand signaling pathways received (Figure 3A &

Supplementary Figure S2A) and emitted (Figure 3B &

Supplementary Figure S2B) by different cell types. Notably, the

MIF, MK, and CXCL signaling pathways were highly active.

Figure 3C and Supplementary Figure S2C illustrates the overall

communication strength between cell types, while Figure 3D and

Supplementary Figure S2D shows the intensity of signals emitted

and received by each cell type. Malignant cells exhibited the highest

signal emission strength, underscoring their dominant role in

influencing the TME.

Among receptor-ligand pairs, four of the top ten interactions

belonged to the MK pathway, with the MDK-NCL interaction being

the most significant (Supplementary Figure S3 & Supplementary

Figure S4). The strength of MK pathway communication across

different cell types is presented in Figure 3E and Supplementary

Figure S2E, with malignant cells being the primary senders and

receivers of these signals. We further analyzed MDK-NCL

interactions between malignant and immune/stromal cells,

finding significant interaction strengths (Figure 3F &

Supplementary Figure S2F). Malignant cells exhibited extensive

interactions with all immune and stromal cell types through the

MDK-NCL axis. Expression levels of genes involved in the MK

pathway are shown in Figure 3G, with higher expression of MDK in

malignant cells and broad expression of NCL across all cell types.

These findings highlight the critical role of the MDK-NCL

interaction in shaping the TME.
Spatial transcriptomic niche
communication analysis

Following dimensionality reduction and clustering, we

identified nine distinct spatial niches (niche 0-8, Figure 4A).

Based on the expression of key marker genes-MUC1 (tumor

region), LYZ (immune region), COL14A1 (stromal region), and

SFTPC (normal region)—we classified the niches into tumor,

immune-stromal, and normal regions across all spatial

transcriptomic samples (Figures 4B, C, Supplementary Figure S5).

To validate our classification, we performed MCPcounter immune

infiltration analysis (Figure 4D), identifying six distinct cell types-

endothelial cells, fibroblasts, monocytes, T cells, B cells, and
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neutrophils-within the niches. The distribution of these cell types

across the spatial niches is depicted in Figure 4E, showing a clear

d iv i s ion in to tumor , immune-s t roma l , and norma l

epithelial regions.

We then conducted spatial communication analysis to assess

the spatial distribution of MDK-NCL receptor-ligand signaling

across the niches (Figure 4F, Supplementary Figure S5). This

included examining MDK-NCL ligand-receptor binding, NCL

receptor levels, and MDK ligand expression. These spatial

analyses revealed that the MDK-NCL axis plays a significant role

in mediating communication between malignant cells and the

surrounding immune and stromal cells, further contributing to

the spatial organization of the TME.
Pseudotime analysis of single cells

To explore the developmental trajectory of malignant epithelial

cells and the changes in the MK signaling pathway during tumor

progression, we conducted a pseudotime analysis using spatial

transcriptomics data from LUAD. Figures 5A-C illustrate the

differentiation states, cell subtypes, and pseudotime scores

obtained from the analysis. In Figure 5D, pseudotime scores are

visualized using a UMAP dimensionality reduction plot, while a box

plot (Figure 5E) compares the pseudotime scores of different

malignant cell clusters, revealing that clusters 0, 1, and 5 have

higher pseudotime scores. Additionally, the differentiation states of

these clusters are shown in Figure 5F, and the proportion of cells in

each state is presented in Figure 5G, with clusters 0, 1, and 5

primarily occupying differentiation state 6, which is associated with

a more advanced pseudotime score. These findings indicate that

clusters 0, 1, and 5, which are negatively correlated with prognosis,

not only have higher pseudotime scores but also reside in more

differentiated states, suggesting a higher level of tumor progression

and malignancy. Finally, we analyzed the expression trends of MK

pathway genes along the pseudotime trajectory (Figure 5H), which

showed a gradual upregulation of MDK and NCL expression with

increasing pseudotime scores.
The impact of MDK-NCL on the LUAD
immune microenvironment

Using single-cell and spatial transcriptomic analyses, MDK-

NCL communication between tumor cells and other cells was

identified as a critical mechanism in shaping the TME. Analysis

of bulk transcriptomic data from the TCGA-LUAD cohort revealed

that MDK and NCL expression levels were significantly higher in

tumor samples compared to control samples (Figure 6A). Similarly,

GSVA enrichment scores for the MDK-NCL pathway were also

markedly elevated in tumor samples (Figure 6B). Three validation

public cohorts were corresponding to the same results

(Supplementary Figure S6A-C). Consistent with these findings, in

our cohort, the relative mRNA expression levels of MDK and NCL

were significantly higher in tumor tissues than in adjacent normal
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tissues (Figure 6C). Western blot analysis further confirmed that

protein expression levels of MDK and NCL were significantly

upregulated in tumor samples compared to controls (Figures 6D-

F). To explore the impact of MDK and NCL on the immune
Frontiers in Immunology 06
microenvironment, we performed ESTIMATE analysis using the

TCGA-LUAD dataset. The results demonstrated a negative

correlation between MDK and NCL expression levels and

immune-re lated scores , inc luding the ImmuneScore ,
FIGURE 3

Single-cell communication networks. (A) Incoming communication patterns of target cells, showing pathways to which each cell type responds. (B)
Outgoing communication patterns of secreting cells, illustrating the pathways through which cells send signals, MIF, MK and CXCL pathway exhibit
high activity. (C) Network diagram showing the strength of intercellular communication, with connections between various cell types. (D) Scatter
plot comparing outgoing and incoming communication strengths across cell populations, with bubble size indicating the number of interactions,
malignant cells have higher strength of intercellular communication. (E) Chord diagram depicting communication via the MK pathway between
different cell types. (F) Ligand-receptor interaction probabilities within the MK pathway between malignant and other cell types. Dot size represents
significance (P-value), and color represents communication probability highlighting the MDK-NCL signaling pathway. (G) Violin plots of MK pathway
gene expression levels across cell types, showing gene activity variations, MDK has advancer expression level in malignant cells.
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StromalScore, and ESTIMATEScore. Conversely, a positive

correlation was observed between MDK and NCL expression and

TumorPurity (Figures 6G, H). These findings suggest that MDK

and NCL are associated with the development of an

immunosuppressive TME. Further analysis divided tumor

samples into high and low MDK-NCL expression groups based

on the median enrichment score. Immune infiltration analysis

revealed that immune cell scores for various cell types were

significantly lower in the high MDK-NCL expression group

compared to the low-expression group. Patients with high MDK-

NCL expression groups exhibit increased infiltration of regulatory T

cells (Tregs), myeloid-derived suppressor cells (MDSCs), and M2-

like macrophages, which are known to promote immune evasion

and tumor progression. Additionally, the MDK-NCL pathway

suppresses cytotoxic immunity by reducing activated and effector

memory CD8+ T cells while promoting an immunosuppressive

microenvironment through increased Tregs and altering helper T

cell differentiation, facilitating tumor immune evasion. This

supports the conclusion that MDK-NCL activity suppresses

immune cell infiltration and activity, contributing to immune

evasion in LUAD.
Frontiers in Immunology 07
The association of MDK-NCL with
immunotherapy

We observed that the high MDK-NCL expression group

exhibited higher tumor mutation burden (TMB) (Figure 7A) and

microsatellite instability (MSI) scores (Figure 7B), indicating

increased genomic instability. TIDE analysis revealed that the

high MDK-NCL group had lower Dysfunction scores (Figure 7C)

and higher Exclusion scores (Figure 7D), suggesting that although T

cell dysfunction was lower, there was a higher degree of T cell

exhaustion. This supports that MDK-NCL may promote an

immune-resistant TME through T cell exclusion rather than

direct T cell exhaustion, a mechanism distinct from PD-1/PD-L1,

which primarily induces T cell dysfunction at the tumor-immune

interface. Additionally, we analyzed the expression patterns of

immunogenic cell death (ICD)-related genes (Figure 7E), finding

that the high MDK-NCL group had higher expression of several

ICD genes, while toll-like receptors TLR3 and TLR4 showed lower

expression. These findings suggest that MDK-NCL may contribute

to immune evasion by promoting T cell exclusion and

downregulating innate immune sensing, similar to TGF-b.
FIGURE 4

Spatial transcriptomics and MDK-NCL signal communication. (A) Niche clustering in spatial transcriptomics samples, identifying distinct ecological
zones. (B) Spatial expression of representative markers in key regions: MUC1 (tumor region), LYZ (immune region), COL14A1 (stromal region), and
SFTPC (normal region). (C) Violin plots displaying the expression of MUC1, LYZ, COL14A1, and SFTPC across different niches. (D) MCPcounter
analysis showing the infiltration of six cell types (e.g., endothelial cells, fibroblasts, immune lineages) across spatial regions. (E) Spatial niche
classification, distinguishing tumor, immune-stromal, and normal regions. (F) MDK-NCL ligand-receptor interaction analysis, spatially mapping MDK
ligands, NCL receptors, and their binding regions.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1546382
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2025.1546382
Predictions from the TCIA database indicated that the high MDK-

NCL group had fewer patients with dual-negative CTLA4 and PD1

status, as well as fewer patients with PD1 single positivity but more

patients with CTLA4 single positivity (Figure 7F). This suggests that

MDK-NCL may enhance CTLA-4 mediated immune suppression,

potentially influencing the response to anti-CTLA-4 therapy.

Similarly, most of these factors got the same trends in validation

cohorts (Supplementary Figure S6D-F). Finally, we compared the

expression profiles of immune checkpoint-related genes between

the two groups (Figure 7G), revealing that the high MDK-NCL

group had elevated expression of checkpoint genes such as LAG3

and PDCD1, suggesting that these patients may respond more

favorably to immune checkpoint inhibitors. Overall, our findings

suggest that high MDK-NCL expression may predict poor ICI

r e sponse by fo s t e r ing an immune-exc luded tumor

microenvironment. Despite high TMB/MSI, MDK-NCL-high

tumors show low CD8+ T-cell infiltration and increased Tregs/

MDSCs, potentially negating the benefits of increased neoantigens.

This highlights MDK-NCL as a negative predictor of ICI response

and a potential target to enhance ICI efficacy.
Frontiers in Immunology 08
Discussion

In this study, we systematically investigated the role of the

MDK-NCL signaling axis in the TME of LUAD through the

integration of scRNA-seq and spatial transcriptomics. Our

findings shed light on the mechanisms by which the MDK-NCL

pathway contributes to immune suppression and tumor immune

evasion. offering novel insights into the potential of targeting this

axis as a therapeutic strategy. This work deepens our understanding

of TME remodeling in LUAD.

MDK, a pro-tumorigenic growth factor, is highly expressed in

various cancers (10, 14). It exerts its oncogenic effects primarily by

binding to its receptor, Nucleolin (NCL), through which it

modulates various signaling pathways critical for the regulation of

tumor progression and the maintenance of the TME (15, 16).

Through scRNA-seq and spatial transcriptomics, we elucidated

the role of MDK-NCL signaling in LUAD at the cellular level.

Our results indicate that MDK-NCL plays a pivotal role in the

interaction between malignant, immune, and stromal cells,

particularly by fostering an immunosuppressive environment that
FIGURE 5

Single-cell pseudotime analysis. (A) Pseudotime trajectory analysis showing the 6 differentiation states of cells. (B) Subtype classification of malignant
cells along the pseudotime trajectory. (C) Pseudotime scores mapped along the differentiation trajectory. (D) UMAP plot visualizing pseudotime
scores across individual cells. (E) Box plots comparing pseudotime scores across different malignant cell clusters, cluster 0, 1, and 5 had higher
pseudotime scores. (F) UMAP plot of differentiation states, with colors representing distinct states. (G) Stacked bar plots showing the proportion of
differentiation states within each malignant cell cluster, cluster 0, 1, and 5 have larger proportion of state 6. (H) Expression dynamics of MK pathway
genes (e.g., MDK, NCL, ITG genes) along the pseudotime trajectory, highlighting gene expression changes during differentiation, MDK and NCL
express more in the later time.
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FIGURE 6

Association of MDK-NCL with the immune microenvironment. (A) Boxplot shows the expression levels of MDK and NCL genes in tumor and control
groups, it exhibit higher activity in tumor group. (B) MDK-NCL enrichment scores in tumor and control groups. (C) Relative mRNA expression levels
of MDK and NCL in tumor and control groups from in-house data. (D) Relative protein expression levels of MDK and NCL in tumor and control
groups from in-house data. (E) Comparison of MDK protein expression levels between tumor and control groups. (F) Comparison of NCL protein
expression levels between tumor and control groups. (G) Correlation of MDK and NCL expression with ImmuneScore, StromalScore,
ESTIMATEScore, and TumorPurity. (H) Scatter plots depicting the relationship between MDK and NCL expression and immune-related scores
(ImmuneScore, StromalScore, ESTIMATEScore) as well as TumorPurity. (I) Comparison of immune cell infiltration scores across high and low MDK-
NCL expression groups for 28 immune cell types. *P < 0.05, **P < 0.01, ***P < 0.001.
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supports tumor immune evasion. This mechanism is further

supported by its observed spatial heterogeneity across distinct

tumor regions. Spatial transcriptomics revealed that MDK-NCL

signaling activity was markedly elevated at the tumor-immune

interface, a region characterized by high cellular density and

active immune-tumor interactions. This enrichment suggests that

MDK-NCL may serve as a defensive mechanism for tumor cells at

immune hotspots, preventing effective immune cell infiltration and

cytotoxic activity. The differential expression across tumor niches

underscores the biological importance of spatial heterogeneity in

shaping TME architecture and influencing immune evasion

strategies. For example, in low-immune regions, MDK-NCL may

facilitate stromal remodeling, whereas in high-immune regions, it

likely plays a more direct role in immune cell suppression. These

observations align with previous studies emphasizing the role of

spatial heterogeneity in defining TME functions (17).
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Understanding this spatial regulation not only highlights the

complexity of MDK-NCL signaling but also opens avenues for

spatially targeted therapeutic strategies, such as local delivery of

inhibitors to high-activity regions within the TME.

Another important finding of this study is the potential role of

the MDK-NCL axis in immunotherapy. By analyzing TMB andMSI

data from the TCGA-LUAD dataset, we found that patients with

high MDK-NCL expression tend to have higher TMB and MSI

levels, indicating a potential association between MDK-NCL

signaling and genomic instability, which may impact the response

to immune checkpoint inhibitors (ICIs). While high TMB/MSI

tumors are generally considered more immunogenic and respond

better to ICIs, tumors with high MDK-NCL expression exhibit

immune exclusion, despite their increased TMB/MSI levels.

Specifically, we hypothesize that MDK-NCL blockade could

enhance the effectiveness of anti-PD-1/PD-L1 and anti-CTLA-4
FIGURE 7

Association of MDK-NCL with immunotherapy response. (A) Comparison of tumor mutation burden (TMB) between high and low MDK-NCL
expression groups. (B) Comparison of microsatellite instability (MSI) between high and low MDK-NCL groups. (C) Comparison of dysfunction scores
between high and low MDK-NCL groups. (D) Comparison of exclusion scores between high and low MDK-NCL groups. (E) Expression of
immunogenic cell death (ICD)-related genes in high and low MDK-NCL groups. (F) Expression levels of CTLA4 and PD1 in high and low MDK-NCL
groups. (G) Comparison of immune checkpoint gene expression between high and low MDK-NCL expression groups. *P < 0.05, **P < 0.01, ***P
< 0.001.
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therapies by reversing T-cell exclusion and promoting immune cell

infiltration. These findings highlight the potential dual role of

MDK-NCL in influencing ICI responses. On one hand, increased

TMB and MSI levels suggest heightened neoantigen production,

which is typically associated with improved ICI efficacy. On the

other hand, the observed high T-cell exclusion scores in patients

with elevated MDK-NCL expression reflect an immunosuppressive

phenotype, indicating that this axis might hinder the infiltration or

activation of T cells despite a high mutational load. Additionally,

elevated expression of immune checkpoint genes (e.g., PDCD1 and

CTLA-4) in the high MDK-NCL group suggests that this pathway

might promote immune evasion by enhancing the tumor’s

dependence on checkpoint mechanisms. Therefore, targeting

MDK-NCL signaling could potentially synergize with ICIs,

alleviating immune suppression and restoring effective T-cell-

mediated immunity. Moreover, the ability to stratify LUAD

patients based on MDK-NCL expression into groups with distinct

immune profiles and ICI responses could provide valuable insights

for personalized therapy. Negative correlation between MDK-NCL

expression and IFN-g response genes, suggests that MDK-NCL may

suppress IFN-g-mediated antitumor immunity. Additionally, given

the known role of TGF-b in promoting immune exclusion, MDK-

NCL may interact with this pathway to reinforce immune

suppression. For instance, patients with high MDK-NCL

expression may benefit from combination therapies targeting both

MDK-NCL signaling and immune checkpoints, improving

response rates and reducing resistance to treatment. Future

studies should focus on preclinical models to validate this

hypothesis and assess the feasibility of such combination

strategies in LUAD.

Preclinical studies have demonstrated the efficacy of MDK and

NCL inhibitors in cancers such as glioblastoma (18) and pancreatic

cancer (19), where MDK signaling is implicated in tumor progression

and immune suppression. However, their clinical efficacy in LUAD

remains unexplored. Our study highlights the critical role of the MDK-

NCL axis in LUAD immune evasion and tumor progression, providing

a theoretical basis for targeting this pathway as a novel therapeutic

strategy. Our findings indicated that high MDK-NCL expression

correlates with reduced infiltration of antigen-presenting cells

(APCs), such as dendritic cells and MHC class I/II expression levels.

This suggests that MDK-NCL signaling may downregulate antigen

presentation, reducing tumor immunogenicity. However, further

functional studies are required to confirm this hypothesis. The high

expression ofMDK-NCL signaling in LUAD patients is associated with

an unfavorable immune microenvironment and increased immune

exclusion, suggesting that targeting this axis may enhance the efficacy

of existing immunotherapies. Unlike PD-1/PD-L1, which primarily

induces T-cell exhaustion, our data suggest that MDK-NCL drives

immune suppression through T-cell exclusion and stromal remodeling.

Additionally, MDK-NCL-high tumors show increased infiltration of

regulatory T cells (Tregs) and myeloid-derived suppressor cells

(MDSCs), highlighting a distinct mechanism of immune evasion.

Developing MDK-NCL pathway inhibitors holds promise as a novel

treatment option for refractory LUAD, particularly for patients

unresponsive to conventional immunotherapy.
Frontiers in Immunology 11
Despite these significant findings, our study has several

limitations. Although we integrated multi-omics data to explore

the role of MDK-NCL signaling in LUAD and conducted

preliminary experimental validation, further mechanistic studies

are required, particularly in larger clinical cohorts. Additionally, our

analysis relies heavily on publicly available datasets, which lack

extensive clinical sample support. Prospective clinical studies are

needed to validate our conclusions. Moreover, the development of

MDK-NCL pathway inhibitors should be prioritized and evaluated

in clinical trials. Finally, integrating additional multi-omics

approaches, such as proteomics and metabolomics, could provide

a more comprehensive understanding of the complex regulatory

roles of MDK-NCL signaling in tumor progression and

immune evasion.
Methods

Data acquisition

We downloaded spatial transcriptomics data from a LUAD

patient sample using the 10x Visium technology from the

BioStudies database (20) (https://www.ebi.ac.uk/biostudies/)

(Accession number: E-MTAB-13530, This dataset includes a total

of 40 lung tissue or NSCLC samples. For our analysis, we selected 8

tumor samples from this cohort.

From the Gene Expression Omnibus (GEO) database (21)

(https://www.ncbi.nlm.nih.gov/geo/), we obtained the GSE131907

dataset (22) and GSE153935 dataset (23), which includes scRNA-

seq data generated using the 10x Genomics platform and Drop-seq

platform. GSE131907 dataset comprises 22 single-cell samples,

including 11 primary tumor samples and 11 normal lung tissue

samples, and was used for experimental analysis in this study.

GSE153935 dataset comprises 18 single-cell samples, including 12

primary tumor samples and 6 normal lung tissue samples, and was

used for validation analysis in this study.

We also retrieved bulk gene expression data (TPM) and clinical

information such as patient gender, age, stage, grade, and survival

outcomes from The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/). Additionally, tumor mutation burden

(TMB) and microsatellite instability (MSI) data for LUAD

patients were obtained from cBioPortal (24) (https://

www.cbioportal.org/). Meanwhile, GSE11969 (25) (including 94

LUAD and 5 normal samples), GSE43458 (26) (including 80

LUAD and 30 normal samples), GSE116959 (27) (including 57

LUAD and 11 normal samples) were obtained from GEO database

as well for validation.
Single-cell RNA-seq data processing for
LUAD

We utilized the Seurat package (version 4.3.0) (4) to process and

analyze the scRNA-seq data. Quality control was performed by

filtering out cells with fewer than 200 or more than 8,000 genes,
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those with fewer than 50,000 transcripts, cells with greater than 20%

ribosomal gene content, and cells with more than 3% hemoglobin

gene expression.

Next, SCTransform (28) was applied for normalization and

variance stabilization, followed by the Harmony algorithm (29)

correct batch effects. Principal component analysis (PCA) was

performed, and the first 30 principal components were used for

clustering with the Louvain algorithm (resolution = 0.5) UMAP

embedding was generated using default parameters (n.neighbors =

30) for visualization. Using characteristic gene markers, we

classified the single-cell populations into T cells (CD3D, CD3E,

TRAC), monocyte-macrophages (LYZ, CSF3R), NK cells (NKG7),

epithelial cells (EPCAM), B cells (CD79A, MS4A1), fibroblasts

(COL1A1, FN1), mast cells (MS4A2, TPSB2), endothelial cells

(VWF, PECAM1), cDC cells (CD1C), and pDC cells (CLEC4C).

Finally, we visualized the clinical information, clustering results,

marker gene expression, and cell annotations using UMAP plot to

display the reduced dimensions of the single-cell data.
Identification of benign and malignant
epithelial cells and subtyping of malignant
epithelial cells

To distinguish malignant from benign epithelial cells, we

applied inferCNV analysis (https://github.com/broadinstitute/

inferCNV). We randomly selected 1,000 normal epithelial cells

from control samples and inserted them into the tumor epithelial

cell dataset. The remaining normal epithelial cells served as the

reference. CNVs were inferred based on expression intensity across

genomic regions, using denoise=TRUE and default settings. Cells

displaying significant CNV patterns distinct from normal epithelial

cells were classified as malignant, while those resembling reference

cells were categorized as benign. The CNV scores of epithelial cells

were also utilized to assist in distinguishing between benign and

malignant epithelial cells.

After isolating all malignant cells, we performed further

clustering to categorize them into distinct malignant cell clusters.

Using the Seurat package’s “FindAllMarkers” function, we

identified highly expressed marker genes for each cluster

(log2FoldChange > 1, p value < 0.05). Subsequently, with

hallmark gene sets from the MsigDB database (30), we applied

single-sample gene set enrichment analysis (ssGSEA) via the GSVA

package (31) to explore the biological functional characteristics of

the malignant cell clusters. Additionally, univariate Cox regression

analysis was performed to assess the prognostic significance of

marker genes in each malignant cell cluster.
Cell-cell communication analysis

To explore intercellular communication within the tumor

microenvironment, we used the CellChat package (32). Receptor-

ligand interactions were inferred using the computeCommunProb()

function, with a minimum interaction probability threshold of 0.05
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to filter out weak interactions. Pathway activity scores were

generated using computeCommunProbPathway(), and the

rankNet() function was applied to identify the most active

signaling pathways. Significant interactions were visualized using

netVisual_circle() and netVisual_aggregate(), highlighting key

intercellular communication networks. The MDK-NCL signaling

pathway emerged as a central interaction hub, particularly enriched

in malignant epithelial and stromal cells, and was selected for

further spatial and functional analysis.
Processing of spatial transcriptomics data
for LUAD

The spatial transcriptomics data were generated using the 10x

Genomics Visium platform and processed using the Seurat package

(4). Quality control was performed by removing spots with fewer

than 500 detected genes or over 10% mitochondrial gene expression.

Normalization and variance stabilization were conducted using

SCTransform, followed by PCA for dimensionality reduction. The

top 30 principal components were used for Louvain clustering

(resolution = 0.5). After dimensionality reduction and clustering,

we identified nine distinct spatial niches. Based on the expression of

MUC1 (tumor region), LYZ (immune region), COL14A1 (stromal

region), and SFTPC (normal region), we classified the niches into

tumor, immune-stromal, and normal regions.

We then applied MCPcounter analysis (33) to assess the

infiltration levels of various cell types (including T cells, B cells,

neutrophils, monocytes, fibroblasts, and endothelial cells) in each

spot of the spatial transcriptomics data. This allowed us to map the

spatial distribution of immune infiltration and compare it with the

defined niche regions.

Lastly, using the niches R package (34), we conducted spatial

ligand-receptor interaction analysis, which integrates gene expression

with spatial proximity. Interaction scores were computed for each

ligand-receptor pair between neighboring spots, and only statistically

significant pairs (adjusted p < 0.05) were retained for downstream

analysis. Compared to single-cell analysis, spatial transcriptomics

data incorporates spatial localization, providing more biologically

accurate ligand-receptor interactions.
Pseudotime analysis

Monocle (35) was used to construct pseudotime trajectories.

The “orderCells” function assigned pseudotime values to each cell,

and branching events were analyzed to assess transitions between

malignant cell states. The MK signaling pathway activity was

overlaid on the trajectory to observe its temporal dynamics.
Immune-related analysis of TCGA-LUAD

Using the ESTIMATE package (36), we performed ESTIMATE

analysis to assess the overall tumor immune microenvironment in
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each LUAD sample. This was achieved by calculating tumor purity,

immune score, and stromal score. Additionally, the infiltration

levels of 28 different immune cell types in each sample were

evaluated using ssGSEA, and detail of 28 immune signature genes

were shown in Supplementary Table S1.
Therapy-related analysis of TCGA-LUAD

TMB and MSI are critical factors that influence the interaction

between immune cells and tumor cells during immunotherapy.

Numerous studies have demonstrated their role in predicting

responses to immunotherapy. In this study, we explored the

r e l a t i on sh ip be tween the MDK-NCL pa thway and

immunotherapy by comparing TMB and MSI between groups.

We also conducted TIDE analysis (Tumor Immune Dysfunction

and Exclusion) (37), a widely used method to assess the functional

state of T cells in transcriptomic samples, and obtained two key

metrics , Dysfunction and Exclusion, which reflect T

cell functionality.

In addition, immunogenic cell death (ICD) is another key factor

influencing immunotherapy efficacy. We compared the expression

patterns of ICD-related genes between groups in TCGA and

validation datasets. From the TCIA database (https://www.tcia.at/

home), we retrieved predictions of CTLA4 and PDCD1 expression

levels in TCGA-LUAD patients and conducted comparisons

between the two groups. Lastly, we examined the differential

expression profiles of immune checkpoint-related genes, which

are closely associated with the response to immune checkpoint

inhibitors, between the two groups.
Sample collection

A total of 18 paired LUAD (lung adenocarcinoma) tissues and

corresponding adjacent normal tissues were collected from patients

undergoing surgical resection at Department of Thoracic Surgery,

Shengjing Hospital of China Medical University. All patients

included in the study had not received neoadjuvant therapy prior

to surgery. The study was approved by the Ethics Committee of

Shengjing Hospital, China Medical University (Approval

No. 2024PS1727K).
Real-time quantitative PCR

Total RNA was extracted from tissues using the Trizol reagent

(R401-01, Vazyme, Nanjing, China) following the manufacturer’s

protocol. Complementary DNA (cDNA) was synthesized from the

extracted RNA using the reverse transcription kit (RR047A,

TAKARA, Japan) according to the kit instructions. The relative

expression levels of the target genes were determined using b-actin
as the internal reference gene. Primer sequences for all genes are
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listed in Supplementary Table S2. All target gene expression

analyses were performed in triplicate to ensure reproducibility.
Western blot

LUAD and control tissue samples were homogenized using

ultrasonic disruption and lysed for 30 minutes in RIPA lysis buffer

(BL504A, Biosharp, China) containing PMSF (1:100, BL507A,

Biosharp, China) and a protease inhibitor cocktail (1:50, P1082,

Beyotime, China). Lysates were centrifuged at 12,000 rpm for 20

minutes, and protein concentrations were determined using the BCA

protein assay kit (PC0020, Solarbio, China). Proteins were separated

by SDS-PAGE (10% gel for MDK and 6% gel for NCL) and

transferred onto PVDF membranes (IPVH00010, Millipore, USA).

Membranes were blocked with 5% non-fat milk at room temperature

for 2 hours and incubated overnight at 4°C with primary antibodies.

Afterward, membranes were incubated with secondary antibodies for

2 hours at room temperature. Protein bands were visualized using

enhanced chemiluminescence (ECL) reagent (BMU102, Abbkine,

USA). Primary antibodies included MDK (1:1000, BM4392,

BOSTER, Wuhan, China), NCL (1:1000, A00228-1, BOSTER,

Wuhan, China), and GAPDH (1:1000, Sigma, USA), which was

used as an internal control. The secondary antibody used was BA1039

(BOSTER, Wuhan, China). All protein bands were quantified using

ImageJ software (Rawak Software Inc., Stuttgart, Germany).
Statistical analysis

All data processing and statistical analyses were performed

using R software (version 4.1.1). The Mann-Whitney U test (also

known as the Wilcoxon rank-sum test) was used to evaluate

differences between non-normally distributed variables. Spearman

correlation analysis was employed to calculate correlation

coefficients between non-normally distributed data. A p-value of

less than 0.05 was considered statistically significant.
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SUPPLEMENTARY FIGURE 1

Annotation results of scRNA-seq dataset GSE153935 for LUAD. (A) Sample

origin of the GSE153935. (B) Transcript counts in the GSE153935. (C)
Clustering results of the GSE153935. (D) Cell type annotation based on

marker gene expression. (E) Expression profiles of representative markers

for ten distinct cell types. (F) InferCNV heatmap displaying CNVs across cells,
with normal samples in the upper panel and tumor samples in the lower

panel. Red and blue indicate CNV gains and losses, respectively.

SUPPLEMENTARY FIGURE 2

Single-Cell communication networks for validation dataset. (A) Incoming

communication patterns of target cells, showing pathways to which each

cell type responds. (B) Outgoing communication patterns of secreting cells,
illustrating the pathways through which cells send signals. (C) Network

diagram showing the strength of intercellular communication, with
connections between various cell types. (D) Scatter plot comparing

outgoing and incoming communication strengths across cell populations,
with bubble size indicating the number of interactions. (E) Chord diagram

depicting communication via the MK pathway between different cell types. (F)
Ligand-receptor interaction probabilities within the MK pathway between
malignant and other cell types. Dot size represents significance, and color

represents communication probability. (G) Violin plots of MK pathway gene
expression levels across cell types, showing gene activity variations.

SUPPLEMENTARY FIGURE 3

Contribution of each ligand-receptor pair for GSE131907 dataset.

SUPPLEMENTARY FIGURE 4

Contribution of each ligand-receptor pair for GSE153935 dataset.

SUPPLEMENTARY FIGURE 5

The spatial distribution of MDK-NCL receptor-ligand signaling across

the niches.

SUPPLEMENTARY FIGURE 6

MDK-NCL ligand-receptor interaction analysis, spatially mapping MDK
ligands, NCL receptors, and their binding regions in validation data.
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