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Ankylosing spondylitis (AS), also known as radiographic axial spondyloarthritis (r-

axSpA), is an immune-mediated inflammatory disorder frequently associated

with acute anterior uveitis (AAU). Both conditions share a strong association with

the genetic risk factor, human leukocyte antigen (HLA)-B27. However, the

immunophenotype underlying HLA-B27-associated AS and/or AAU

pathophysiology remains known. Using cellular indexing of transcriptomes and

epitopes (CITE-Seq) in a well-characterized cohort of 25 subjects—including AS

(HLA-B27pos), AS+AAU (HLA-B27pos), AAU (HLA-B27pos), HCs (HLA-B27pos), and

HCs (HLA-B27neg); N = 5/group—we identified transcriptomic differences at the

single-cell level, along with differentially expressed cell surface markers. Our

study elucidates both shared and distinct immune alterations linked to HLA-B27

and disease. Furthermore, we employed sparse decomposition of arrays (SDA)

analysis, an unsupervised machine learning method, to examine the high-

dimensional transcriptional landscape of our data and identify complex and

nonlinear relationships. Our study identified HLA-B27- and disease-specific

transcriptomic differences in AS and AAU. The immune profiles of AS+AAU

closely resembled those of AS, suggesting AS plays a dominant role in immune

dysregulation. SDA analysis further revealed dysregulated B-cell maturation and

activation in AS subjects, whereas AAU subjects exhibited an enrichment of

cytotoxic effector function in T and NK cells. However, both AS and AAU

exhibited myeloid cell activation, a key process in initiating and sustaining

inflammation. Additionally, both AS and AAU subjects showed a dampening in

homeostatic function, i.e., the balance between identifying and actively

eliminating foreign pathogens while preventing an immune response against

self-antigens, suggesting that inflammation may arise from immune

dysregulation. In conclusion, our results highlight overlapping myeloid effector

involvement, along with distinct immunophenotypic responses, such as a

decrease in naive B cells in AS subjects and a reduction in the CD8/NK cell
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population in AAU subjects. These results highlight a distinct set of immune

mediators driving AS and AAU pathogenesis. Future studies incorporating HLA-

B27-negative AS and AAU patients, along with validation of B-cell and myeloid

dysfunction in these diseases, may provide novel biomarkers and

therapeutic targets.
KEYWORDS
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Introduction

Ankylosing spondylitis (AS), or radiographic axial

spondyloarthritis (r-axSpA), is a prevalent form of inflammatory

arthritis that primarily affects the sacroiliac joints and spinal

entheses (1). It is characterized by chronic inflammation, leading

to extensive new bone formation and vertebral fusion, which cause

pain, reduced mobility, and disability (2). Beyond musculoskeletal

involvement, AS often presents with systemic manifestations,

including inflammation of the gut, skin, and eyes, contributing to

significant morbidity and disease burden (3–6). AS frequently

overlaps with acute anterior uveitis (AAU), a condition

characterized by painful red eyes, photophobia, and, in some

cases, decreased visual acuity (7). AAU is the most common

extra-articular manifestation of AS, affecting 20%–50% of AS

subjects (7). Epidemiological data suggest a rising incidence of AS

and associated AAU over the past two decades (8). Therefore,

accurate diagnosis and clinical stratification are crucial for

improving patient outcomes.

Subjects with AS and AAU share a strong genetic risk factor: the

human leukocyte antigen HLA-B27 (9, 10). While approximately 90%

of AS subjects and 60% of AAU subjects carry the HLA-B27 allele, it is

also present in 4%–7% of healthy individuals (11). HLA-B27 enhances

immune protection against various viral pathogens, including HIV

(12) and influenza (13), by restricting viral epitopes and expanding its

role in antigen presentation—both to NK cells via KIRDL1 receptors

(14, 15) and to T cells through atypical pathways (16). However,

despites its antiviral protective effects, gene expression analysis of

peripheral blood mononuclear cells (PBMCs) from AS (17, 18) and

AAU (19, 20) subjects, as well as gut tissues fromHLA-B27 transgenic

rats, has revealed a dysregulated immune response characterized by

an increased inflammatory signature driven by IL-17/23, TNF, and

IFN-g (21). In addition, HLA-B27 has been implicated in gut

microbial dysbiosis observed in AS (22, 23), AAU (24, 25), and

HLA-B27pos healthy controls (HC) (26). Thus, HLA-B27

simultaneously enhances antiviral immunity, alters gut microbe–

host immune response interactions, and predisposes carriers to the

development of AS, AAU, and other spondyloarthritis.

To address the complexity of immune responses in AS and

AAU, it is crucial to analyze immune cells at a resolution that

captures both cellular diversity and functional states. Recent single-
02
cell studies of PBMCs from AS subjects have revealed altered

immunophenotypes compared to healthy controls (HCs) (27–29).

Despite the high co-occurrence of AS with AAU (30), single-cell

immunophenotyping of AAU subjects, both with and without AS,

remains unexplored. Additionally, the effect of the (HLA)-B27 allele

on the immunophenotype in HCs also unknown. While both AS

and AAU are associated with HLA-B27, they may involve distinct

immune mechanisms, reflecting differences in their underlying

pathophysiology. Identifying the specific immunophenotypes

responsible for AS, AAU, or their coexistence (AS+AAU) is

therefore essential. In this study, we employed cellular indexing of

transcriptomes and epitopes by sequencing (CITE-Seq) to

investigate transcriptomic differences at the single-cell level and

assess differentially expressed cell surface markers in HLA-B27pos

AS, AAU, and AS+AAU subjects. To understand the effects of the

disease and the HLA-B27 allele, we compared these groups to HCs

with and without HLA-B27.
Material and methods

Study design and participants

We conducted a prospective cohort study at Oregon Health and

Science University (OHSU), approved by the OHSU Institutional

Review Board. Written informed consent was obtained from all

participants. Subjects diagnosed with AS, AS+AAU, and AAU alone

were recruited from OHSU rheumatology and uveitis clinics (subject

characteristics detailed in Supplementary Table S1). AS diagnoses,

with and without AAU, were confirmed by a rheumatologist (JTR/

AD) based on the modified New York (NY) criteria (31). Given the

limited cohort size, we focused on HLA-B27:05 (referred to as HLA-

B27) subjects with well-characterized disease and radiographic

evidence of bilateral sacroiliitis. AAU diagnoses were confirmed by

an ophthalmologist (ES) at OHSU. Subjects were excluded if they

were under 18 years old or pregnant. Current medications, including

biologics and nonsteroidal anti-inflammatory drugs (NSAIDs), were

documented. To enhance cohort uniformity, AS and AAU subjects

with psoriasis, peripheral arthritis, or inflammatory bowel disease

(IBD) were also excluded. The Bath Ankylosing Spondylitis Disease

Activity Index (BASDAI) was administered to AS, AS+AAU, AAU,
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and HC groups. HCs were recruited via flyers posted throughout

OHSU, with both HLA-B27+ and HLA-B27− individuals included (N

= 5/category). All subjects provided blood samples for PBMC

isolation and genomic DNA extraction for HLA-B typing.

Genomic DNA was extracted and analyzed using the LABType XR

HLA-B SSO typing kit from One Lambda (Thermo Fisher Scientific,

Waltham, MA, USA; RSSOX1B) as described in our previous study

(23). HLA-B27 allele information, following current standard

nomenclature (32), for all HLA-B27 positive and negative subjects

is detailed in Supplementary Table S2.
PBMC isolation, cryopreservation,
and thawing

PBMCs were isolated from collected blood samples using Ficoll–

Paque PLUS density gradient centrifugation (GE Healthcare, CA,

USA) following the manufacturer’s instructions. Briefly, blood was

layered over Ficoll–Paque media and centrifuged to separate the

PBMC layer, which was then resuspended and washed in 40 ml of 1×

PBS. The isolated PBMCs were counted using a TC20 Automated

Cell Counter (Bio-Rad Laboratories, Hercules, CA, USA), and cell

viability was assessed using trypan blue exclusion, with a viability

threshold of > 90% required for further analyses. PBMCs were frozen

using a resuspension buffer and two times freezing media, dispensed

into prechilled cryovials and stored at − 80 C for 4–24 h before being

transferred to liquid nitrogen for long-term storage. Thawing was

performed according to the 10× Genomics, Pleasanton, CA, USA

Single-Cell Protocol (Fresh Frozen Human PBMCs for Single-Cell

RNA Sequencing, CG00039), which outlines cryopreservation and

thawing of human PBMCs. Cryovials were removed from liquid

nitrogen and immediately thawed in a 37°C water bath for 2–3 min.

In a biosafety cabinet, thawed cells were transferred to a 50-ml

conical tube, and 1 ml of warm complete growth medium was added

dropwise with gentle shaking. The cells were serially diluted five

times (1:1), with a 1-min wait between each addition, followed by

centrifugation at 300 rcf for 5 min. The supernatant was removed,

leaving 1 ml of media, to which 9 ml of complete growth media was

added. Cell concentration was assessed using a hemocytometer with

trypan blue staining and an automated cell counter. Two million

cells were transferred into a new 50- ml tube, and 1 ml of 1× PBS

with 0.04% BSA was added five times (1 ml at a time), followed by

centrifugation at 300 rcf for 5 min. Assuming a 50% loss, cells were

resuspended at 12,000 cells/µl and processed for cell surface staining.
Cell surface staining

Cell surface proteins were labeled using BioLegend, San Diego, CA,

USA TotalSeq™-B following the 10× Genomics Cell Surface Protein

Labeling for Single-Cell RNA Sequencing Protocols with Feature

Barcode technology (CG000149). This protocol details antibody-

oligonucleotide conjugation and cell surface protein labeling for use

in single-cell RNA sequencing with Feature Barcode technology.

Thawed PBMCs were resuspended in 50 µl of chilled 1× PBS and

4% BSA, and 5 µl of Human TruStain FcX was added, followed by a
Frontiers in Immunology 03
10-min incubation at 4°C. The antibody mix supernatant was then

added, and the cells were incubated for 30 min at 4°C. Thorough

washing postincubation was critical to obtaining high-quality data.

Cells were washed with 3.5 ml of chilled BSA with 0.04% BSA and

centrifuged at 300 rcf for 5 min. The supernatant was removed, and the

pellet was resuspended in 100 µl of room-temperature PBS. This wash-

step was repeated three times, after which the cells were immediately

processed for 10× Genomics Single-Cell protocols.
Single-cell CITE sequencing

Single-cell transcriptomics (scRNA-Seq) enables detailed

analysis of individual cell gene expression, revealing the

heterogeneity within immune cell populations and how HLA-B27

expression might vary across different cell types.

Single-cell preparation and library construction
Single-cell suspensions for scRNA-Seq were prepared using the

Chromium Single Cell 3′ Library and Gel Bead Kit v3 (10×

Genomics), following the manufacturer’s protocol. This process

encapsulates individual cells into droplets with barcoded beads for

reverse transcription, generating cDNA from mRNA transcripts

present in each cell. The prepared libraries were sequenced on an

Illumina, San Diego, CA, USA NovaSeq platform, targeting a depth

of approximately 50,000 reads per cell.
Computational and bioinformatics analysis
of CITE-Seq data

Count data derivation
Sequencing data per sample were aligned to the human reference

genome Human_GRCh38.p14_Ensembl (GCA_000001405.29) using

the Homo_sapiens.GRCh38.110 genome annotation files (gene

model) with Cell Ranger 6.1.1. These individual count matrices

were pooled to construct a comprehensive dataset encompassing all

samples under study.

Cellular quality control
Initial quality control (QC) and preprocessing of scRNA-Seq

data were performed using the Seurat (33) (v5) R package. Cells

with fewer than 200 or more than 5,000 detected genes, and more

than 20,000 UMIs, were excluded to remove empty droplets or

dying cells. Data were further filtered to exclude cells with high

mitochondrial gene content (> 15%), indicative of apoptotic or

damaged cells. Gene expression (GEX) and protein expression

(CITE) matrices from each run were merged, retaining only cells

with both for downstream analysis. Lastly, all cells across all samples

were pooled to create a final combined object.

Data processing
The combined dataset was normalized using the “LogNormalize”

method in Seurat. Three thousand highly variable genes were

identified using the “FindVariableFeatures” function in Seurat,
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which were then used as input to reduce the dimensionality of the

data prior to principal component analysis (PCA). The ElbowPlot

function was used to determine the number of principal components

(15) to include in clustering analyses.
Unsupervised clustering
Unsupervised graph-based k-nearest neighbors clustering,

using the original Louvain algorithm implemented in Seurat, was

used. The dataset was split by major cell types (i.e., T and natural

killer (TNK) cells, B cells, and myeloid cells) to refine and focus the

downstream analysis.
Classification of major cell-type
and subphenotypes

Using canonical markers (protein and RNA), including CD3,

CD20, CD14, and C1QA, we define broad labels to subset the combo

object into TNK, B, and myeloid cell objects. Each was subsequently

reprocessed, including normalization, scaling, feature selection,

dimensionality reduction, and clustering. This process enabled the

further identification and removal of unexpected doublet clusters. For

example, in the B-cell reprocessed data, where all cells effectively

expressed the B-cell marker CD20, there were distinctly separated

clusters that also expressed CD3 and/or CD14.

To maintain consistency with previous studies that have used

Azimuth (33) to identify immunophenotypes in human PBMC

samples, we used the level 2 (L2) calls from Azimuth as the basis of

our subphenotypes of interest. We then employed our protein-RNA-

based call of major cell types to refine the final results, removing

unexpected doublet clusters that were excluded from downstream

analysis. We confirmed, using protein and RNA markers

(Supplementary Figure S2), that our calls align with the expected

expression patterns described in classical immunological literature.
Contrast differential expression analysis
Differential expression (DE) analysis was conducted across

multiple comparisons. First, to determine the contribution of HLA-

B27 expression to the PBMC immune landscape, we performed DE

analysis by contrasting healthy controls (HC) who were HLA-B27neg

with HLA-B27pos individuals. Initially, comparisons within major cell

types (i.e., bulk analysis of all cells within eachmajor cell type) yielded

very few DE genes. To maximize the power of scRNA-Seq, we

repeated the analysis at the subphenotype level for each major cell

type (Azimuth L2 phenotypes) (34). Next, to assess the contribution

of AS, we performed DE analysis by contrasting AS (HLA-B27pos)

subjects with HC (both with and without HLA-B27), effectively

combining the two directed contrasts. Similarly, to evaluate the

contribution of AAU, we compared AAU subjects with HC (both

with and without HLA-B27). Lastly, to examine subjects with both

AS and AAU, we compared this (AS+AAU) group with those having

either AS or AAU alone. As before, these comparisons were initially

conducted at the bulk level for each major cell type, yielding very few,

if any, DE genes. Given the cellular heterogeneity, overlapping

transcriptional programs, and immune signatures, DE analysis at

the subphenotype level was chosen as the final resolution for

reporting DE genes. For all contrasts, the “FindMarkers” function
Frontiers in Immunology 04
in Seurat (33) was used (with common settings: min.pct = 0.5,

min.diff.pct = 0.1, and logfc.threshold = 0.1). A false discovery rate

(FDR) correction (35) was applied for multiple testing, with an

adjusted p-value of < 0.05 considered significant.
Sparse decomposition of arrays analysis

To extend beyond standard scRNA-Seq analysis—such as cell

type enumeration, differential expression analysis, and gene set

enrichment—an unsupervised machine learning approach was

employed to explore the high-dimensional transcriptional landscape

of our data and identify complex, nonlinear relationships. Previous

studies with similar analytical needs have successfully utilized sparse

decomposition of arrays (SDA) (36) to uncover biological and

pathological signatures (37) using scRNA-Seq data. SDA is a soft-

clustering approach that decomposes a high-dimensional cells-by-

genes expression matrix into two matrices: scores (cells by

components) and loadings (genes by components). Several features

make SDA advantageous over similar algorithms, such as PCA.

Unlike PCA, SDA components are not constrained by orthogonality

or variance reduction. In the loadings matrix, each SDA component

consists of gene loadings that assign weights to genes, centered around

zero. Notably, only a small subset of genes with high absolute

magnitudes—either positively or negatively—serve as drivers for

each component, enhancing interpretability and biological relevance.

For this study, we ran several SDA runs with an increasing

number of components (e.g., 50, 100, 150) on the full PBMC dataset

to ensure a diverse set of components was captured. QC analysis of

the components was performed to remove aberrant scoring or noisy

(e.g., batch effects) components. The remaining components were

then deeply examined relative to cell types, subjects, diseases, and

other metadata. By integrating the knowledge of the top positively

and negatively loaded genes with Gene Ontology (GO) (38)

enrichment analysis, several clinically relevant components were

identified. Additional components provide insights into PBMC

gene expression and cell-type identification but were not

associated with pathology, such as HLA-B27, AS, or AAU, and

are therefore not discussed in detail.
Pathway and functional
enrichment analysis

We utilized the enrichGO function from the clusterProfiler R

package (39) to perform GO enrichment analysis on the top-loaded

genes identified through SDA factor analysis. Each SDA component

includes all the genes in the dataset, weighted (loadings) differently by

their loadings; therefore, the top 100 genes in each direction were

selected to provide a functional overview of the biological mechanisms

captured by each component. The analysis was conducted across

biological process (BP), molecular function (MF), and cellular

component (CC) ontologies, with annotations sourced from the

org.Hs.eg.db database (for human data). Genes were mapped to GO

terms based on their Entrez IDs, and enrichment was assessed using

the hypergeometric test. Multiple testing correction was applied using
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the Benjamini–Hochberg method, with a FDR threshold of 0.05 to

determine significant GO terms. While this approach provided a broad

functional overview of the biological processes associated with each

component, it is inherently constrained by the scope and annotation

biases of existing databases, particularly regarding specific tissues and

conditions of interest. To evaluate other gene sets, such as the DE genes

discussed, we used ShinyGO (40) as a companion tool to our SDA-GO

enrichment approach.
Statistical methods

Differential expression analysis was performed for all described

contrasts using the “FindMarkers” function in Seurat (33), with the

following parameter settings: min.pct = 0.5, min.diff.pct = 0.1, and

logfc.threshold = 0.1. These criteria ensured that only genes

expressed in at least 50% of cells in at least one of the compared

groups, with a minimum expression prevalence difference of 10%,

were included in the analysis. A log2 fold change threshold of 0.1

was chosen to capture subtle but potentially biologically meaningful

changes. Given the dataset’s subdivision into multiple immune cell

subphenotypes, applying a higher threshold risked overlooking

modest yet potentially meaningful differences. To correct for

multiple testing, the FDR was calculated using the Benjamini–

Hochberg method (35), with an adjusted p-value (FDR) < 0.05

considered statistically significant. For functional gene enrichment

analysis of SDA components, the top 100 genes with the highest

positive and negative loadings from each SDA component were

analyzed using the enrichR library (v3.3, ). GO terms and pathway

annotations were evaluated, with a FDR-adjusted p-value threshold

of < 0.05 applied to identify significantly enriched biological

processes, ensuring robust identification of functional signatures.
Validation dataset GSE194315

A previous study (27, 41) on PBMC scRNA-Seq, which

included data from AS, HC, and psoriatic arthritis (PsA) samples

(GSE194315, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE194315), provided processed data and cell type labels.

Similar to our study, this dataset also used Azimuth (33) for cell

type annotation, making it suitable for validation. We reprocessed

these data from raw counts identical to our data, including splitting

them into major lineages (TNK, B, and myeloid cells). Next, we

projected our SDA model, trained on our dataset (computed as the

dot product of the gene loadings matrix and the inverse gene

expression matrix), onto the reprocessed GSE194315 data as a

Seurat object, using our custom code library functions from the

“scCustFx” R package (https://github.com/eisascience/scCustFx).
User manual for BASSAA v0.4

Introduction
The HLA-B27 Ankylosing Spondylitis and Acute Anterior Uveitis

Atlas (BASSAA) (currently in Beta v0.4) is a web application built on
Frontiers in Immunology 05
the Shiny platform to visualize single-cell RNA/CITE sequencing data

from our study. This tool allows users to interactively explore the

dataset. To enhance usability, we have also incorporated PBMC data

from AS and HC donors (GSE194315) alongside our own dataset,

providing validation for our SDA-derived results. The primary

objective of BASSAA is to facilitate the exploration of single-cell

data, allowing researchers to interact with our results and further

investigate complex datasets to generate or test new hypotheses.

Getting started: introducing the GUI
The “Home Page” serves as the landing tab, providing a

summary of how to use and interact with the Shiny App. The

“Main Tab” contains the primary selection tools and visualizations.

Visualization input panel
The visualization input panel determines the starting point of

your analysis. Here, you choose how your data are visualized

and categorized:

1. Data origin.

In the current version, we have integrated a UMAP, which can

be selected to show cells from either our data, GSE194315, or both.

This is the same UMAP shown in the Supplementary Figures of

our manuscript.

2. Metadata selection.

This set of selection buttons enables the visualizations to focus

on/split by specific categories, such as major cell types or

experimental conditions.

Cell selection panel
Analysis can be tailored by filtering the data based on

experimental conditions or cell types.

1. Condition.

One may choose to focus on a specific condition (e.g., “HC

only” for healthy controls) or analyze the entire dataset.

2. Major cell type.

The analysis can concentrate on specific cell types, such as T

cells (TNKs) or B cells.

SDA inputs panel
This panel highlights the SDA components, each representing

the underlying signals derived from scRNA-seq data. Users can

make their selections through a dropdown menu. The components

detailed in the manuscript are presently included in the current

version, with plans to expand and add more components in future

releases SDA Component Search: Input a numerical component ID

to analyze specific biological patterns.

SDA score threshold

Scores are filtered to highlight significant patterns in the data,

with adjustments to this value changing the sensitivity of

visualizations and gene lists.

Gene output controls

The number of genes is specified to highlight the top positively

and negatively loaded genes. Buttons are available to copy or
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download lists of these genes, though this feature currently works

only locally and not on the website.

Example to get an SDA component from a gene
To identify the gene coexpression networks and their associated

roles, enter the gene name in the “Gene Inputs” > “Gene search (text

inputs)” section. For example, by entering the gene name

“TNFRSF13B” and checking the plot named “Gene Expression

(2D)”, the SDA components related to this gene will be displayed.

We observe that “TNFRSF13B” appears in the B-cell defect signature

(SDA 76), which is the first component (in order of significance for the

queried gene, e.g., TNFRSF13B in this case). By entering 76 in the

“SDA component search (numerical)” section, we can generate data for

the coregulated genes, their pathways, enrichment scores, and

additional related information.

SDA components can also be reconstructed using their

numbers in the “SDA component search (numerical)” section,

independent of the gene input.
Results

Clinical characteristics of AS and
AAU subjects

To determine the immunophenotypes from AS, AS+AAU, and

AAU subjects compared to HC, we performed single-cell CITE seq on

PBMCs (N=5/condition) as detailed in Supplementary Methods. To

dissect the effect of disease status and host genetics (HLA-B27), AS and

AAU subjects were compared with HC with and without HLA-B27.

Since AS and AAU are frequently concomitant diseases that overlap in

subjects, we included AS+AAU subjects to determine their overlapping

effect on the immunophenotype. We employed a well-characterized

cohort with all AS subjects having radiographic evidence of bilateral

sacroiliitis and AAU subjects having active eye inflammation at the

time of blood collection. The AS, AAU, and AS+AAU subjects were

age, sex, and body mass index (BMI) matched with all HC (with and

without HLA-B27), except for one comparison in which AS subjects

had significantly higher BMI compared to HLA-B27pos HC (p = 0.037).

AS subjects with AAU had a significantly (p = 0.0044) increased

BASDAI than HC without HLA-B27 (Supplementary Table S1).
Phenotyping and quantifying major cell-
type lineages

Single-cell CITE-Seq of PBMCs from 25 subjects yielded 408,982

cells in total. Following cellular quality control, 86.5% of these cells

were kept, including 245,206 TNK cells, 22,893 B cells, and 85,776

myeloid cells, which were assigned to 19, 4, and 8 transcriptional

subgroups, respectively (Supplementary Table S3; Supplementary

Figures S1A–C). Each of these datasets is represented by a specific

transcriptional landscape consisting of protein-coding, long

noncoding (lnc) RNA genes, and pseudogenes as shown in

previous studies (42–44). Our dataset included a total of 22,846

protein-coding genes, with 20,349 genes in TNK cells, 18,923 genes in
Frontiers in Immunology 06
B cells, and 20,194 protein-coding genes in the myeloid cell subset.

Additional gene types, such as lnc RNA genes and pseudogenes, are

detailed in Supplementary Table S4. To increase reproducibility in

cell-type labeling and align our cell-type labels with those from a

previous publication (27), we used Azimuth (33), which identified 17

distinct phenotypes of TNK cells (including CD4 CTL, CD4 naive,

CD4 proliferating, CD4 circulating memory T cells [TCM], CD4

effector memory T cells [TEM], CD8 naive, CD8 proliferating, CD8

TCM, CD8 TEM, double-negative [dn]T cells, gamma delta [gd]T

cells, innate lymphoid cells [ILCs], mucosal-associated invariant T

[MAIT], natural killer [NK] cells, NK proliferating, NK_CD56bright,

regulatory T cell [Treg]; Supplementary Figure S1A). In B cells, four

phenotypes were identified (Binter, Bmem, Bnaïve, and plasmablasts;

Supplementary Figure S1B), and seven phenotypes were identified in

myeloid cells (AXL+SIGLEC6+ dendritic cells [ASDCs], CD14+

monocytic cells [CD14 Mono], CD16+ monocytic cells [CD16

Mono], type-1 conventional dendritic cells [cDC1], type-2

conventional dendritic cells [cDC2], hematopoietic stem and

progenitor cells [HSPC], and plasmacytoid dendritic cell [pDC];

Supplementary Figure S1C). To verify these cell type labels, we

examined the expression of key cell surface proteins expressed on

these cells (Supplementary Figures S2A–C) and their paired RNA

markers (Supplementary Figures S2D–F) for TNK, B, and myeloid

cells. These three major cell-type lineages define the focus of this

manuscript, as other cell types are either considered debris (e.g.,

erythrocytes) or are rarely detected and not included in the

downstream analysis.
Distinct immune cell reprogramming
toward inflammatory status in HLA-B27-
positive HCs

To investigate whether HLA-B27 expression impacts the

immunophenotype, we compared the transcriptome and cell surface

epitopes of specific immune cell subsets in HC with and without HLA-

B27.Within HC, we had 82,233 cells in the TNK fraction, 6,189 B cells,

and 26,279 myeloid cells, with almost equal representation of distinct

cellular populations from HC with and without HLA-B27 (46.85%

TNK cells, 53.87% B cells, and 43.22% myeloid cells expressed HLA-

B27, Supplementary Table S3). DE analysis of these groups showed

multiple genes with significantly increased or decreased gene

expression (FDR adjusted p-value < 0.05) in HLA-B27pos HC in

comparison with HLA-B27neg HC (Figure 1). Examining all TNK

sub-phenotypes, 66 unique genes were identified to differentiate HLA-

B27pos in comparison with HLA-B27neg HC (Figure 1A). An overall

comparison of TNK cell numbers between HLA-B27pos and HLA-

B27neg HC is shown as a heatmap with increased numbers shown in

orange and decreased cell counts in blue. In context with cellularity,

HLA-B27pos HC was enriched for cytotoxic and effector T cells,

including MAIT and gdT cells, and had depleted levels of naive

CD4/CD8 T cells compared to HLA-B27neg HC (Figure 1B).

Similarly, in B cells we identified 31 unique DE genes (Figure 1C).

From a cellular context, HLA-B27pos individuals have higher levels of

naive and memory B cells and lower levels of intermediate B cells and

plasmablasts compared to the HLA-B27neg individuals (Figure 1D).
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Additionally, in myeloid sub-phenotypes, we identified 58 unique

genes (Figure 1E; Supplementary Table S5); along with increased cell

numbers in CD16+ monocytes and pDCs in HLA-B27pos HC than

HLA-B27neg HC (Figure 1F).
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Pathway analysis of DE genes was performed using Shiny GO

(40), revealing coordinated immune reprogramming across

multiple cellular compartments. In TNK cells, we identified a

distinct cytotoxicity signature characterized by dysregulation of
FIGURE 1

Quantification of the HLA-B27-associated immune landscape in HC. Healthy controls (HC) with and without HLA-B27 (N = 5 per group) were
compared to identify differential immune features. Differential expression analysis was performed for each of the major cell lineages: (A) TNK cells,
(C) B cells, and (E) myeloid cells. Volcano plots illustrate genes with significant differential expression (adjusted p-value < 0.05), with uniquely labeled
genes representing those with the largest log2 fold changes within each subphenotype. Cellular enrichment for subpopulations within (B) TNK cells,
(D) B cells, and (F) myeloid cells was assessed using Chi-squared residuals calculated from observed vs. expected frequencies. The values displayed
in the heatmaps represent Chi-squared residuals of observed vs. expected frequencies for each cell subset under the indicated conditions. Positive
residuals indicate a higher-than-expected frequency (enrichment), while negative residuals indicate a lower-than-expected frequency (depletion).
Heatmaps display the enrichment patterns, with orange indicating enrichment (higher-than-expected frequencies) and blue indicating depletion
(lower-than-expected frequencies). These visualizations summarize significant differences in cellular composition between HLA-B27pos and HLA-
B27neg HC groups.
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cytolytic enzymes (GZMK up, GZMB2, and FGFBP2 down),

coinciding with the observed enrichment of cytotoxic effector

populations. This enhanced cytotoxic profile was accompanied by

upregulation of IL7R, suggesting altered T-cell homeostasis. The

myeloid compartment showed activation of key inflammatory

regulators, with upregulation of AP-1 transcription factor

components (FOSB, JUN) and cytokine signaling molecules

(IL6ST), alongside increased interferon-responsive gene

expression (GBP4). These changes occurred parallel with

expanded CD16+ monocyte and pDC populations, suggesting

enhanced innate immune surveillance in HLA-B27pos individuals.

Notably, we observed changes in cellular stress response pathways

across all major immune populations. Differential expression of

ribosomal proteins (RPS26, RPL36A) and mitochondrial factors

(CMC1) suggests altered protein processing, a finding particularly

relevant given HLA-B27’s known propensity for misfolding (45). In

B cells, the combination of HLA-DRB6 modulation and shifts in

naive/memory versus intermediate/plasmablast populations

indicates altered B-cell maturation and antigen presentation

capacity. Together, these pathway-level changes reveal that HLA-

B27 expression fundamentally alters immune cell programming

HC, either directly or by altering the gut microbiome (26), which

could change cell activation/immune status, thus establishing a

distinctive immunological baseline that may influence susceptibility

to AS and AAU.
AS subjects exhibit altered TNK, B cell, and
myeloid profiles in comparison to HC
independent of HLA-B27 status

To quantify the effect of AS on the immunophenotype, we

compared AS subjects with HC with and without HLA-B27

(Figure 2). AS demonstrated a profound impact on gene

expression, with 100 genes significantly altered compared to

HLA-B27neg HC and an even more substantial effect relative to

HLA-B27pos HC, showing 428 altered genes in TNK subsets

including IL-32, CD52, IL-7R, RPS4Y1, AHNAK, and NEAT1

(Figure 2A; Supplementary Table S5). The significant overlap in

altered gene expression between comparisons with HLA-B27neg and

HLA-B27pos HC emphasized disease-specific effects independent of

HLA-B27 status, i.e., disease over genotype.

Enrichment analysis using Chi-squared analysis was performed

as a high-level measure to compare cellular composition differences

across conditions, independent of the number of cells input from

each donor. With this approach, we found AS-associated immune

programming across multiple immunological lineages. In the TNK

compartment, AS subjects showed enrichment of gdT cells, Tregs,

CD4 central and effector memory, ILCs, and naive T cells, with

concurrent depletion of cytotoxic T cells, MAIT, and NK cells

compared to total HC (Figure 2B, left panel). Importantly, when

controlling for HLA-B27 as a covariate, AS-specific enrichment of

gdT cells, Tregs, and ILCs persisted (Figure 2B, right panel),

indicating these as disease-specific rather than HLA-B27-

dependent changes. The B-cell landscape in AS showed

characteristic alterations, with expansion of naive B cells and
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depletion of memory and intermediate B cells and plasmablasts

compared to total HC (Figure 2D). This was accompanied by

upregulation of genes involved in B-cell development and

function (FCER2, IGHD, IGHM) and immune regulation (HLA-

DRB6, TCL1A) (Figure 2C). Combined, the expansion of naive T

and B cells indicates ongoing immune activation and recruitment of

new immune cells into the response, whereas the increase in gdT
cells and Tregs suggests balancing proinflammatory and anti-

inflammatory responses.

The mye lo id compar tment d i sp layed AS-spec ific

reorganization, characterized by enrichment of CD14 monocytes

and depletion of CD16 monocytes, pDCs, and cDC2 cells compared

to all HCs (Figure 2F, left panel), suggesting a shift toward a

proinflammatory myeloid profile. Notably, while most myeloid

populations showed disease-specific distributions, the depletion of

cDC2 populations was shared between HLA-B27pos AS and HC

when compared to HLA-B27neg HC (Figure 2F, right panel),

suggesting an HLA-B27-associated trait. The AS-specific myeloid

signature included upregulation of genes involved in immune

regulation (CD163, FKBP5, HLA-DRB6), innate immunity

(IFITM3, LGALS2), and metabolic processes (RBP7).

Pathway analysis of DE genes revealed several coordinated

programs across cell types. In TNK cells, alterations in immune

modulators (IL-32, CD52, IL7R), cellular stress responses (CMC1,

H4C3), and regulatory factors (NEAT1) suggest broad

reprogramming of T-cell function. B cells showed modulation of

transcriptional regulation (JUNB, ETS1) and RNA processing

(SF3B1, SNHG7) pathways, while myeloid cells exhibited changes

in immune regulation (FKBP5, HLA-DRB6), cell migration

(CX3CR1), and innate immune function (FCGR3A, CD14,

CD163). These coordinated changes across multiple immune

compartments suggest AS drives systemat ic immune

reprogramming distinct from HLA-B27-associated effects.
AAU subjects exhibit distinctive
transcriptional suppression and immune
cell redistribution with HLA-B27-
dependent and HLA-B27-
independent effects

Since AAU shares a strong association with HLA-B27, we

compared AAU subjects relative to HC (with and without HLA-

B27). A striking feature across multiple immune compartments was

the widespread downregulation of ribosomal proteins. TNK cells

from AAU subjects showed coordinated suppression of multiple

ribosomal components (RPS26, RPS17, RPS4Y1, RPS20, RPS10,

RPL27, RPL17, RPL36A) compared to all HC (Figure 3A;

Supplementary Table S5), suggesting fundamental alterations in

protein synthesis machinery, reflecting a cellular response to stress

or an attempt to modulate immune activation through

translational control.

The TNK compartment revealed distinct cellular redistribution

patterns in AAU. Subjects showed enrichment of CD4 and CD8

CEM and TEM cells, with concurrent depletion of CD4 naive, CD4

cytotoxic, and MAIT cells compared to total HC (Figure 3B, left
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FIGURE 2

Quantification of the immune landscape in AS. Subjects with ankylosing spondylitis (AS) were compared to healthy controls (HC) with and without
HLA-B27. Differential expression analysis was performed for each major cell lineage: (A) TNK cells, (C) B cells, and (E) myeloid cells. Volcano plots
display genes with significant differential expression (FDR-adjusted p-value < 0.05). Comparisons to HLA-B27neg HC are shown on the left, while
comparisons to HLA-B27-positive HC are shown on the right. Genes with the largest log2 fold changes are uniquely labeled in the plots for each
subphenotype. Cellular enrichment for subpopulations within (B) TNK cells, (D) B cells, and (F) myeloid cells was assessed using Chi-squared
residuals, calculated from observed vs. expected frequencies. The values displayed in the heatmaps represent Chi-squared residuals of observed vs.
expected frequencies for each cell subset under the indicated conditions. Positive residuals indicate a higher-than-expected frequency (enrichment),
while negative residuals indicate a lower-than-expected frequency (depletion). Heatmaps illustrate enrichment patterns, with orange indicating
enrichment (higher-than-expected frequencies) and blue indicating depletion (lower-than-expected frequencies). The left panels of the heatmaps
summarize comparisons across all HC, while the right panels focus on comparisons stratified by HLA-B27 status.
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panel). When stratified by HLA-B27 status, AAU subjects

maintained a dominant signature enriched with T effector

memory and central memory cells (Figure 3B, right panel).

Notably, AAU subjects showed decreased numbers of gdT, CD4
cytotoxic T, and MAIT cells compared to HC-B27pos HC, while
Frontiers in Immunology 10
sharing with HC-B27pos HC the depletion of naive and proliferating

NK and T cells relative to HC-B27neg HC (Figure 3B). The

expansion of memory T- and B-cell subsets suggests a heightened

adaptive immune response, potentially due to ongoing antigenic

stimulation in AAU.
FIGURE 3

Quantifying the immune landscape in AAU. Subjects with acute anterior uveitis (AAU) were compared to healthy controls (HC) with and without
HLA-B27. Differential expression analysis was performed for each major cell lineage: (A) TNK cells, (C) B cells, and (E) myeloid cells. Volcano plots
display genes with significant differential expression (FDR-adjusted p-value < 0.05). Comparisons to HLA-B27neg HC are shown on the left, while
comparisons to HLA-B27-positive HC are shown on the right. Genes with the largest log2 fold changes are uniquely labeled in the plots for each
subphenotype. Cellular enrichment for subpopulations within (B) TNK cells, (D) B cells, and (F) myeloid cells was assessed using Chi-squared
residuals, calculated from observed vs. expected frequencies. The values displayed in the heatmaps reflect Chi-squared residuals of observed vs.
expected frequencies for each cell subset under the indicated conditions. Positive residuals indicate a higher-than-expected frequency (enrichment),
while negative residuals indicate a lower-than-expected frequency (depletion). Heatmaps illustrate enrichment patterns, with orange indicating
enrichment (higher-than-expected frequencies) and blue indicating depletion (lower-than-expected frequencies). The left panels of the heatmaps
summarize comparisons across all HC, while the right panels focus on comparisons stratified by HLA-B27 status.
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The B-cell compartment exhibited a similar pattern of

ribosomal protein suppression, along with decreased expression

of CSTB, IFITM3, CHST12, MS4A1, and TOMM2 (Figure 3C).

However, AAU subjects showed a distinctive expansion of

plasmablast, Binter, and Bmem cells compared to all HCs, an effect

primarily driven by comparison with HLA-B27pos HC (Figure 3D).

This suggests active B-cell differentiation despite suppressed protein

synthesis machinery, and the increased plasmablasts further

indicate active antibody production, which may play a role in

disease pathology. Given that AAU associated with AS is episodic

with complete resolution between episodes, the data align with the

hypothesis that an antigen-driven event triggers AAU. A similar

conclusion was reported by Yang et al. (46).

Myeloid populations reinforced the global pattern of ribosomal

protein suppression while showing unique transcriptional features,

including increased expression of TMEM176B and HLA-DRB6

compared to all HC (Figure 3E). Cellular analysis revealed AAU-

specific enrichment of ASDCs, CD14, and CD16 monocytic cells,

with concurrent decreases in dendritic cells compared to all HCs

(Figure 3F, left panel). Interestingly, CD16 monocytic cell patterns

showed HLA-B27-dependent effects, with decreased numbers

driven by comparison to HLA-B27neg HC, while HLA-B27pos HC

showed increased CD16 monocytic cells compared to both AAU

subjects and HLA-B27neg HC (Figure 3F, right panel). This

enrichment of ASDCs and monocytes points toward altered

antigen presentation and innate immune activation.

Pathway analysis of the top contributing transcriptional markers

revealed coordinated programs across immune compartments. In

TNK cells, modulation was observed in cytotoxicity (KLDR1,

GNLY), inflammatory mediators (IL32), and cellular stress

responses (H4C3, SNRPG, MICOS10). B cells exhibited changes

related to protein processing (CSTB), cell surface signaling

(MS4A1), and ribosomal function (RPL17, RPL36A), while

myeloid cells showed alterations in innate immune function

(FCGR3A, CD14), cellular stress responses (IFITM3), and protein

synthesis (RPS17, RPL36A). This coordinated suppression of protein

synthesis machinery across multiple immune cell types and cell-

type-specific alterations in immune programming suggests AAU

drives systematic immune reprogramming distinct from healthy

controls and HLA-B27-associated effects.
AS+AAU subjects reveal disease-specific
immune signatures with predominant AS-
like features

To determine the effect of concomitant AS and AAU on the

immunophenotype, we compared subjects with both conditions (AS

+AAU) toHCwith andwithout HLA-B27 (Supplementary Figure S6).

Initial analysis revealed significant alterations in gene expression

patterns that overlapped with both AS and AAU signatures across

TNK, B, and myeloid cell subsets (Supplementary Figures S6A, C, E).

Notably, subcellular typing demonstrated that TNK and B-cell profiles

in AS+AAU subjects clustered with AS rather than AAU

(Supplementary Figures S6B, D), while myeloid populations showed

clustering among all three disease states (Supplementary Figure S6F).
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A detailed comparative analysis between AS, AAU, and AS+AAU

subjects (Figure 4; Supplementary Table S5) revealed distinct disease-

specific patterns. In the TNK compartment, AS+AAU subjects

showed strong alignment with AS profiles, sharing enrichment of

CD4-naive cells, Tregs, and proliferating NK cells, while both groups

showed decreased CD4 TEM, TCM, and NK cells compared to AAU

subjects (Figure 4B). This AS-like signature was further supported by

differential expression analysis of AS+AAU versus AAU TNK cells,

showing enrichment of cytotoxicity-associated genes (GZMH),

regulatory factors (NEAT1), and cell adhesion molecules (LCP1,

ITGB1, LGALS1).

B-cell populations similarly demonstrated AS-dominant features in

AS+AAU subjects, with shared enrichment of naive B cells and

depletion of intermediate and memory B cells compared to AAU

subjects (Figure 4D). This pattern was accompanied by increased

expression of antigen presentation machinery (HLA-DQA2) and

transcriptional regulation (MED13L). However, the myeloid

compartment revealed a contrasting pattern, with AS+AAU subjects

clustering with AAU rather than AS profiles. Both AAU and AS+AAU

showed increased CD16monocytes with concurrent depletion of CD14

monocytes and CDC1 cells compared to AS subjects (Figure 4F).

Pathway analysis via gene expression overlap revealed distinct

patterns across cellular compartments. In TNK cells, substantial

condition-specific programming was observed, with each disease

state maintaining unique gene signatures and only 10% overlap

across all three conditions (Figure 4G). B cells displayed even

greater disease specificity, with minimal gene expression overlap

(3%) between conditions (Figure 4H). In contrast, myeloid

populations showed a striking dichotomy between AS and AAU

signatures, which was partially resolved in the AS+AAU phenotype

(Figure 4I), indicating distinct myeloid-driven pathogenic

mechanisms in AS versus AAU.

These findings reveal that concomitant AS+AAU presents a

complex immune signature, characterized by AS-dominant features

in adaptive immune compartments (TNK and B cells) while

maintaining AAU-like innate immune programming in myeloid

populations. This suggests that although adaptive immune

responses in AS+AAU primarily follow AS-specific patterns, innate

immune mechanisms may be distinctly regulated in the presence of

AAU, highlighting the complex interplay between these two HLA-

B27-associated conditions. In other words, the divergence between

adaptive and innate immune profiles in AS+AAU subjects suggests

that the coexistence of AS and AAU may involve additive or

synergistic immune mechanisms. Mechanistically, AS-like adaptive

immune signature may drive chronic inflammation, while the AAU-

like innate immune changes could contribute to acute inflammatory

episodes characteristic of uveitis. Understanding the dual immune

signatures may inform personalized therapeutic strategies targeting

both adaptive and innate immune pathways.
Uncovering pathological signatures using
unsupervised machine learning

To identify pathological signatures in our data, we applied the

SDA algorithm, a soft-clustering method that captures
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FIGURE 4

Comparison of AS, AAU, and AAU/AS donors. To complement the previous differential expression analysis at the subphenotype level, we compared
three groups of donors: ankylosing spondylitis (AS), acute anterior uveitis (AAU), and those with both conditions (AS+AAU). Differential expression
analysis was conducted for each major cell lineage: (A) TNK cells, (C) B cells, and (E) myeloid cells. Volcano plots illustrate genes with significant
differential expression (FDR-adjusted p-value < 0.05) for the following comparisons: AS+AAU vs. AAU (left), AS+AAU vs. AS (middle), and AS vs. AAU
(right). Genes with the largest log2 fold changes are uniquely labeled in each plot for clarity. Cellular enrichment of subpopulations within (B) TNK
cells, (D) B cells, and (F) myeloid cells were assessed using Chi-squared residuals, calculated from observed vs. expected frequencies. The values
displayed in the heatmaps reflect Chi-squared residuals of observed vs. expected frequencies for each cell subset under the indicated conditions.
Positive residuals indicate a higher-than-expected frequency (enrichment), while negative residuals indicate a lower-than-expected frequency
(depletion). Heatmaps illustrate these enrichment patterns, with orange indicating enrichment (higher-than-expected frequencies) and blue
indicating depletion (lower-than-expected frequencies) across the AS, AAU, and AS+AAU groups. Venn diagrams (G–I) summarize the overlap and
differences in significantly altered genes between these disease states for (G) TNK cells, (H) B cells, and (I) myeloid cells, highlighting the shared and
distinct transcriptional signatures among the conditions.
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transcriptional signatures as components, providing weights for

genes (loadings) and rankings for cells (scores); see Material and

methods for further details. This section highlights several key

findings from the SDA analysis. However, the complete analysis,

which includes findings that corroborate known biology and disease

pathology described above using our standard analytical approach,

is accessible through our interactive website and R package: B27

Ankylosing Spondylitis and Acute Anterior Uveitis Atlas

(BASSAA), https://eisascience.shinyapps.io/BASSAA/”.
AS and AAU share an imbalance in myeloid
regulation in comparison with HC

One of the SDA components (SDA component 48) identifies a

myeloid activation and metabolic homeostasis signature leading to

myeloid regulation imbalance (MRI). This signature highlights an

immune imbalance with increased activation of dendritic cells and

CD16+ monocytes, along with a decrease in genes required to

maintain the immune cell homeostasis (normal cellular function

of immune cells to maintain a balance between identification and

active elimination of foreign pathogens while preventing response

to self-antigens) in NKT cells. This pattern of gene expression

defines a loss in function in managing appropriate cellular functions

such as mounting an appropriate immune response to stimuli while

maintaining the identity of self (47, 48). The top positive driving

(enriched) genes (TMSB10, FTH1, TMSB4X, CYBA, SERF2,

S100A11, S100A4, S100A6, FTL, EIF1, FAU, ARPC3, CST3,

FCER1G, SH3BGRL3, MYL6, OAZ1, CLIC1, CFD, and TYROBP)

(Figure 5A) are associated with an active immune/inflammatory

response, cytoskeletal organization, and stress management. High

scores indicate cells actively presenting antigens, responding to

immune signals, and maintaining structural integrity (Figure 5B).

This is typical of dendritic cells (DCs) and CD16+ monocytes,

which are crucial in initiating and sustaining immune responses.

The enrichment of these cells in AS and AAU supports the known

pathology of ongoing inflammation and immune activation.

On the other hand, the top negative driving (depleted) genes

(DMXL2, GASK1B, NEAT1, AHNAK, MT-ND4, KMT2C, MED13L,

TLR4, TET2, CD36, TMEM170B, GAS7, RBM47, SPOPL, KDM7A,

TFEC, PLXDC2, TAOK1, MT-ND2, OGFRL1, ZSWIM6, BAZ2B,

MEGF9, and VCAN) reflect metabolic processes, mitochondrial

function, and transcriptional regulation (Figure 5A). These

upregulated/enriched (Figure 5B, left panel) genes belong to

inflammatory pathways like antigen presentation to MHC, antigen

processing and presentation of peptides and polysaccharide antigens,

oxidative phosphorylation, regulation of leukocyte proliferation, and

cytoplasmic translation, while the downregulated/depleted genes

(Figure 5B, right panel) belong to metabolic and regulatory

functions such as regulation of RNA splicing and regulation of

nitric oxide biosynthetic processes(Figure 5B). These results are

observed in dendritic cells and monocytic cells (Figure 5C),

including pDCs, which can produce high levels of interferons, and

ASDCs, which have a high potential for T-cell activation (49). High

scores correspond to cells maintaining homeostasis, managing
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oxidative phosphorylation, and regulating gene expression. This

function and gene signature are typical of CD14+ monocytes,

which are more involved in phagocytosis and metabolic regulation,

with less immediate immune activation. Cells with negative scores

are enriched in healthy controls, indicating that AS and AAU present

a myeloid landscape shifted from the normal metabolic and

regulatory functions of CD14+ monocytes toward an inflammatory

state driven by CD16+ monocytes and DCs (Figures 5D, E). All genes

contributing to the SDA component MRI are detailed in

Supplementary Table S6.
AS and AAU exhibit a differential pDC-
monocyte signature, characterized by
monocyte enrichment and concurrent
depletion of DCs in their PBMCs

Building upon our previous findings, we found another SDA

component (SDA component 65) associated with the activation of

pDCs, which serves as a myeloid cell signature distinguishing DCs

from monocytes. In this component, pDCs exhibited the highest

positive scores, followed by other DC subsets in the positive

direction, while CD14+ and CD16+ monocytes scored negatively.

We found that regardless of the HLA-B27 status, the HCs were

enriched with DCs, whereas AS and AAU were enriched with

monocytes (Supplementary Figure S6F). The top positive weighted

(enriched) genes (CLEC4C, LILRA4, SERPINF1, SCT, PTPRS,

LRRC26, PTCRA, MAP1A, PLD4, DERL3, DNASE1L3, ITM2C,

TPM2, and SMPD3) strongly indicate the presence of DCs,

especially pDCs. In contrast, the negative weighted (depleted)

genes (TMSB4X, TMSB10, TXNIP, PTPRC, KLF2, CD52, COTL1,

FTL, HLA-A, S100A4, CD48, YBX3, FCN1, CFD, SERPINA1, FGL2,

GIMAP4, ACTB, HLA-E, LGALS2, LGALS3, CPVL, AIF1, MNDA,

HLA-B, NEAT1, ZFP36L1, CD14, MT-CO3, and LYZ) indicate a

generalized monocyte signature (Supplementary Figure S8A). All

genes contributing to this SDA component (pDC-monocyte

differential signature [PMDS]) are detailed in Supplementary

Table S6. Their enrichment in AS and AAU suggests an active

inflammatory response in these conditions.

Combined, this component highlights the restriction of pDCs

and ASDCs in AS and AAU, which may contribute to a failure in

regulating the immune response, hindering T-cell regulation, and

leading to chronic inflammation and auto immunity

(Supplementary Figure S8B). This was highlighted by the

upregulation of pathways for immune response-activating

signaling, regulation of response to biotic stimuli, and regulation

of immune effector processes (Supplementary Figure S8B, left

panel) with the downregulation of dendritic cell development

(Supplementary Figure S8B). The increased monocyte-associated

genes and the concomitant decrease of DC-associated genes in AS

and AAU subjects suggest an active inflammatory response

characterized by monocyte enrichment and DC depletion. Further

analysis demonstrated that the positive SDA scores were primarily

driven by DC subtypes—pDCs, conventional dendritic cells type 1

(cDC1), cDC2, and ASDCs—rather than by the disease conditions
frontiersin.org

https://eisascience.shinyapps.io/BASSAA/
https://doi.org/10.3389/fimmu.2025.1546429
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mahyari et al. 10.3389/fimmu.2025.1546429
themselves (Supplementary Figures S8C, D). The deficiency of

pDCs and other DCs in AS and AAU suggests a disruption in the

balance between proinflammatory and regulatory mechanisms

within the immune system, favoring the enrichment of
Frontiers in Immunology 14
proinflammatory myeloid cells such as monocytes and

macrophages (Supplementary Figure S8E). This imbalance may

lead to an unchecked inflammatory response, contributing to the

pathogenesis of AS and AAU.
FIGURE 5

The SDA component (SDA48) associated with myeloid regulation imbalance (MRI) implicates myeloid cell activation and metabolic homeostasis as
underlying factors in both AS and AAU. We performed an SDA analysis and identified a myeloid regulation imbalance (MRI) component—a unique
gene signature that distinguishes inflammatory immune activation (positive) from metabolic and signal regulation (negative). The gene loadings for
this component are shown in (A), sorted by their mapping locations on the human chromosome. The top-weighted genes in positive and negative
directions are shown. The top-loaded genes were used for GO enrichment (see Material and methods), and the results are visualized in (B),
highlighting significant potential matches. In (C), the distribution of these cells within this component is shown, stratified by immune subphenotypes,
while (D) displays the distribution across disease conditions. To quantify the differences in these distributions, we assessed the enrichment of cells
that scored either positively or negatively in (E).
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Distinct B-cell defect signature in
AS subjects

While both AS and AAU were associated with higher immune/

inflammatory pathways (Figure 5), we further explored whether AS

and AAU were immunophenotypically distinct. Indeed, we found

multiple SDAs that differentiated between AS and AAU (Figure 6;

Supplementary Figure S9).

One notable SDA component (SDA component 76), referred to as

B-cell defect signature (BCDS), distinguishes between mature, class-

switched B cells (memory B cells and plasma cells) on the positive side

and naive or early-stage B cells on the negative side (Figure 6A). Higher

positive values (enriched genes) indicate a higher presence of mature B

cells with roles in adaptive immunity through pathways like antigen

receptor-mediated signaling, T-cell receptor signaling, etc.,

characterized by the expression of specific genes (such as

TNFRSF13B, SSPN, LINC01781, IGHG1, IGHA2, AIM2, CPNE5,

IGHG3, COCH, TEX9, IGHA1, COL4A4, BLK, CLECL1P, and

IGHG2). Conversely, on the negative side, the depleted genes

represent naive and early-stage B cells (characterized by genes such

as TCL1A, IGHD, IGHM, FCER2, PCDH9, PLPP5, CD72, IL-4R, and

ACTB), leading to B-cell receptor pathways, antibacterial humoral

response, B-cell activation, etc. (Figure 6B, detailed gene list in

Supplementary Table S6). The upregulated/enriched genes

(Figure 6B, left panel) are associated with immunological pathways

such as antigen receptor-mediated signaling, T-cell receptor signaling,

immune response activating cell surface receptor signaling, T-cell

differentiation, and positive thymic T-cell selection, among others. In

contrast, the downregulated/depleted genes (Figure 6B, right panel) are

involved in pathways related to the dampening of B-cell and immune

functions, including B-cell receptor signaling, antibacterial humoral

response, B-cell activation, immune response activating/regulating

response, and viral processes (Figure 6B).

The full score clearly distinguishes naive B cells as negatively

scored and other B cells and plasmablasts as positive (Figure 6C).

This score identifies a bimodal distribution relative to all conditions

(Figure 6D). Thresholding this score identifies the negatively scored

cells that are enriched in AS, whereas the positive cells are enriched in

AAU and HC, such that AS and AAU show the largest enrichment

differential. AS+AAU aligned with AS (Figures 6D, E), further

confirming our data for a dominant AS signature in these subjects

(Figure 4). This signature suggests a potential mechanism that

involves IL-4R, TCL1A, and CD72 as mediators in signaling

pathways for B-cell development and activation.
Enrichment of TNK cytotoxic module in
AAU and HLA-B27pos HC

In our ongoing exploration of immunophenotypic differences,

we identified an SDA component (SDA component 27) associated

with cytotoxic TNK cells (TCM). The top positive/enriched genes

(such as CCL5, IL-32, GZMH, B2M, ITGB1, S100A4, SH3BGRL3,

and KLRG1) in this component indicate the activity of cytotoxic T

and NK cells (Supplementary Figure S9). These cells play a crucial
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role in the direct elimination of infected or abnormal cells, antigen

presentation, and recruiting other immune cells to sites of

inflammation. Conversely, the top negative/depleted genes (such

as CCR7, LEF1, SELL, IL-6ST, TXK, TCF7, CD7) suggest the

presence of naive and central memory T cells (Supplementary

Figure S9A, detailed gene list in Supplementary Table S6). GO

enrichment analysis of these genes (Supplementary Figure S9B)

revealed that the positively enriched genes are involved in pathways

associated with cytotoxic T cells, such as cell killing, leukocyte-

mediated immunity, mononuclear cell differentiation, T-cell

receptor s ignal ing , and T-ce l l -mediated cytotoxic i ty

(Supplementary Figure S9B, left panel). In contrast, the negative/

depleted genes correspond to metabolic pathways like cytoplasmic

protein translation (Supplementary Figure 9B, right panel).

Although gene expression does not distinguish major differences

between the conditions, the score distribution across the TNK cells, as

part of a finely tuned multigene signature, differentiates naive and

central memory cells (negatively scored) from effector and cytotoxic

TNK cells (positively scored). This signature encapsulates multiple

cell types (Supplementary Figure S9C), but a differential score

distribution is observable across the conditions (Supplementary

Figure S9D). Counting the cells in each condition that score

positive or negative, we observe that the activated cytotoxic

signature is enriched in HLA-B27pos and AAU and depleted in AS

and HLA-B27neg HCs. Conversely, the negative naïve and central

memory cells are enriched in AS and HLA-B27neg HCs and depleted

in HLA-B27pos and AAU (Supplementary Figure S9E).

These findings suggest that individuals expressing the HLA-B27

molecule exhibit higher levels of activated cytotoxic TNK cells,

which could play a role in immune surveillance or predispose them

to inflammatory responses observed in AAU. Interestingly, the

distribution of naive versus activated cytotoxic TNK cells in AS

subjects resembles that of HLA-B27neg HC, indicating a relative

depletion of cytotoxic TNK cells in AS, despite the presence of

HLA-B27. In contrast, AAU subjects resemble HLA-B27pos HC,

with an enrichment of activated cytotoxic TNK cells. Globally, this

differential distribution identified by this component’s score reflects

the distinct immunopathological mechanisms between AS and

AAU. The enrichment of cytotoxic TNK cells in AAU and HLA-

B27pos HC is likely associated with heightened cytotoxic immune

responses, potentially contributing to ocular inflammation

characteristic of AAU. The relative depletion of these cells in AS

suggests alternative pathogenic pathways, possibly involving other

immune cell types or regulatory mechanisms.
SDA components identified were validated
using the published single-cell CITE-
Seq dataset

To ensure the robustness and generalizability of findings in our

SDA analysis, we validated them by using a previously published

dataset (27) on AS subjects and HC. First, by similar reprocessing of

the previously published data followed by integration with our data,

we were able to confirm that both PBMC single-cell CITE-Seq
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1546429
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mahyari et al. 10.3389/fimmu.2025.1546429
FIGURE 6

The SDA component (SDA 76) B-cell defect signature (BCDS) differentiates disease pathogenesis between AS and AAU subjects. This component
features a unique gene signature that distinguishes naive B cells (negative) from memory and intermediate B cells, as well as plasmablasts (positive).
Moreover, this signature identifies AS—but not AAU—as enriched with naive B cells, suggesting potential dysregulation in B-cell maturation and class
switching. The gene loadings for this component are shown in (A), sorted by their mapping locations on the human chromosome. The top-
weighted genes in positive and negative directions are shown. The top-loaded genes were used for GO enrichment (see Material and methods), and
the results are visualized in (B), highlighting significant potential matches. The distribution of these cells, as scored by this component, is displayed in
(C) for immune subphenotypes and in (D) for disease conditions. To quantify the differences in these distributions, we performed an enrichment
assessment of cells that scored either positively or negatively in (E).
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datasets were overlapping in terms of their cell type distributions,

including our classification of TNK, B, and myeloid cell groups

(Figure 7A). Next, we projected all the components from our trained

SDA model onto the published data, which computed cell scores in

this new dataset for each component. Indeed, we found these

components, including those highlighted herein, to have similar

cell distribution patterns across disease categories and associated cell

types, including the myeloid regulation imbalance (MRI; Figure 7B,

also see Figure 5), (Figure 7C (PMDS), also see Supplementary

Figure S8), the B-cell defect signature (Figure 7D (BCDS), also see

Figure 6), and the TNK cytotoxic module (Figure 7E (TCM), also see

Supplementary Figure S9). This validation study strengthens our

conclusions, eliminates a potential small cohort size bias, and

provides a broader understanding of the distinct and shared

pathophysiology underlying AS and AAU.
Discussion

This study entails immunophenotype characterization of

PBMCs from HLA-B27pos AS, AAU, and AS+AAU subjects in

comparison with HC (with and without HLA-B27). To our

knowledge, this is the first study to compare and determine

immunophenotypes for AS and AAU, as well as identify the effect

of HLA-B27, a strong genetic risk factor for AS and AAU (9, 10),

and its effect on HC. Although HLA-B27 in HC is associated with

changes in the gut microbiota, its effect on the host immune

response remains unclear (50). In addition to host genetics, we

identified disease-associated immunophenotypes in both AS and

AAU. Notably, AS+AAU subjects showed a closer phenotypic

resemblance to AS, suggesting a stronger impact of AS on the

immunophenotype. This finding parallels a study comparing gut

microbial dysbiosis, where the gut microbiota of AAU patients with

SpA was found to be more similar to that of SpA-only patients than

to HCs (51). Furthermore, SDA analysis revealed that both share

certain inflammatory pathways, while also exhibiting distinct

immune profiles and pathological signatures, shedding light on

the signatures that may drive the progression of each disease.

Our analysis revealed that HLA-B27 expression in HC

significantly alters the immunophenotype, even in the absence of

disease. HLA-B27pos HC showed enrichment of cytotoxic and

effector T cells, including MAIT cells and gdT cells, along with

increased CD16+ monocytes and pDCs. These changes suggest a

baseline shift toward heightened innate immune surveillance and

cytotoxic potential. While HLA-B27 has previously been linked to

altered gut microbiota composition in HC (26), our findings extend

this knowledge by demonstrating its impact on immune cell

populations. This altered immunological baseline may predispose

HLA-B27pos individuals to inflammatory conditions such as AS

and AAU.

Specifically, we observed alterations in various cellular subsets,

including TNK, B, and myeloid cells in AS subjects. Similar to

previous studies showing a decrease in NK cells (28), we observed

a decrease in NK, NK proliferating, and NK CD56bright cells

compared with all HC. However, when considering HLA-B27,
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these differences were only evident when compared to HLA-B27neg

HC, suggesting that HLA-B27 affects the immunophenotype.

Similarly, a decrease in various NK cell subsets was observed in

AAU, further emphasizing the shared immunopathology between AS

andAAU. AAUwas also associated with the proliferation of CD4 and

CD8 subtypes in the PBMCs, which correlates with an increase in

CD4 and CD8 populations in the aqueous humor and PBMCs in

various types of human uveitis (19) and correlates with a recent study

reporting the expansion of CD8 clones restricted to certain

autoantigens presented by HLA-B27 (52).

Since the microbiota plays an important role in disease

development in both AS (21, 22) and AAU (51), we found that

MAIT cells (CD161hi, Cd69hi, TCR Va 7.2hi) were significantly

decreased in both AS and AAU subjects in comparison with HC.

Similar observations have been reported in AS, IBD, and

autoimmune uveitis (53–55).

Both AS and AAU were associated with common activation of

immune/inflammatory pathways with a concomitant decrease in

cellular metabolic function. In addition, both AS and AAU showed

enrichment of cytotoxic and effector T cells, which overlapped with

HLA-B27+ HC, highlighting the role of HLA-B27 in altered

immunophenotypes. Furthermore, SDA component MRI

identified a myeloid cell-associated signature with genes indicative

of active immune responses, cytoskeletal organization, and stress

management, typical of DCs and CD16+ monocytes. These cells,

essential for initiating and sustaining immune responses, were

enriched in AS and AAU, supporting the known pathology of

ongoing inflammation and immune activation. Conversely, the

negative genes, associated with metabolic and transcriptional

regulation, were more typical of CD14+ monocytes and were

enriched in HC. This shift from CD14+ monocytes to

inflammatory CD16+ monocytes and DCs in AS and AAU

highlights a myeloid landscape geared toward inflammation

rather than homeostasis. These CD14low/CD16+ nonclassical

monocytes are inflammatory in response to TLR stimulation;

however, they express a remarkably high basal level of miR-146a,

a microRNA known to negatively regulate the TLR pathway,

thereby contributing to inflammation (56). Interestingly, this SDA

component revealed TLR4 as the top gene with decreased

expression, further supporting this notion. Furthermore, another

SDA component acts. pDCs highlighted a myeloid cell signature

distinguishing DCs from monocytes. While pDCs and other DC

subsets were enriched in HC, CD14, and CD16 monocytes were

more prevalent in AS and AAU. CD16 monocytes have an

inflammatory role, and their expansion has been associated with

AS, AAU, and other inflammatory diseases (57–59). The pDCs play

an important role in immune regulation and antiviral defense, and

aberrant distribution and function of pDCs in PBMCs and inflamed

synovium of AS subjects is association with unfolded protein

response due to enhanced expression of pDC trafficking

molecules, CCR6 and CCL20 (60). The ASDC has only recently

been identified in humans and exhibits a high capability for T-cell

activation (49). The depletion of DCs in AS and AAU suggests a

failure in properly regulating the immune response, leading to

chronic inflammation and autoimmunity. The imbalance favoring
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FIGURE 7

Validation of SDA components identified in this study using a published dataset. (A) Cross-study UMAP overlap. Single-cell data from our CITE-Seq
study (teal, left panel) and the published AS dataset (orange, left panel) were integrated and visualized using UMAP. The middle panel shows the
cellular subclusters (N = 28), while the right panel presents cellular clustering by broad cell type (e.g., B cells, myeloid cells, TNK cells) across both
datasets. These figures highlight the cellular overlap between our dataset and the published dataset, enabling projection of SDA components
identified in our dataset onto the published dataset. (B–E) Distribution plots and enrichment heatmaps. Each panel represents one of the four sparse
decomposition analysis (SDA) components identified as relevant in our study: (B) myeloid regulation imbalance (MRI), (C) pDC–monocyte differential
signature (PMDS), (D) B-cell defect signature (BCDS), and (E) TNK cytotoxic module (TCM). In each figure (B–E), the left panel displays cell
distribution plots, where the x-axis represents the SDA component “score” for each cell, derived from the underlying gene set. Cells are categorized
as “negative” vs. “positive” based on whether their component score falls below or above zero. Cells with higher scores (to the right) exhibit stronger
expression of the genes driving the SDA component, whereas those with lower scores (toward the left) express those genes at reduced levels. The
colored curves represent the distribution of component scores within different subphenotypes (e.g., cDC1, pDC, CD14 Mono). Peaks shifted to the
right indicate greater expression of the component’s gene set within that subphenotype. Likewise, in each figure (B–E), the right panel displays the
enrichment of these cells in AS vs. HC from the published datasets. These heatmaps illustrate whether AS or HC samples are overrepresented
(enriched) or underrepresented (depleted) among cells with positive vs. negative scores. The numeric scale (e.g., − 3 to + 3) represents standardized
residuals (e.g., c2 residuals or Z-scores). Positive values (red) indicate enrichment, while negative values (blue) indicate depletion of that subset or
condition beyond what is expected by chance. These values were calculated using a Chi-squared test (or a similar enrichment test) by comparing
observed vs. expected cell frequencies in each group. Detailed methods, including significance thresholds and any corrections for multiple
comparisons, are provided in the Material and methods section. Taken together, panels (B–E) confirm that the SDA components identified in our
main dataset are recapitulated in an independent, published AS cohort, highlighting specific immune subsets (e.g., myeloid cells, pDCs, B cells, T/NK
cells) that exhibit disease-associated signature scores in AS vs. HC.
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proinflammatory monocytes over regulatory DCs could result in

inadequate antigen presentation and persistence of autoreactive T

cells, contributing to the pathology of AS and AAU. Taken together,

HLA-B27pos individuals exhibit enhanced cytotoxic and innate

immune responses, including increased activity of NK cells and

CTLs, which may drive excessive inflammation in AS and AAU.

These immune alterations, coupled with HLA-B27 misfolding and

ER stress, promote proinflammatory cytokine production, such as

IL-17 and IL-23, heightening susceptibility to inflammatory

diseases. Even in healthy HLA-B27pos individuals, subclinical

immune changes can predispose them to AS and AAU, with

triggering events such as infections potentially initiating disease.

These overlapping immune responses in AS and AAU as well as

HLA-B27+ HC may play a role in the concomitance of AS and

AAU, especially in the presence of HLA-B27.

In contrast to overlapping immunophenotypes in AS and AAU

subjects, SDA analysis also uncovered distinct pathological

signatures in immune cell populations across HLA-B27pos AS and

AAU, which imply their distinct underlying pathophysiology. SDA

component BCDS identified a B-cell signature, which represented

an enrichment of mature, class-switched B cells associated with

decreased numbers and magnitude of naive or early-stage B cells.

The positive genes, including TNFRSF13B and IGHG1, indicated

Bmature cell functions crucial for adaptive immunity. This signature

revealed that mature B cells were enriched in HC and AAU, whereas

AS subjects exhibited a higher proportion of naive B cells. Increased

levels of naive B cells and decreased levels of differentiated B cells

(plasmablasts and B memory cells) have been previously reported in

AS subjects (61, 62). This impaired maturation may contribute to a

skewed immune profile and chronic inflammation in AS (63).

While B cells are involved in the pathogenesis of autoimmune

diseases through autoantibody production and regulating T-cell

responses via antibody-independent functions, their role in AS and

AAU pathogenesis has been unclear (64, 65). A recent study has

shown aberrant activation of B-cell populations in AS subjects (66).

AAU subjects may have a localized immune response without the

systemic immune dysregulation seen in AS, which may point to the

B-cell difference in AS and AAU pathogenesis despite the common

HLA-B27 association.

In addition, the SDA TCM revealed a signature enriched in

cytotoxic T and NK cells, characterized by genes such as CCL5, IL-32,

GZMH, and KLRG1. These cells are involved in direct cytotoxic

activities, antigen presentation, and recruitment of other immune

cells. IL-32 is an inflammatory cytokine, which can induce the

expression of TNF, IL-1, and IL-6 and chemokines (67). Among

these cytokines, TNF is associated with increased inflammatory cell

infiltration (68), while IL-1 plays a crucial role in TH17 cell

differentiation and disease initiation (69). Blocking IL-6 has been

shown to mitigate uveitis (70, 71) in experimental autoimmune

uveitis models. Additionally, CCL5, a chemokine with increased

expression in the uvea, may contribute to AAU by recruiting

inflammatory cells to the eye (72, 73). Interestingly, this cytotoxic

activation signature was enriched in AAU and HLA-B27pos subjects,

while being depleted in AS and HLA-B27neg HC. The negative side of

the signature, represented by genes such as CCR7 and LEF1, indicates
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the presence of naive and central memory T cells. This suggests

differential regulation of TNK cells, where AAUmirrors the activated

cytotoxic profile of HLA-B27pos HC, whereas AS exhibits a naive

profile similar to HLA-B27neg HC. These findings highlight the

potential role of HLA-B27 in modulating TNK cell activation and

suggest a protective cytotoxic response in HLA-B27pos HC and AAU.

However, AS and AAU also exhibit distinct immune phenotypes that

drive their respective disease processes.

Taken together, our data suggest that AS and AAU share certain

immune and inflammatory pathways, particularly the enrichment

of cytotoxic and effector T cells, as well as inflammatory CD16+

monocytes, highlighting the role of HLA-B27 in their altered

immunophenotypes and the promotion of chronic inflammation.

However, distinct immune signatures may play a key role in

differentiating AS from AAU. AS is characterized by a skewed B-

cell profile, with an increased proportion of naïve B cells and

impaired maturation, whereas AAU exhibits a more localized

immune response with a mature B-cell signature. Additionally,

cytotoxic activation of TNK cells is enriched in AAU and HLA-

B27 pos HC but depleted in AS, suggesting a differential regulation of

cytotoxicity. Overall, these findings suggest that while AS and AAU

share an HLA-B27-associated inflammatory environment required

for chronicity, their distinct immunophenotypic alterations may

underlie differences in disease development and progression.
Limitations of the study

The absence of HLA-B27neg AS and AAU subjects in our study

limits the ability to fully assess the role of HLA-B27 in disease

pathogenesis. Future studies including HLA-B27neg AS and AAU

subjects would allow comparative analyses to distinguish HLA-B27-

associated disease features from those mediated by other genetic or

environmental factors. This could provide a deeper understanding

of whether the enhanced cytotoxic and innate immune features

observed in our study are exclusive to HLA-B27 or part of broader

inflammatory mechanisms. Another limitation of this study is the

small sample size (N = 5/group). Although we selected well-

characterized samples from all patient groups and validated our

findings using independent analysis of a previously published

dataset, larger sample sizes in future studies will be beneficial.

Further research is needed to unravel these complex interactions

and account for the heterogeneity across multiple disease groups.

Developing gene profiles that reflect the disease stratification could

enhance our understanding of cellular phenotypes contributing to

AS or AAU. Additionally, our study was limited in assessing

gender/sex differences across contrasts; future studies with higher

cohorts and dedicated methodologies are necessary to better

understand the role of sex in autoimmune diseases such as AS

and AAU.

In conclusion, using single-cell CITE sequencing, we identified

shared and unique immunophenotypic biomarkers associated with

disease (AS and AAU) and host genetics (HLA-B27). These findings

may contribute to improved disease stratification and the

advancement of precision medicine in AS and AAU.
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