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Over the past few years, immune checkpoint inhibitors resulted in magnificent

and durable successes in treating cancer; however, only a minority of patients

respond favorably to the treatment due to a broad-spectrum of tumor-intrinsic

and tumor-extrinsic factors. With the recent insights gained into themechanisms

of resistance, combination treatment strategies to overcome the resistance and

enhance the therapeutic potential of immune checkpoint inhibitors are emerging

and showing promising results in both pre-clinical and clinical settings. This has

been derived through multiple interconnected mechanisms such as enhancing

tumor immunogenicity, improving neoantigen processing and presentation in

addition to augmenting T cell infiltration and cytotoxic potentials. In the clinical

settings, several avenues of combination treatments involving immune

checkpoint inhibitors were associated with considerable improvement in the

therapeutic outcome in terms of patient’s survival and tumor growth control.

This, in turn, increased the spectrum of cancer patients benefiting from the

unprecedented and durable effects of immune checkpoint inhibitors leading to

their adoption as a first-line treatment for certain cancers. Moreover, the

significance of precision medicine in cancer immunotherapy and the unmet

demand to develop more personalized predictive biomarkers and treatment

strategies are also highlighted in this review.
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1 Introduction

The past decade has witnessed significant advancements with the

use of immune checkpoint inhibitors (ICIs) in treating certain cancers

(1). Unlike traditional cancer treatment modalities that function

through inducing direct tumor cell death, immunotherapies

including ICIs boost the immune system to elicit stronger and more

specific anti-tumor immune responses and, therefore, control tumor

growth (2). However, despite the unprecedented recent breakthroughs

reported with the use of ICIs to treat cancer, not all patients respond

similarly to the treatment with only 20-40% showing beneficial

outcomes (3, 4). Over the past decade, extensive efforts have been

employed to understand the lack of beneficial therapeutic outcome

among the treated patients. A growing body of knowledge attributes

the resistance to ICIs to various interconnected mechanisms, some of

which are tumor-intrinsic while others are external to tumor cells (5).

Examples of tumor-intrinsic factors include the lack of neoantigens,

impaired tumor antigen processing and presentation, altered

oncogenic cell signaling pathways in addition to epigenetic changes

that promote drug resistance (5–9). On the other hand, the level of

intratumoral immune cell infiltration, the compensatory upregulation

of alternate immune checkpoint molecules, angiogenesis and gut

microbiome are examples of tumor-extrinsic putative mechanisms

that could play a role in inducing resistance to ICIs (5, 10–13).

It is evident that the increased understanding of the resistance

mechanisms and underlying factors has -in part- directed the wheel

of immunotherapy research toward designing strategies to bypass

resistance and enhance the therapeutic potential of ICIs through

combining them with other anti-cancer treatment approaches.

Despite the limitations associated with conventional cancer

treatment modalities, the different adjuvant therapies including

chemotherapy, radiotherapy, targeted therapy and epigenetic

modulators have shown potentials to shape the tumor

microenvironment (TME) by increasing tumor immunogenicity,

improving antigen presentation capability of antigen-presenting

cells (APCs), enhancing the infiltration of immunoreactive cells to

the tumor site and promoting their functional activity (14–16).

These changes have been shown to play considerable roles in

remodeling the TME and rendering it more conducive to deliver
Abbreviations: ICIs, Immune checkpoint inhibitors; TME, tumor

microenvironment; APCs, antigen-presenting cells; FDA, Food and Drug

Administration; NSCLC, non-small cell lung carcinoma; UC, urothelial cancer;

MDSCs, myeloid-derived suppressor cells; Tregs, T regulatory cells; DC, dendritic

cell; PFS, progression-free survival; TNBC, triple-negative breast cancer; OS,

overall survival; HNSCC, head and neck squamous cell carcinoma; GEJ,

gastroesophageal junction; ESCC, esophageal squamous cell carcinoma; HCC,

hepatocellular carcinoma; dMMR, mismatch repair deficient; RCC, renal cell

carcinoma; MSI, microsatellite instability; CRC, colorectal cancer; TCR, T cell

receptor; MAPK, mitogen-activated protein kinase; VEGF, vascular endothelial

growth factor; IDO, Indoleamine 2,3-dioxygenase; CAR, Chimeric antigen

receptor; GM-CSF, granulocyte-macrophage colony-stimulating factor; HDACi,

histone deacetylase inhibitors; EMT, epithelial-mesenchymal transition; TAMs,

tumor-associated macrophages; TMB, tumor mutational burden; ncRNA, non-

coding RNA; scRNA-seq, single-cell RNA-sequencing.
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the beneficial effects of ICIs (16). Up to date, considerable number

of these strategies demonstrated promising and durable results in

terms of efficiency, feasibility and safety, and this has been derived

from either the additive or synergistic effects of utilizing ICIs in

combination with other therapies (17–19). Some of the

combinatorial treatment approaches involving ICIs have already

been implemented in the clinical settings to treat specific types of

cancer while many others are still at early stages. For instance, the

last decade has witnessed remarkable success with the use of

chemotherapeutic agents in combination with ICIs to ameliorate

resistance and enhance the therapeutic outcome in multiple cancer

types. Examples of these treatment modalities that have been

approved by the Food and Drug Administration (FDA) include

pembrolizumab in combination with carboplatin and either

paclitaxel or nab-paclitaxel to treat metastatic squamous non-

small cell lung carcinoma (NSCLC), in addition to the

combination of nivolumab, cisplatin and gemcitabine that was

recently approved to treat metastatic or unresectable urothelial

cancer (UC) (20, 21). It is worth appreciating that large number

of ongoing pre-clinical and clinical studies are still evaluating the

safety and efficiency of combining ICIs with other anti-cancer or

immunomodulatory agents in order to expand the spectrum of

cancer patients benefiting from immunotherapy. In this review, we

discuss multiple strategies to overcome resistance to ICIs from the

perspective of combining it with other treatments. Furthermore, the

significance of personalized cancer immunotherapy and the need to

improve the treatment efficacy in light of precision medicine are

also highlighted.
2 Potential strategies to overcome
resistance by combination therapy

In the last decade, built upon the valuable insights gained into

the intrinsic and extrinsic mechanisms of resistance to ICIs, several

combination therapeutic approaches were developed in order to

overcome resistance and improve the therapeutic efficacy of ICIs.

Figure 1 illustrates the different combination modalities involving

ICIs and their putative mechanisms of action.
2.1 Combination with chemotherapy

Chemotherapy has been utilized to enhance tumor

immunogenicity and overcome resistance to ICIs through inducing

tumor cell death and subsequent release of neoantigens (16). This has

been shown to improve priming and activation of CD8+ cytotoxic T

cells (16). In addition, multiple studies have demonestrated the

potential of chemotherapeutic agents to remodel the cellular immune

system compartment (22–25). For instance, gemcitabine was shown to

dramatically and significantly reduce myeloid-derived suppressor cells

(MDSCs) in the spleens of tumor-bearing mice while increasing the

anti-tumor potential of CD8+ T cells and activated natural killer cells

(22). Other agents namely cisplatin have been shown to enhance the
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infiltration of cytotoxic T lymphocytes, upregulate the levels of

proinflammatory cytokines as well as the expression of immune

checkpoint molecules on intratumoral CD8+ T cells (23).

Additionally, the role of paclitaxel in modulating the intratumoral

immune system has been demonstrated through its capacity to reduce

the infiltration of T regulatory cells (Tregs) and stimulate dendritic cells

(DC)-mediated antigen presentation (24). Such changes have the

potential to alleviate resistance and pave the way to drive the benefits

of ICIs among multiple cancer types (26). In a study of advanced

melanoma, it was demonstrated that the combination of local

chemotherapy (nitrogen mustard alkylating agent melphalan) and

anti-CTLA-4 improved response rate and progression-free survival

(PFS) through enhancing the infiltration of T cells to the tumor site

(27). Other clinical studies of triple-negative breast cancer (TNBC) and

NSCLC reported significant improvements in the overall survival (OS)

and progression-free survival upon treatment with the combination of

chemotherapy (paclitaxel/carboplatin) and ICIs, in comparison to

chemotherapy alone (28, 29). In this regard, it is worth noting that

not all chemotherapeutic agents are capable to enhance the efficacy of

ICIs. For example, vinorelbine and etoposide were not associated with

additional benefit when combined with anti-CTLA-4/anti-PD-L1 in

murine models of mesothelioma (25). Additionally, the success of

chemotherapy and ICIs combination is, in part, dependent on the

timing and sequence of chemo immunotherapy administration (30). It

is also important to point out that multiple categories of chemotherapy

pose different immunomodulatory roles. For instance, fludarabine and

cisplatin were shown to interfere with the infiltration and functional

capacity of Tregs whereas melphalan and bleomycin were shown to

enhance type 1 immunity of Th1 immune response (31, 32). Therefore,

it is essential to consider the type and stage of cancer along with the

putative resistance mechanism when selecting the chemotherapeutic

agent that can be used in combination with ICIs (31, 33). Currently,

some combinations of chemotherapy agents and ICIs have become a

standard of care to treat some types of cancer in the clinical settings

while others are still being investigated inmultiple clinical trials (34, 35).

A study of NSCLC (KEYNOTE-021) demonstrated that the

combination of pembrolizumab (anti-PD1) and chemotherapy

(carboplatin and pemetrexed) enhanced the response rate and PFS

among treated patients in comparison to those receiving chemotherapy

alone (36). This study engaged the FDA to approve the combination of

pembrolizumab and standard chemotherapy as a first-line treatment

for advanced non-squamous NSCLC (36). Later, other clinical trials

examined the potential of combining pembrolizumab and standard

chemotherapy to treat squamous NSCLC and documented

considerable improvement in patient’s OS and PFS, compared to

chemotherapy (37, 38). In 2018, the results of these studies led to the

FDA approval of pembrolizumab and chemotherapy for the treatment

of squamous NSCLC patients (37, 38). Based on a string of success

along with the remarkable improvement in the therapeutic outcome,

the indications of chemotherapy in combination with ICIs were

extended to include a wider spectrum of cancer patients, for example,

the combination of atezolizumab (anti-PD-L1) and chemotherapy was

approved to treat metastatic non-squamous NSCLC (atezolizumab plus

nab-paclitaxel and carboplatin), unresectable locally advanced or

metastatic TNBC (atezolizumab plus nab-paclitaxel) and extensive-
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stage small cell lung cancer (atezolizumab plus carboplatin and

etoposide) (39–41). Table 1 provides a summary for the FDA-

approved chemoimmunotherapeutic regimens and their indications.
2.2 Combination with radiotherapy

Radiotherapy is thought to enhance tumor sensitivity to ICIs

through inducing tumor cell death and neoantigen release. This, in

turn, enhances the diversity of T cell receptor (TCR) repertoire of

tumor-infiltrating lymphocytes and promote tumor antigen

presentation (14). Other studies have demonstrated that radiotherapy

enhances the secretion of proinflammatory cytokines and the

activation of DCs, leading to increased accumulation of intratumoral

lymphocytes (16). In a study of melanoma, it was reported that the

combination of local radiation therapy and anti-CTLA-4

immunotherapy enhanced the therapeutic outcome in comparison to

anti-CTLA-4 monotherapy by enhancing the infiltration of CD8+ T

cells (80). In line with this study, a combination of radiotherapy, anti-

PD-L1 and anti-TIM-3 has been shown to inhibit tumor growth,

improve survival, enhance the cytotoxic activity of T cells and decrease

infiltration of Tregs in a murine model of head and neck squamous cell

carcinoma (HNSCC) (81). Despite this favorable outcome, durable

responses were not observed due to the resurgence of Tregs (81). A

recent study of metastatic NSCLS reported that the combination of

radiotherapy and ICIs was associated with improved outcome only in

patients who were PD-L1 negative (82). Moreover, it is worth noting

that the total dose, fractionation mode of radiotherapy and sequence of

radiotherapy and ICIs administration have impact on modulating the

immune response and efficacy of ICIs (82–84). Overall, it is appreciated

that radiation therapy plays a role in transforming the TME from non-

immunogenic to immunogenic and, therefore, enhance the sensitivity

to ICIs (83).
2.3 Combination with targeted therapy

Several lines of evidence documented the potential of different

approaches of targeted therapy such as angiogenesis inhibitors, EGFR

inhibitors, HER2 inhibitors and hormone receptor inhibitors to

overcome the resistance associated with ICIs (17). This was shown

to be mediated through different mechanisms that increase tumor

sensitivity to immunotherapeutic agents. For example, targeting

mitogen-activated protein kinase (MAPK) pathway utilizing EGFR/

MEK/BRAF inhibitors was shown to induce the expression of tumor

neoantigens, promote the infiltration of CD8+ T cells to the tumor

site and block the canonical oncologic signaling pathways (16). In line

with these findings, multiple pre-clinical and clinical trials

demonstrated that the combination of these inhibitors and PD-1/

PD-L1 blockade resulted in improved anti-tumor immunity and

overall therapeutic outcomes (85–88). In addition, pre-clinical studies

utilizing PI3K inhibitors in combination with ICIs documented the

combination’s potential to inhibit tumor growth and improve overall

survival (89, 90). This outcome was associated with increased

expression of pro-inflammatory cytokines and enhanced T cell
frontiersin.org
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cytotoxicity. Moreover, several pre-clinical and clinical studies

demonstrated the capacity of other approaches of molecular

targeted therapy namely vascular endothelial growth factor (VEGF)

inhibitors, indoleamine 2,3-dioxygenase (IDO) inhibitors, A2A

receptor blockade and others to reverse the resistance to ICIs

through multiple mechanisms such as normalizing the

immunosuppressive TME, enhancing the infiltration of

intratumoral T cells in addition to reversing T cell exhaustion and

promoting its effector function (15–17, 91). For instance, targeting

VEGF, an immunosuppressive factor, has been shown to augment

endothelial cell activation, inhibit tumor neovascularization and

reinforce the anti-cancer immunity (92, 93). Another study

demonstrated that bevacizumab treatment, a VEGF inhibitor,

resulted in trends towards increase in the expression of genes

associated with effector CD8+ T cells, T-helper chemokines and

natural killer cells (94). Overall, these changes were shown to

enhance tumor sensitivity to ICIs in which the combination

treatment was associated with superior outcomes in comparison to

monotherapy. Additionally, therapies targeting adenosine axis such

as anti-CD38 and anti-CD73 inhibitors succeeded in overcoming

resistance associated with ICIs through their potential to increase the

infiltration of intratumoral effector CD4+ T cells, enhance the

expression of granzyme B and IFN-g by tumor-infiltrating CD8+ T

cells and decrease the accumulation of the immunosuppressive

MDSCs and Tregs within the TME (95, 96).
2.4 Combination with other immune
checkpoint inhibitors

Given that the compensatory upregulation of alternative

inhibitory immune checkpoint molecules is one of the challenges

to achieve favorable outcome with ICIs, multiple pre-clinical and

clinical trials were directed to utilize multiple blockade as a putative

mechanism to bypass resistance (97). The combination of anti-

CTLA-4 and anti-PD-1 was associated with improved therapeutic

outcomes in perspective to patient’s survival (98). The clinical

benefit derived from ICIs combination treatment could be

attributed to the complimentary mechanisms in which anti-

CTLA-4 functions through promoting T cell priming while anti-

PD-1 plays a key role in enhancing the effector function of T cells.

Moreover, a recent study in melanoma patients revealed that anti-

CTLA-4 induces a robust clonal expansion of progenitor exhausted

T cells which, in turn, promotes exhausted T cell reinvigoration

when combined with anti-PD-1 treatment (99). Such combination

has been approved to treat multiple cancer types including

melanoma, hepatocellular carcinoma, renal cell carcinoma and

colorectal cancer (100–102). Additionally, various pre-clinical

trials have demonstrated the synergistic beneficial outcome of

targeting PD-1/PD-L1 axis and other inhibitory immune

checkpoint molecules including TIM-3, LAG-3, VISTA, BTLA

and TIGIT in terms of tumor growth control and overall survival

(103–108). This has been shown to be associated with reversed T

cell exhaustion, increased expression of IFN-g and decreased levels

of Tregs. Besides the FDA approved dual ICIs treatment (Table 1),
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multiple other combinations are under evaluation by a significant

number of clinical trials (109–111).
2.5 Combination with immune stimulatory
agents

It is well-appreciated that the magnitude of T cell activation

and subsequent anti-tumor immune responses is determined by

the dynamic interplay between co-stimulatory and inhibitory

immune checkpoint molecules. One way to improve T cell

activation is through targeting immune stimulatory pathways,

and therefore, provide a rationale for immune stimulatory

agonist including CD40, ICOS, OX40, GITR and 41BB to be

utilized in combination with ICIs to treat cancer patients.

Several pre-clinical and clinical trials documented the potential

of these immune stimulatory agonists to alter the intratumoral

immune system compartment and promote the beneficial

response to ICIs by enhancing T cell infiltration, activation and

cytotoxicity (15, 16). In addition, other studies reported the

capacity of the immune stimulatory ICOS agonist and GITR

agonist to improve the therapeutic outcome through promoting

the development of memory T cells and hampering Treg

immunosuppression, respectively (112, 113). Moreover, the role

of other immunostimulatory agents including CD40 agonist to

increase infiltration of DCs, reduce MDSCs and promote APC

maturation has been documented (114, 115). This, in turn, may

contribute to its potential to overcome ICIs resistance.
2.6 Combination with adoptive T cell
transfer

Adoptive T cell transfer has led to considerable clinical benefits

in treating hematological malignancies; however, this success was

limited in solid tumors due to poor infiltration of T cells along with

the immunosuppression imposed by the TME. Multiple pre-clinical

studies demonstrated that the combination of ICIs with adoptive T

cell transfer improved therapeutic outcome in terms of tumor

regression and improved survival (116, 117). This was thought to

be delivered through enhancing the intratumoral infiltration of T

cells as well as the secretion of proinflammatory cytokines such as

IL-6. The first-in-human clinical trial that utilized adoptive T cell

transfer in combination with ICIs demonstrated that treating

melanoma patients with a combination of ipilimumab and

adoptive cell transfer is feasible and well-tolerated (118). Another

clinical study reported that engineered CD19 chimeric antigen

receptor (CAR)-T cells expressing IL-7 and CCL19 in

combination with anti-PD-1 improved the anti-tumor immune

response and long-term remission rate in relapsed or refractory

diffuse large B cell lymphoma patients (119). It is worth noting that

IL-7 and CCL9 play a considerable role in promoting the

proliferation, infiltration, accumulation and survival of CAR-T

cells in lymphoid tissues (120, 121). This, in turn, was shown to

be associated with enhanced anti-tumor potentials and improved
frontiersin.org
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TABLE 1 List of FDA-approved combination immunotherapies that involve ICIs (as of July 2024).

Combination Drug FDA approved indication Date of approval REF

Combination with chemotherapy

Keytruda (pembrolizumab) combined with
carboplatin and either paclitaxel or
nab-paclitaxel

Metastatic squamous non-small cell
lung carcinoma (NSCLC)

Oct 30, 2018 (20)

Tecentriq (atezolizumab) combined with
bevacizumab, paclitaxel and carboplatin

Metastatic non-squamous NSCLC
without EGFR or ALK genomic
tumor aberrations

Dec 6, 2018 (42)

Tecentriq (atezolizumab) plus Abraxane
(nab-paclitaxel)

Metastatic triple-negative or
unresectable locally advanced breast
cancer (TNBC) in people with PD-
L1 positive tumors

Mar 8, 2019 (39)

Tecentriq (atezolizumab) combined with
carboplatin and etoposide

Extensive-stage small cell
lung cancer

Mar 18, 2019 (41)

Keytruda (pembrolizumab), platinum and
fluorouracil (FU) combined

Metastatic or with unresectable,
recurrent head and neck squamous
cell carcinoma (HNSCC)

June 11, 2019 (43)

Tecentriq (atezolizumab) combined with
Abraxane (nab-paclitaxel) and carboplatin

Metastatic non-squamous NSCLC
without EGFR or ALK genomic
tumor aberrations

Dec 3, 2019 (40)

Opdivo (nivolumab) plus Yervoy
(ipilimumab) given with two cycles of
platinum-doublet chemotherapy

Metastatic or recurrent NSCLC
without EGFR or ALK genomic
tumor aberrations.

May 26, 2020 (44)

Keytruda (pembrolizumab) combined with
paclitaxel, nab-paclitaxel or gemcitabine
and carboplatin

Locally recurrent unresectable or
metastatic TNBC whose tumors are
PD-L1 positive

Nov 13, 2020 (45)

Keytruda (pembrolizumab) in combination
with platinum- and fluoropyrimidine-
based chemotherapy

Locally advanced or metastatic
esophageal or gastroesophageal
junction (GEJ) carcinoma that is not
amenable to surgical resection or
definitive chemoradiation

Mar 23, 2021 (46)

Opdivo (nivolumab) combined with
fluoropyrimidine- and platinum-
containing chemotherapy

Advanced or metastatic gastric
cancer, GEJ cancer, and
esophageal adenocarcinoma

April 16, 2021 (47)

Keytruda (pembrolizumab),trastuzumab,
fluoropyrimidine- and platinum-containing
chemotherapy combined

Locally advanced unresectable or
metastatic HER2-positive gastric or
GEJ adenocarcinoma

May 5, 2021 (48)

Keytruda (pembrolizumab) in combination
with chemotherapy and then continued as a
single agent after surgery

Early-stage TNBC July 27, 2021 (49)

Keytruda (pembrolizumab) combined with
chemotherapy with or without bevacizumab

Persistent, recurrent or metastatic
cervical cancer whose tumors that
express PD-L1

Oct 13, 2021 (50)

Opdivo (nivolumab) combined with
fluoropyrimidine- and platinum-
containing chemotherapy

Metastatic or unresectable advanced
esophageal squamous cell
carcinoma (ESCC)

May 27, 2022 (51)

Imfinzi (durvalumab) in combination with
gemcitabine and cisplatin

Metastatic or locally advanced
biliary tract cancer

Sep 05, 2022 (52)

Libtayo (cemiplimab) combined with
platinum-based chemotherapy

Advanced NSCLC without EGFR,
ALK or ROS1 aberrations

Nov 8, 2022 (53)

Imjudo (tremelimumab) in combination
with Imfinzi (durvalumab)

Unresectable hepatocellular
carcinoma (HCC)

Oct 24, 2022 (54)

Imfinzi (durvalumab) combined with
Imjudo (tremelimumab) and platinum-
based chemotherapy

Stage IV (metastatic) NSCLC Nov 11, 2022 (55)

(Continued)
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TABLE 1 Continued

Combination Drug FDA approved indication Date of approval REF

Jemperli (dostarlimab) in combination with
carboplatin and paclitaxel, followed by
Jemperli as a single agent

Primary advanced or recurrent
endometrial cancer that is mismatch
repair deficient (dMMR)

July 31, 2023 (56)

Keytruda (pembrolizumab) combined with
platinum-containing chemotherapy as
neoadjuvant treatment followed by
pembrolizumab as a single agent
after surgery

Resectable NSCLC Oct 16, 2023 (57)

Keytruda (pembrolizumab) in combination
with gemcitabine and cisplatin

Metastatic or locally advanced
unresectable biliary tract cancer

Nov 1, 2023 (58)

Keytruda (pembrolizumab) combined with
fluoropyrimidine- and platinum-
containing chemotherapy

Locally advanced unresectable or
metastatic gastric or GEJ
adenocarcinoma that are human
epidermal growth factor receptor 2
(HER2)-negative

Nov 16, 2023 (59)

Padcev with Keytruda (pembrolizumab) Locally advanced or metastatic
urothelial cancer (UC)

Dec 15, 2023 (60)

Opdivo (nivolumab) in combination with
cisplatin and gemcitabine

Unresectable or metastatic UC Mar 7, 2024 (21)

Keytruda (pembrolizumab) in combination
with carboplatin and paclitaxel, and then
continued as a single agent

Primary advanced or recurrent
endometrial carcinoma

June 17, 2024 (61)

Combination with chemoradiotherapy Keytruda (pembrolizumab) in combination
with chemoradiotherapy

Stage III-IVA cervical cancer Jan 12, 2024 (62)

Combination with
ICIs

Opdivo (nivolumab) in combination with
Yervoy (ipilimumab)

BRAF V600 wild-type unresectable
or metastatic melanoma

Oct 1, 2015 (63)

Opdivo (nivolumab) combined with
Yervoy (ipilimumab)

BRAF V600 wild-type and
mutation-positive unresectable or
metastatic melanoma

Jan 23, 2016 (64)

Opdivo (nivolumab) in combination with
Yervoy (ipilimumab)

Intermediate and poor-risk
advanced RCC

April 16, 2018 (65)

Opdivo (nivolumab) in combination with
Yervoy (ipilimumab)

Microsatellite instability (MSI) high
dMMR metastatic colorectal cancer
(CRC) that has showed progression
after treatment with
fluoropyrimidine, oxaliplatin
and irinotecan

July 11, 2018 (66)

Opdivo (nivolumab) plus
Yervoy (ipilimumab)

HCC patients who have been
previously treated with sorafenib

Mar 11, 2020 (67)

Opdivo (nivolumab) plus
Yervoy (ipilimumab)

Metastatic NSCLC whose tumors
express PD-L1

May 15, 2020 (68)

Opdivo (nivolumab) plus
Yervoy (ipilimumab)

Unresectable malignant
pleural mesothelioma

Oct 2, 2020 (69)

Opdualag (combination of nivolumab
and relatlimab)

Unresectable or
metastatic melanoma

Mar 18, 2022 (70)

Opdivo (nivolumab) plus
Yervoy (ipilimumab)

Unresectable advanced or
metastatic ESCC

May 27, 2022 (51)

Combination with
targeted therapy

Keytruda (pembrolizumab) in combination
with Inlyta (axitinib)

Advanced RCC April 22, 2019 (71)

Bavencio (avelumab) in combination with
Inlyta (axitinib)

Advanced RCC May 14, 2019 (72)

(Continued)
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therapeutic outcome compared to conventional CAR-T cells (121–

123). Overall, it can be concluded that the capacity of adoptive T cell

transfer to augment the recruitment and functional activity of T

cells could act synergistically with ICIs in order to enhance

treatment efficacy (117, 118, 124).
2.7 Combination with cancer vaccines and
oncolytic viruses

It is known that lack of neoantigens is one of the mechanisms that

confer resistance to immunotherapy. Therefore, tumor vaccines have

been utilized in order to enhance tumor immunogenicity, augment

anti-tumor immune responses, and pave the way to overcome

resistance and drive the clinical benefits of ICIs. A significant

number of pre-clinical and clinical studies provided a strong

evidence that cancer vaccines can significantly improve the

therapeutic response to ICIs in multiple cancer types (125–127).

This was shown to be mediated by the capacity of cancer vaccines to

(a) improve antigen presentation and recognition, (b) expand the

repertoire of neoantigen-specific T cells and (c) enhance intratumoral

infiltration of T cells (16, 125, 126). Moreover, the first-in-human

clinical trials illustrated the safety, feasibility and immunotherapeutic

potential of targeting tumor mutations (126–128). In a study of

melanoma, it was demonstrated that the combination of nivolumab

(anti-PD-1) and tumor neoantigen vaccines was associated with

complete tumor regression and enhanced patient’s survival (126,
Frontiers in Immunology 07
127). Additionally, durable and complete tumor regression was also

documented in metastatic cancer patients following treatment with a

combination of neoantigen-loaded monocyte-derived dendritic cell

vaccine and anti-PD-1 (129). Given that patients with the same

tumor type have distinct mutational signature, the use of personalized

cancer vaccines is thought to enhance treatment specificity and

effectiveness. On the other hand, cancer vaccines require HLA

haplotype compatibility and could result in off-target immune

stimulation (130). This, in turn, may limit its application in the

clinical use.

In a similar manner to cancer vaccines, oncolytic viruses

showed the potential to enhance the therapeutic outcome of ICIs

through promoting antigen presentation and T cell priming. The

combination of ICIs namely ipilimumab or pembrolizumab and

talimogene laherparepvec- a genetically modified oncolytic herpes

simplex virus 1 that express granulocyte-macrophage colony-

stimulating factor (GM-CSF)-demonstrated improved therapeutic

potential in treating unresectable melanoma patients in comparison

to monotherapy without any additional safety concerns (131–135).

The virus was designed to replicate selectively in cancerous cells and

induce lytic cell death and release of tumor-specific antigens (132).

This, in turn, was proven to enhance the anti-tumor immune

response through promoting DC maturation, IFN-g expression, T
cell activation and infiltration (132). In fact Talimogene

laherparepvec is the first oncolytic viral immunotherapy to be

approved by the FDA to treat locally advanced or unresectable

melanoma patients. Nowadays, multiple pre-clinical and clinical
TABLE 1 Continued

Combination Drug FDA approved indication Date of approval REF

Keytruda (pembrolizumab) plus Lenvima Advanced endometrial carcinoma
that is not MSI-high or dMMR and
demonstrated disease progression
following prior systemic therapy and
are not eligible for surgery
or radiation

Sep 17, 2019 (73)

Tecentriq (atezolizumab) in combination
with Avastin (bevacizumab)

Unresectable or metastatic HCC
who did not receive prior
systemic therapy

May 29, 2020 (74)

Tecentriq (atezolizumab) plus Cotellic
(cobimetinib) and Zelboraf
(vemurafenib) combined

Advanced melanoma patients with
BRAF V600 mutation

July 30, 2020 (75)

Opdivo (nivolumab) combined with
Cabometyx (cabozantinib)

Advanced RCC Jan 22, 2021 (76)

Keytruda (pembrolizumab) plus Lenvima Advanced endometrial carcinoma
that is not MSI-high or dMMR, who
have disease progression following
prior systemic therapy and are not
eligible for surgery or
radiation therapy

July 22, 2021 (77)

Keytruda (pembrolizumab) plus Lenvima Advanced RCC Aug 11, 2021 (78)

Keytruda (pembrolizumab) combined with
Padcev (enfortumab vedotin-ejfv)

Locally advanced or metastatic UC
who are not candidates for cisplatin-
containing chemotherapy

April 3, 2023 (79)
frontier
NSCLC, non-small cell lung cancer; TNBC, triple-negative breast cancer; HNSCC, head and neck squamous cell carcinoma; GEJ, gastroesophageal junction; ESCC, esophageal squamous cell
carcinoma; HCC, hepatocellular carcinoma; dMMR, mismatch repair deficient; UC, urothelial cancer; RCC, renal cell carcinoma; MSI, microsatellite instability; CRC, colorectal cancer.
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trials are underway in the effort of testing the efficacy of combining

ICIs with Talimogene laherparepvec and other novel oncolytic

viruses (136).
2.8 Combination with epigenetic
modulators

It is known that epigenetic dysregulation plays a crucial role in

cancer development and progression. Therefore, targeting this axis has

been associated with promising results in multiple malignancies.

Beyond their potential as monotherapies, several lines of evidence
Frontiers in Immunology 08
documented the considerable role of epigenetic modulators such as

DNA methyltransferase inhibitors and histone deacetylase inhibitors

(HDACi) to improve the sensitivity of cancerous cells to

chemotherapy, radiotherapy, targeted therapy and some approaches

of immunotherapy (137). The improved efficacy of ICIs when

combined with epigenetic modulators was shown to be derived from

the potential of combination treatment to modulate the TME (138–

142). Multiple studies have demonstrated the capacity of Entinostat- a

selective class I HDACi- to enhance the therapeutic potential of PD-1

blockade through inhibiting the immunosuppressive function of

MDSCs, suppressing Tregs, enhancing MHC class I expression in

addition to promoting the infiltration and functional activity of
FIGURE 1

Combination therapeutic strategies to overcome resistance to ICIs and their putative mechanisms of action. Different cancer treatment modalities
namely chemotherapy, radiotherapy, dual ICIs, targeted therapy, immune stimulatory agents, epigenetic modulators and gut microbiome
manipulation can be employed to ameliorate resistance to ICIs and improve its therapeutic potential through multiple overlapping mechanisms such
as enhancing tumor antigenicity, promoting neoantigen processing and presentation in addition to augmenting T cell intratumoral infiltration and
functional activity. MDSCs, myeloid-derived suppressor cells; Tregs, regulatory T cells; TME, tumor microenvironment; DCs, dendritic cells; APCs,
antigen-presenting cells; MHC, major histocompatibility complex. This figure was created with BioRender.com.
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intratumoral T cells (138–141). Another study of advanced NSCLC

showed that a pan HDACi namely Vorinostat is capable to prime

the TME and enhance the response to PD-1 inhibitors through

enhancing the expression of immune-related genes, inhibiting

immunosuppressive cells as well as promoting the production of

pro-inflammatory cytokines (142). Moreover, it was reported that

DNA methyltransferase inhibitors are capable to reverse the

epigenetic silencing of T helper 1 immunostimulatory chemokines

including CXCL9 and CXCL10 and, in turn, promote T cell trafficking

to the TME and enhance the sensitivity to immunotherapeutic agents

such as ICIs and adoptive T cell transfer (9). In a pre-clinical study of

colorectal cancer, it was demonstrated that HBI-8000 – a HDACi-

augmented the treatment outcome in synergy with CTLA4/PD-1/PD-

L1 blockade and resulted in improved tumor growth control (143).

This was shown to bemediated by the capacity of HBI to alter the TME

from being immunologically cold (nonresponsive) to becoming hot

(responsive) through modulating the expression of inhibitory immune

checkpoints, enhancing the functional activity of APCs andmodulating

the expression of MHC I and II (143). Additionally, another pre-

clinical study of colorectal and metastatic mammary cancers illustrated

that both DNAmethyltransferase inhibitors and HDACi are capable to

improve the response to CTLA-4 and PD-L1 inhibitors through

targeting the immunosuppressive MDSCs (144). Currently, a

number of clinical studies are undergoing to assess the translation of

these promising results from pre-clinical to clinical settings in

perspective to safety and efficacy (145–149).
2.9 Combination with gut microbiome

Given that the composition of gut microbiota plays remarkable

roles in shaping the anti-tumor immunity, modulating the microbiome

was associated with augmented efficacy of ICIs as demonstrated by

multiple pre-clinical and clinical studies. Using a pre-clinical model of

melanoma, Sivan et al. demonstrated that the oral administration of

Bifidobacterium abolished tumor outgrowth when combined with PD-

L1 inhibitors (150). This synergistic effect was driven by the capacity of

the combination treatment to augment DC function, promote CD8+ T

cell priming and infiltration, in addition to enhancing inflammatory

cytokines secretion (150). In line with these findings, it has been

reported that the oral administration of Bacteroides fragilis with

Burkholderia cepacian or Bacteroides thetaiotaomicron enhanced the

efficacy of anti-CTLA-4 through promoting DCmaturation and T cell-

mediated immune responses (151). Another study demonstrated the

improved tumor growth control accompanied with enhanced T cell

response and improved efficiency of PD-L1 blockade following

reconstitution of germ-free mice with fecal material from patients

responding to ICIs (152). Moreover, gutmicrobiomemanipulation was

shown to abrogate immune-related adverse events that are associated

with ICIs treatment. Wang et al. demonstrated that the oral

administration of Lactobacillus reuteri provided a protective effect

and inhibited the development of colitis through decreasing the

distribution of group 3 innate lymphoid cells that are induced by

ICIs-related colitis (153). Such findings have set the stage for clinical

trials aiming to assess the safety, feasibility and efficacy of modulating
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gut microbiome to enhance the therapeutic potential of ICIs among

cancer patients (151, 154, 155). Recent clinical trials elucidated insights

into the potential of utilizing fecal microbiota transplantation to induce

favorable changes in the intratumoral immune cell compartment and

gene expression profiles in gut and tumor tissues of patients with PD-1

inhibitors-refractory metastatic melanoma and these were translated

into promising clinical benefits (154, 155).
2.10 Other strategies to improve the
efficacy of ICIs

Multiple other strategies combining ICIs with other approaches

are being investigated with some demonstrating promising results.

For example, several lines of evidence documented the potential of

cytokines namely IL-2, IL-12 and IL-15 in synergy with ICIs to

improve the overall therapeutic outcome (156–158). This was shown

to be associated with enhanced effector T cell and natural killer cell

responses. Additionally, targeting chemokines plays a considerable

role in modulating the TME in favor of tumor inhibition. For

instance, utilizing CCR-1/2 antagonists and CXCR-1/2 inhibitors

was proven to reduce MDSC infiltration in the TME and inhibit

epithelial-mesenchymal transition (EMT) (159–162). Such changes

were associated with favorable responses to ICIs in multiple cancer

types. Moreover, immunosuppressive cells including Tregs, MDSCs

and tumor-associated macrophages (TAMs) could be targeted to

bypass resistance to ICIs using different agents such as anti-CCR-4

inhibitors, agonistic TRAIL-R antibody and CSF-1R inhibitor (15,

16). These modulators in synergy with ICIs have shown potential to

reverse the immunosuppressive nature of the TME and suppress

tumor invasion, metastasis and angiogenesis (16). In addition, some

studies demonstrated that bacterial-mediated cancer therapy has the

potential to augment the antitumor immune response and ameliorate

resistance to ICIs (163–165). Al-Saafeen et al. demonstrated the

capacity of attenuated Salmonella typhimurium to improve the

efficacy of anti-PD-L1 in a pre-clinical model of colorectal cancer

through enhancing intratumoral T cell infiltration, upregulating the

expression of MHC II and decreasing the percentage of tumor-

associated granulocytic cells (164). Several other studies have also

demonestrated the potential of certain bacterial strains and their

metabolites to remarkably influence the therapeutic outcome of ICIs

through modulating the TME and promoting T cell activation (151,

152, 166–169). In one study using epithelial tumors, Routy et al.

showed that Akkermansia muciniphila is capable to enhance DCs

maturation, IL-2 secretion and T cell infiltration leading to a better

response to anti-PD-1 immunotherapy (167). On the other hand,

some bacterial genera, namely Ruminococcus and Roseburia, have

been associated with poor response to ICIs due to their role in

inducing immunosuppressive cells (166). Despite promising results,

implementing this approach in the clinical settings still presents some

challenges regarding dosing, safety and other factors. Overall, the

favorable outcome associated with the combination treatments is

thought to be based on the potential of adjuvant therapy to modulate

the TME and transform it from being immunosuppressive to

becoming immunogenic and, therefore, pave the way for ICIs to
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deliver its beneficial therapeutic effect. This comes in addition to

utilizing combination treatments in order to target different

tumorigenesis promoting axes and abrogate immune evasion

fostering a synergistic beneficial outcome. To this point, several

pre-clinical and clinical studies are underway in the effort of

enhancing the therapeutic potential of ICIs and expanding the

spectrum of responsive patients through identifying the

mechanisms of resistance and targeting it by combining ICIs with

other approaches.
3 Precision cancer immunotherapy

The marked variation in the response to immunotherapy

among cancer patients along with the tumor complexity and

heterogeneity paved the way for personalized medicine and

highlighted its significance for cancer immunotherapy. Precision

medicine is a promising approach in oncology that utilizes the

intra- and intertumoral genetic and epigenetic variability, the tumor

immune microenvironment, in addition to patient’s lifestyle and the

surrounding environmental factors to provide the best-fit treatment

and prevention strategies for the patient (170). In other words,

precision medicine utilizes the comprehensive genomic,

transcriptomic and proteomic data to guide treatment choices.

Through identifying specific genetic mutations and alterations in

signaling pathways along with characterizing the intratumoral

immune system compartment, this approach facilitates tailoring

the therapy to the unique characteristics of each patient in order to

enhance the treatment efficacy while keeping the associated adverse

events to the minimal (171). This would expand the fraction of

patients who can clinically benefit from ICIs.

Patient’s response to ICIs is a complex trait shaped by several

intrinsic and extrinsic factors. Nowadays, three FDA-approved

predictive biomarkers are used for routine patient’s selection and

those are (a) PD-L1 expression, (b) Microsatellite instability (MSI)

and (c) tumor mutational burden (TMB) (172–174). Given that

each of these biomarkers has certain limitations and utilizes

different assays for various cancer types, there is a lack of a

standardized, well-defined framework for implementing these

biomarkers in patient selection criteria (174). Consistently, data

from 18,792 patients across 100 peer-reviewed studies revealed that

patients predicted to respond beneficially to ICIs- based on FDA-

approved biomarkers- showed only a small degree of overlap

suggesting that each of these biomarkers contribute differently to

the overall response (175). Moreover, the use of a single biomarker

isn’t feasible to predict the response to immunotherapeutic agents

(176–179). Some biomarker-negative patients have shown favorable

response to the treatment while other patients with similar levels of

these biomarkers showed variable responses to the treatment. For

example, the expression of PD-L1 has been associated with

beneficial responses to PD-1/PD-L1 blockade across multiple

cancer types; however, other studies demonstrated that patients

with PD-L1 negative tumors can still achieve favorable outcomes

when treated with PD-1/PD-L1 inhibitors (180–183). It is worth

noting that the intratumoral heterogeneity and dynamic nature of
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PD-L1 expression across the tumor-tissue could influence the

reliability of PD-L1 as a predicative biomarker for the response to

anti-PD-1/PD-L1 immunotherapy (184). Additionally, neoantigen

load, immune infiltration status and IFN-g signaling pathway genes
were shown to exhibit heterogeneity among discrete regions within

the same tumor in a single patient (185). Therefore, tumor sampling

might not precisely reflect the distribution of these parameters

which, in turn, compromise their predictive value. In addition,

multiple studies have demonstrated the association of high TMB

and corresponding neoantigen load with the enhanced sensitivity to

ICIs whereas others showed that certain mutations played a role in

shaping the overall response to ICIs independently from the tumor

mutational load (186–190). Therefore, the limited predictive values

of these FDA-approved biomarkers stressed the unmet need to

identify highly accurate and more personalized predictive

biomarkers to assist patient’s selection in clinical settings. New

class of predictive biomarkers related to gene-based expression

signature has emerged- though not yet approved by the FDA-

including T cell-inflamed gene expression profile (191), T cell

dysfunction and exclusion gene signature (192), melanocytic

plasticity signature (193, 194), and B cell-focused gene signature

(194, 195). These biomarkers were shown to have superior and

enhanced predictive value compared to single gene or protein

markers. Moreover, recent studies have highlighted the use of

differentially expressed non-coding RNA (ncRNA) to predict the

response to immunotherapy (196). In a study of NSCLC, specific

circulating miRNA namely miR-93, -138-5p, -200, -27a and -424

were shown to be remarkably highly expressed in patients who

demonstrated favorable response to anti-PD-1 compared to non-

responding patients (197). This emphasizes on the significance of

utilizing ncRNAs as crucial biomarkers for the early response to

ICIs (197). In line with this, it has been demonstrated that the

immune functional long ncRNAs signature is associated with

favorable response to ICIs, superior tumor growth control,

augmented intratumoral infiltration of cytotoxic T cells and PD-

L1 expression (198). An additional study of TNBC documented the

association between high levels of long ncRNA LINK-A and

resistance to PD-1 blockade (199). This has been attributed to the

potential of LINK-A expression to enhance the degradation of the

antigen peptide-loading complex and the intrinsic tumor

suppressors Rb and p53 interfering with tumor antigenicity and

tumor’s intrinsic suppression capacity (199). Overall, it is worth

appreciating that the utilization of ncRNAs in patient’s selection

would substantially improve the capacity to predict the

immunotherapeutic clinical outcome. Over the past decade,

multiple molecular tools including PCR-based tests, conventional

sequencing, RNA-sequencing and next-generation sequencing were

utilized for patient’s enrollment in the clinical trials of targeted

cancer therapies and have been approved by the FDA as standard

procedures to guide and select the appropriate treatment for cancer

patients (171, 200). These technologies help in providing a

comprehensive cancer genomic landscape and identifying

predictive and prognostic molecular alterations that could result

in the resistance to a specific therapeutic agent. However, the

efficacy of these methods can be associated with some limitations.
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For instance, whole exome-sequencing- used in most of the studies-

identifies genomic associations with the therapeutic response in the

exome regions that represent approximately 1% of the whole

genome. However, it does not capture variations in the non-

coding regions, which may have predictive value for treatment

response or be associated with specific mechanisms of resistance

(201, 202). Moreover, the application of these technologies in the

clinical settings is still limited due to tumor heterogeneity and the

intratumoral variation that could interfere with responsiveness to

molecular-targeted therapies (200). It is evident that tumor cells

during cancer development acquire genetic mutations and undergo

changes in the epigenetic signature resulting in different

populations of tumor cells that vary in their morphology,

genotype and function (203). The selective pressure allows

cancerous cells that acquired mutations with survival and

therapy-resistance advantages to dominate tumor tissue. Recent

studies assumed that the source of tumor heterogeneity is a

population of undifferentiated malignant cells with stem-like

phenotype (204, 205). These cells were capable of self-renewal

and differentiation into different tumor cells in response to the

TME (206). Therefore, more advanced technologies are needed to

overcome this obstacle and provide more efficient and personalized

cancer treatment.
4 Conclusions and future perspectives

The increased understanding of the resistance mechanisms

facilitated efforts to overcome the resistance through targeting the

underlying mechanisms using combination treatment strategies.

Several lines of evidence demonstrated the potential of combination

treatments to reverse the resistance by leveraging the synergistic

effects of targeting different immune evasion mechanisms, resulting

in improved therapeutic outcome and overall response to the

treatment. In addition to combinatorial treatment modalities, the

response rate and therapeutic efficacy of ICIs can be enhanced

through implementing accurate personalized treatment. Several

predicative biomarkers from the tumor, peripheral blood and

other sites have been identified to improve patient’s selection for

treatment. However, clinical studies have shown that the prognostic

value of a single biomarker isn’t sufficient to predict the response to

the treatment taking into account that the clinical predictive values

of the identified biomarkers don’t apply to all treated patients.

These findings paved the path for the personalization of cancer

immunotherapy and tailoring the treatment strategy for individual

patients. Nowadays, extensive efforts to fine-tune personalized

predictive biomarkers using advanced technologies are ongoing.

For example, single-cell RNA-sequencing (scRNA-seq) is

considered a powerful high-throughput transcriptomics method

that uncover tumor complexity and dynamics by profiling the gene

expression of each single cell within the tumor tissue (206). It also

enables a more refined understanding of the mechanistic details of
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the multifactorial and dynamic interactions that occur in the TME,

in addition to providing insights into the specific immunogenic

markers associated with the heterogenous cancerous clones.

Overall, scRNA-seq has shown a great promise in improving the

efficiency and application of precision cancer immunotherapy.

Despite the substantial ongoing efforts, there is an increasing

demand to design a multi-omics approach that integrates DNA,

RNA, proteomic and metabolomic analyses to provide a better

understanding of the tumor biology, tumor tissue heterogeneity, the

mechanistic details of the anti-tumor immune responses, in

addition to the key drivers of inter-patient variability in response

to immunotherapy. Such approach will help in identifying

innovative predictive biomarkers, designing novel targeted

therapies and optimizing treatment strategies to include

combinatorial therapies. This, in turn, should play a remarkable

role in ameliorating the resistance to immunotherapeutic agents

and improve the overall response rate.
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