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cancer: insights from single-
cell transcriptomics
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Sichuan University, Chengdu, China, 2Key Laboratory of Birth Defects and Related Diseases of Women
and Children (Sichuan University), Ministry of Education, Chengdu, China, 3Department of Pediatric
Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic
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Introduction: In this study, we aim to provide a deep understanding of the tumor

microenvironment (TME) and its metabolic characteristics in non-small cell lung

cancer (NSCLC) through single-cell RNA sequencing (scRNAseq) data obtained

from public databases. Given that lung cancer is a leading cause of cancer-

related deaths globally and NSCLC accounts for the majority of lung cancer

cases, understanding the relationship between TME and metabolic pathways in

NSCLC is crucial for developing new treatment strategies.

Methods: Finally, machine learning algorithms were employed to construct a risk

signature with strong predictive power across multiple independent cohorts.

After quality control, 29,053 cells were retained, and PCA along with UMAP

techniques were used to distinguish 13 primary cell subpopulations. Four highly

activated metabolic pathways were identified within malignant cell

subpopulations, which were further divided into seven distinct subgroups

showing significant differences in differentiation potential and metabolic

activity. WGCNA was utilized to identify gene modules and hub genes closely

associated with these four metabolic pathways.

Results:Our analysis showed that DEGs between tumor and normal tissues were

predominantly enriched in immune response and cell adhesion pathways. The

comprehensive examination of our model revealed substantial variations in

clinical and pathological characteristics, enriched pathways, cancer hallmarks,

and immune infiltration scores between high-risk and low-risk groups. Wet lab

experiments validated the role of KRT6B in NSCLC, demonstrating that KRT6B

expression is elevated and it stimulates the proliferation of cancer cells.
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Discussion: These observations not only enhance our understanding of

metabolic reprogramming and its biological functions in NSCLC but also

provide new perspectives for early detection, prognostic evaluation, and

targeted therapy. However, future research should further explore the

specific mechanisms of these metabolic pathways and their application

potentials in clinical practice.
KEYWORDS
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1 Introduction

On a global scale, the leading cause of deaths related to cancer is

lung cancer (1). From a histological perspective, the two main types of

lung cancer are categorized as non-small cell lung cancer (NSCLC) and

small cell lung cancer. According to epidemiological data, NSCLC

accounts for roughly 85% of all lung cancer diagnoses and can be

further subdivided into three major subtypes: adenocarcinoma, large

cell lung cancer, and squamous cell carcinoma (2–4). NSCLC’s

development is influenced by multiple factors, encompassing a

sophisticated interaction between environmental and personal

variables, including smoking, secondhand smoke, occupational

exposure, air pollution, genetic susceptibility, chronic lung diseases,

age, gender, dietary habits, and radiation exposure. Among these, active

or passive exposure to tobacco smoke is indisputably a key factor in the

development of NSCLC (5). In terms of pathological characteristics,

among the subtypes of NSCLC, adenocarcinoma is the most frequently

observed, typically originating from alveolar cells in the epithelium of

smaller airways and often presenting in the peripheral lung; squamous

cell carcinoma is primarily found in the central bronchial regions; large

cell carcinoma is a highly malignant tumor, usually diagnosed at later

stages (3, 6). Even with substantial advancements in early detection and

treatment methods over past few decades, the percentage of NSCLC

patients who survive for five years remains below 20% (7). Currently,

with the ongoing development of biomarkers, targeted therapies are

increasingly being utilized in NSCLC patients (8). However, data reveal

that fewer than 25% of patients benefit from targeted therapies, and the

development of resistance during treatment is nearly ubiquitous (9).

Therefore, it is pivotal to delve deeper into the molecular mechanisms

behind NSCLC and to identify novel therapeutic targets.

Research has extensively shown that cellular biological

functions rely heavily on glycolysis, lipid metabolism, and

nucleotide metabolism. In recent years, the significance of

metabolic reprogramming in cancer progression has garnered

growing attention. Glycolysis/Gluconeogenesis is a central

metabolic pathway in cellular energy metabolism. Glycolysis is

the process by which cells generate energy by breaking down

glucose into pyruvate, primarily occurring in the cytoplasm and
02
accompanied by the production of small amounts of ATP.

Gluconeogenesis, the reverse of glycolysis, primarily occurs in the

liver and kidneys (10). Malignant cells often exhibit the “Warburg

effect,” where they preferentially rely on glycolysis for energy

production even under aerobic conditions. This phenomenon not

only supports rapid tumor cell proliferation but also leads to lactate

accumulation, which acidifies the tumor microenvironment (TME),

thereby promoting metastasis and the development of resistance

(11, 12). Glycosaminoglycan (GAG) degradation refers to the

enzymatic breakdown of GAGs into smaller fragments. GAGs are

complex polysaccharides found in the extracellular matrix, as well

as the surfaces of cell, playing roles in cell adhesion, signaling, and

other functions. In the TME, the structure and function of the

extracellular matrix can be modified by the degradation products of

GAGs, which in turn affects tumor metastasis and invasion (13).

Glycosphingolipids are important cell membrane lipids involved in

signaling, cell recognition, and various other biological processes.

The synthesis of glycosphingolipids in the ganglio series is essential

for both the nervous system and the TME. Research has

demonstrated that changes in glycosphingolipids can affect tumor

cell growth and metastasis, particularly in NSCLC, where abnormal

expression of gangliosides has been associated with increased tumor

cell invasiveness and drug resistance (14). The biosynthesis of the

globo and isoglobo series of glycosphingolipids involves a distinct

set of enzymatic reactions. These molecules, although structurally

different from gangliosides, also participate in various cellular

functions. In tumor cells, changes in glycosphingolipid expression

may affect intercellular interactions, cell adhesion, and migration

(15). We can reasonably infer that these metabolic pathways are not

only critical for cellular energy metabolism and signaling but also

closely linked to the beginning and advancement of NSCLC. In-

depth study of the regulatory mechanisms and activation levels of

these pathways in NSCLC could offer novel perspectives for early

detection, prognosis evaluation, and targeted treatments.

Analysis of single-cell RNA sequencing (scRNA-seq) was

conducted by us, using multiple public datasets to explore the

heterogeneity of gene expression and metabolic features across

different cell subpopulations in NSCLC. Within the malignant cell
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subpopulations, we identified four highly activated metabolic

pathways. Through the application of Weighted Gene Co-

expression Network Analysis (WGCNA), we discovered co-

expression modules and pivotal hub genes that were notably

correlated with the four metabolic pathways. Leveraging data

sourced from NSCLC patients, we were able to establish a risk

signature that exhibited strong predictive capabilities across diverse

independent cohorts. Ultimately, we embarked on a comprehensive

analysis of the model, encompassing clinical-pathological

characteristics, enrichment analysis, cancer hallmark pathways,

and immune infiltration scores, thereby revealing substantial

disparities between high-risk and low-risk groups across multiple

facets. These observations not only deepen our understanding of

metabolic reprogramming and its biological functions in NSCLC

but also offer new perspectives for early detection, prognostic

evaluation, and targeted therapy.
2 Material and methods

2.1 Dataset acquisition and preprocessing

We first retrieved the bulk RNA sequencing (bulk RNA-seq)

datasets TCGA-LUAD and TCGA-LUSC for NSCLC from Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) via

“TCGAbiolinks” R package. For the aim of facilitating better gene

differential expression analysis between samples, the transcriptomic

data was transformed into Transcripts Per Million (TPM) format.

Additionally, we obtained the bulk RNA-seq datasets GSE31210

and GSE37745 from Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/) database using “GEOquery” R

package. Finally, we collected three independent scRNA-seq

datasets, GSE143423, GSE117570, and GSE150660, from Tumor

Immune Single-cell Hub 2 (TISCH2, http://tisch2.ca) database. The

datasets utilized in our study are publicly accessible and allow

unrestricted use without requiring additional ethical approval. Our

data acquisition and analysis processes were in compliance with

relevant regulations. All open source public databases used in this

study are available for unrestricted access and use and do not

require additional ethical approval. Our data acquisition and

analysis processes follow the relevant regulations.
2.2 Single-cell sequencing data analysis

We use the “harmony” R package for multi-copy consolidation

and batch processing. Our quality control standard is: nFeature_RNA <

9000 & percent.mt < 25. The gene and transcript counts of the three

independent datasets (GSE143423, GSE117570, and GSE150660) were

visualized via violin plots. Variability in gene expression across all cells

was further explored through a variance plot. Next, dimensionality

reduction was achieved by utilizing Uniform Manifold Approximation

and Projection (UMAP) in our study, identifying distinct cell

subpopulations within the datasets and visualizing their distribution

on UMAP plots. Following this, Principal Component Analysis (PCA)
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was conducted to cluster data, with a resolution of 0.6, and the resulting

principal components (PCs) were visualized using bubble plots. Based

on these PCs, we displayed the cell distribution in UMAP space for

each dataset (GSE143423, GSE117570, and GSE150660).

We employed the SingleR method for automated cell-

type annotation, identifying several major cell types. For each

cell type, we obtained marker genes and analyzed their

expression levels, visualizing the results accordingly. Through

using the “scMetabolism”R package, we performed a metabolic

investigation of the cell subpopulations. The activity levels of crucial

metabolic pathways associated with each major cell type were

visualized in bubble plots and subjected to comparative analysis.

Four metabolic pathways, which were upregulated in malignant

cells, were selected for further analysis. The differences in pathway

activity across major cell types were illustrated using box plots.

Next , we conducted unsupervised clustering through

“ConsensusClusterPlus” R package and created a Consensus

Matrix heatmap. The Proportion of Ambiguous Clustering (PAC)

plot was used to determine the optimal number of clusters (K),

identifying the K value corresponding to the lowest point on the y-

axis. Next, we used scMetabolism to analyze the four metabolic

pathways in each cluster. The “Seurat 4.4” R package was utilized to

identify genes with elevated expression in cluster C2 using its

FindMarkers function. Score using AddModuleScore() built into

the Seurat R package. Subsequently, these genes underwent Gene

Set Enrichment Analysis (GSEA) and Over Representation Analysis

(ORA) through the “clusterProfiler” package. The pathways

analyzed encompassed Gene Ontology (GO) terms and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways. The bar

plots clearly depicted the upregulation and downregulation of these

pathways within cluster C2.

We further analyzed the malignant cell subpopulation, first

performing UMAP dimensionality reduction to identify several

subclusters. Differentially expressed genes in each subcluster were

highlighted. The CytoTRACE2 method was used to predict the

differentiation potential of each subcluster. Furthermore, by

employing monocle2, we performed pseudotime analysis,

examining the distribution of subclusters along the cell

trajectory to infer the evolutionary order and origin of the

subpopulations. The relative activity of the four upregulated

metabolic pathways in the malignant cell subclusters was

tracked over pseudotime.
2.3 Analyzing differential expression and
assessing enrichment

To identify differentially expressed genes (DEGs) between

cancerous and normal tissues, on the combined datasets of

TCGA-LUAD and TCGA-LUSC, we applied the R package

“limma” with the criteria of log2|Fold change| (log2FC) greater

than 1 and an adjusted p-value below 0.05. The outcomes were then

graphically represented through volcano plots and heatmaps. We

then performed KEGG pathway enrichment analysis for the DEGs,

presenting the top 20 statistically significant pathways in bar plots.
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Otherwise, we performed GO analysis on the DEGs and presented

pathways which are belonging to the five most significant

enrichments within the categories of Biological Process (BP),

Cellular Component (CC), and Molecular Function (MF).
2.4 WGCNA

In the combined TCGA-LUAD and TCGA-LUSC datasets, Gene

Set Variation Analysis (GSVA) was initially employed to evaluate

four metabolic pathways that displayed notable activation, with the

findings illustrated in a heatmap. Following this, we chose an optimal

soft threshold b to construct a scale-free network based on the criteria
of scale independence and mean connectivity. To present the results

of hierarchical clustering, a dendrogram was utilized, showcasing

several co-expression modules, each assigned a unique color.We then

investigated the relationship between these modules and the four

metabolic pathways, illustrating the results through another heatmap.

We set the requirements for Module Membership (MM) to be greater

than 0.4 and Gene Significance (GS) over 0.3. Our main attention was

directed towards the modules showing significant negative

correlations with the pathways. For every identified module, we

examined the relationship between gene significance and module

membership to identify crucial hub genes. In the concluding phase,

we conducted GO enrichment analysis on the hub genes recognized

within the modules, presenting the outcomes with a lollipop plot.
2.5 Establishing a risk signature for NSCLC
patients utilizing the combined
TCGA cohort

We determined the common hub genes shared among those

from WGCNA, marker genes obtained through single-cell analysis,

and DEGs, and illustrated their overlap with a Venn diagram. Using

the intersected genes, we determined Cox regression analysis to

evaluate their prognostic significance. Next, we applied the analysis

of Least Absolute Shrinkage and Selection Operator (LASSO)

regression to these genes, utilizing the combined TCGA-LUAD

and TCGA-LUSC datasets as the training cohort. The selected

parameter is “cvfit$lambda.min”. The selection of optimal

prognostic genes was based on the determination of the optimal l
parameter. Subsequently, the risk score for each patient was

calculated using the following formula:

RiskScore =o
n

i=1
Expgenei*bi

Expgenei represents expression levels of model genes, bi denotes
the corresponding coefficients of these genes. We employed the

GSE31210 and GSE37745 datasets as external validation cohorts.

The datasets were stratified into high-risk and low-risk groups, with

the division based on the median risk score. Kaplan-Meier (KM)

curves were then generated to assess prognosis of these groups.

Additionally, Receiver Operating Characteristic (ROC) curves were
Frontiers in Immunology 04
constructed to evaluate predictive accuracy of prognostic model at

1-year, 3-year, and 5-year time points.
2.6 Correlation analysis based on
risk signature

We followed the same stratification approach to divide the

cohorts into high-risk groups and low-risk groups. Initially, our

investigation focused on examining the variations in expression

levels of model genes, along with the clinical-pathological features,

across the two defined risk groups. Subsequently, for high-risk

group, we used the “limma” package to identify DEGs, followed by

GSEA using the gseKEGG function from the “clusterProfiler”

package. From the Molecular Signatures Database (MSigDB)

available at https://www.gsea-msigdb.org/gsea/msigdb/, we

obtained cancer hallmark gene sets and applied GSVA to quantify

the disparities in cancer hallmark scores among the risk groups.

Utilizing the CIBERSORT algorithm, facilitated by the “IOBR” R

package, we evaluated the infiltration levels of immune cells in both

groups. Furthermore, we conducted a comparative analysis of the

expression profiles of T cell exhaustion markers and M2

polarization regulators across the risk groups, while also

employing the Tumor Immune Dysfunction and Exclusion

(TIDE) score to forecast the effectiveness of immune checkpoint

inhibitors. Additionally, we investigated the differential expression

of pro-tumor immune cells, specifically Cancer-Associated

Fibroblasts (CAFs) and Myeloid-Derived Suppressor Cells

(MDSCs), between the two groups. Lastly, we performed a drug

sensitivity analysis on four drugs (Bortezomib, Olaparib,

Tamoxifen, and Axitinib) using “OncoPredict” R package.
2.7 Cell culture and transfection

In this experiment, we utilized the immortalized human normal

lung epithelial cell line BEAS-2B, along with the lung cancer cell lines

A549, NCI-H1299, NCI-H1975, and NCI-H358, all of which were

obtained from the Cell Bank of the Chinese Academy of Sciences. The

cell lines were cultured in Roswell Park Memorial Institute 1640

(RPMI-1640, HyClone, USA) medium, supplemented with 10% fetal

bovine serum (FBS, BI, Israel), 100 U/ml penicillin (HyClone, USA),

and 100 μg/ml streptomycin (HyClone, USA). To ensure they stayed

in the logarithmic phase of growth, the cells were kept in an incubator

maintained at 37°C with 5% CO2 and high humidity. Cell growth was

monitored daily to confirm optimal growth conditions, and the cells

were subcultured every 24 hours.

Two of the cell lines underwent transfection experiments.

siRNA sequences targeting KRT6B expression in A549 and NCI-

H358 cells were designed by a commercial biotechnology company

(Sangon, China), with si-negative control (NC) used as a reference.

To initiate the transfection, A549 and NCI-H358 cells were

trypsinized, suspended in complete growth medium at a density

of 1×105cells per well, and plated in 6-well plates, with each well
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supplemented with 2 ml of complete medium. After cells adhered to

the surface, siRNA and the transfection reagent PolyFast (Catalog

No. HY-K1014, MCE, USA) were mixed according to the

manufacturer’s recommendations and incubated at room

temperature for 15 minutes. The mixture was then evenly

pipetted into the corresponding wells. The medium was replaced

6 hours post-transfection, and subsequent experiments were

conducted 48 hours after transfection.
2.8 Total RNA extraction and RT-qPCR

We have investigated the research status of model genes in the

field of lung cancer, and the results show that only KRT6B gene has

not been studied experimentally. Therefore, this paper reveals for the

first time the role of KRT6B gene in lung cancer. To examine the

variations in mRNA expression levels of KRT6B, we utilized RT-

qPCR across five cell lines and to verify the effect of KRT6B

knockdown in A459 and NCI-H358 cell lines. Initially, cells were

detached from six-well plates using trypsin (HyClone, USA) and

subjected to multiple PBS washes followed by low-speed

centrifugation, after which the supernatant was discarded.

According to the manufacturer’s instructions, cells were lysed using

an appropriate amount of Trizol reagent (Takara, Japan). After

obtaining the cell lysate, it was kept on ice for a duration of 5

minutes, whereupon 200 ml of chloroform sourced from Tokyo

Chemical Industry (Japan) was added successively, followed by an

identical volume of isopropanol also from Alfa Aesar (Thermo Fisher

Scientific, USA), and finally anhydrous ethanol, again supplied by

Sigma-Aldrich (USA). Each reagent was thoroughly mixed before

centrifugation at 4°C and incubation on ice for 15 minutes. Following

the removal of all organic solvents, the RNA pellet was allowed to dry

in the air for 20 minutes. Subsequently, the RNA was resuspended in

15 ml of DEPC-treated water, and its concentration was quantified

using a Nanodrop 2000 spectrophotometer (Thermo, USA).

Subsequently, utilizing the PrimeScript RT Reagent Kit from

Thermo Fisher Scientific (USA), the genomic DNA was eliminated,

subsequently enabling the production of cDNA through the process

of reverse transcription. For the qPCR assay, Prior to the experiment,

the cDNA samples were blended with SYBR GreenER Supermix

(Bio-Rad Laboratories, USA) in accordance with the manufacturer’s

directives. Quantitative real-time PCR amplification was executed

utilizing the CFX96 Touch Real-Time PCR Detection System (Bio-

Rad Laboratories, USA). The choice of all reaction conditions was

informed by the recommendations stipulated in the SYBR GreenER

Supermix (Bio-Rad Laboratories, USA) user manual. The relative

abundance of KRT6B was determined by employing the 2–DDCt

methodology, with b-actin serving as the normalizing denominator

for expression levels.
2.9 CCK8 assay

To evaluate how the knockdown of KRT6B influences the

proliferation rates of A549 and NCI-H358 cell lines, we utilized

the CCK8 assay as our experimental approach. After transfection of
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the two cell lines for 48 hours, the cells underwent trypsinization

using trypsin sourced from KeyGEN BioTECH (China), followed

by their uniform distribution in a complete growth medium. Based

on cell counting results, cells were then transferred to a 96-well plate

(5,000 cells/well). Three replicates were set up for each group to

ensure result accuracy. After the cells adhered to the surface,

according to the manufacturer’s guidelines, CCK8 reagent

(Dojindo Laboratories, Japan) was blended with complete culture

medium at ambient temperature to attain a final volume of 200 ml
per well. This mixture was promptly dispensed into each well, and

the plate was securely wrapped in aluminum foil to shield it from

light exposure. After a duration of 1.5 hours, the absorbance was

quantified at a wavelength of 450 nm utilizing a microplate

spectrophotometer. This process was repeated at 24, 48, 72, and

96-hour time points to monitor cell proliferation.
2.10 Statistical analysis

In our research, we employed the Kaplan-Meier (KM)

methodology to perform survival analysis, and utilized the log-

rank test to compare survival differences between high-risk and

low-risk groups. Additionally, we computed the area under the

curve (AUC) value, with an AUC greater than 0.55 considered

indicative of good discriminative ability. We used the “survival”

package to analyze the Cox proportional risk model. In addition, to

better process and analyze gene expression data, we used the

“survminer” package, which provides functions for visualization

of survival analysis results and is able to simplify the presentation of

results in Cox models, including hazard ratio (HR) and confidence

interval (CI) extraction. A p value < 0.05 was considered statistically

significant (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

The statistical analyses conducted in this study were all carried out

utilizing the R programming environment, specifically version 4.3.1.
3 Results

3.1 Single-cell sequencing data analysis

Based on three datasets (GSE117570, GSE143423, GSE150660),

we first conducted quality control on the RNA-seq data, resulting in

29,053 core cells. The three datasets exhibited comparable

quantities of genes and transcripts (Figure 1a). Subsequently, we

visualized the results by plotting variance based on differential gene

expression and average expression levels of all NSCLC cells. A total

of 14,042 highly variable genes and 2,000 non-variable genes were

identified, with genes such as MALAT1, S100A6, HSPA1A, TAC3,

CCL17, FGG, FTL, CD74, and TYROBP showing particularly

significant expression differences between cells (Figure 1b). We

then performed UMAP dimensionality reduction on all quality-

controlled cells (n = 29,053), revealing distinct distribution patterns

across the three datasets (Figure 1c). PCA-based clustering was

applied to cell subpopulations, and the PCs were ranked by

standard deviation. The first 20 PCs were retained, and the 20th

PC showed a low standard deviation and significant statistical
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relevance (Figure 1d). UMAP further visualized the distribution of

the 20 cell subpopulations (Figure 1e). Next, we annotated the

subpopulations within each dataset, successfully distinguishing the

PCs distributions (Figure 1f). Using the SingleR method, we

annotated 13 major cell types, including B (259), CD4Tconv

(1,932), CD8T (1,909), DC (1,149), Endothelial (440), Epithelial

(501), Malignant (12,280), Mono/Macro (8,044), NK (864), Plasma

(265), Oligodendrocyte (133), Pericytes (366), and CD8Tex (911)

(Figure 1g). Ultimately, we conducted a comparison of the

expression profiles of marker genes associated with these thirteen

primary cell subpopulations, identifying significantly high

expression of CXCR4, CD37, CREM, and TYROBP across

multiple subpopulations (Figure 1h).
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3.2 Investigating the metabolic profiles of
individual cell subpopulations

We analyzed the metabolic pathway activity across different cell

subpopulations, revealing significant differences in pathway

activation levels. Specifically, the Oligodendrocyte subpopulation

exhibited the highest activity across metabolic pathways, while

CD4Tconv and CD8T cells showed relatively lower metabolic

activity. Among the Malignant cells, four pathways—Glycolysis/

Gluconeogenesis, Glycosphingolipid biosynthesis-ganglio series,

Glycosaminoglycan degradation and Glycosphingolipid

biosynthesis-globo and isoglobo series—were highly activated

(Figure 2a). Our attention was directed towards the activation
FIGURE 1

Identification of 13 cell clusters with diverse annotations revealing high cellular heterogeneity in NSCLC based on single-cell RNA-seq data. (a) After
quality control of scRNA-seq, 29053 core cells were identified. (b) The variance diagram shows the variation of gene expression in all cells of
NSCLC. The red dots represent highly variable genes and the black dots represent non-variable genes. (c) UMAP showed a clear separation of cells
in NSCLC. (d) PCA identified the top 20 PCs at p < 0.05. (e) The UMAP algorithm was applied to the top 20 PCs for dimensionality reduction, and 20
cell clusters were successfully classified. (f) Classification of cell clusters in each sample. (g) All 13 cell clusters in NSCLC were annotated with
SingleR and CellMarker according to the composition of marker genes. (h) Expression levels of marker genes for each cell cluster.
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status of these pathways among diverse cell subpopulations, and

boxplot visualization showed that the Mono/Macro subpopulation

generally exhibited higher activation levels than other

subpopulations (Figure 2b).

Next, unsupervised clustering was conducted based on activity

levels of these four pathways. Using the “high cohesion, low coupling”

principle and PAC scoring, we selected k = 2 and identified two

clusters (C1 and C2, Figures 2c, d). Assessing and comparing the

degrees of activation of the four metabolic pathways amongst these

clusters, we found that, except for the Glycosphingolipid

biosynthesis-ganglio series, the metabolic activity in C2 was

significantly higher than in C1 (Figure 2e). For C2, we identified

high-expression genes and performed ORA enrichment analysis.
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The results indicated that these genes were predominantly

concentrated within specific metabolic pathways related to cell

signaling and immune response (e.g., response to tumor necrosis

factor, humoral immune response, MHC class I protein binding),

transcriptional regulation (positive regulation of DNA binding),

endocytosis and intracellular transport (positive regulation of

endocytosis, endocytic vesicle lumen), RNA and protein stability

(mRNA stabilization), and protein folding and aggregation (inclusion

body). However, pathways related to cell development and

remodeling (e.g., neuron remodeling, salivary gland development,

estrous cycle), substance metabolism (e.g., lipoprotein catabolic

process, glucose 6-phosphate metabolic process), and cell-cell

interaction (e.g., homotypic cell-cell adhesion, convergent
FIGURE 2

Identification of cell clusters with highly activated metabolism activities in NSCLC at the single cell level. (a) The highly activated metabolic
process of in each cell cluster revealed by the scMetabolism R package. (b) Boxplots showing the activities of four highly activated metabolic
pathways in malignant cells. (c) Heatmap of clustering at consensus k = 2. (d) PAC score, a low value of PAC implies a flat middle segment,
allowing conjecture of the optimal k (k = 2) by the lowest PAC. (e) Two distinct metabolism patterns of NSCLC at the single-cell level unraveled
by the unsupervised clustering. (F, G) Barplot reveals the dysregulated GO-BP terms (f) and KEGG pathways (g) in NSCLC cells with highly
activated metabolism activities.
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extension) were downregulated in C2 (Figure 2f). Additionally, GSEA

revealed upregulation in C2 for pathways associated with the

Ribosome and Coronavirus disease-COVID-19, while pathways

such as Lysosome, Chemical carcinogenesis-reactive oxygen species,

Focal adhesion, Huntington disease, Parkinson disease, and

Phagosome were relatively downregulated (Figure 2g).
3.3 Analysis of malignant
cell subpopulations

We selected a malignant cell subpopulation (n = 12,280) for

further UMAP dimensionality reduction and clustering, which

identified seven distinct subpopulations (Figure 3a). We analyzed
Frontiers in Immunology 08
the gene expression levels in each subpopulation, identifying marker

genes, and visualized the differential expression of genes using a

volcano plot. The top five downregulated and upregulated genes in

each subpopulation were annotated in the plot as subpopulation-

specific markers (Figure 3b). Using CytoTRACE2, we predicted the

absolute developmental potential of themalignant cell subpopulations.

The results showed that Malignant_C3 had the highest differentiation

potential, followed by Malignant_C4 and Malignant_C2, which also

exhibited relatively high differentiation potential. In contrast,

Malignant_C5, Malignant_C6, Malignant_C1, and Malignant_C0

exhibited lower differentiation potential, with Malignant_C0 having

the lowest potential (Figure 3c). Additionally, we performed

pseudotime analysis, which revealed that Malignant_C3 was situated

at the start of the developmental trajectory. As pseudotime increased,
FIGURE 3

Trajectory analysis of NSCLC cell subsets with distinct differentiation patterns. (a) UMAP visualization of the subsets of malignant cells. (b) Volcano
plots showing the celltype-specific markers of each subset. (c) Boxplots showing the predicted cellular potency and absolute developmental
potential of malignant cell subset. (d) Trajectory analysis revealed cell subsets of malignant cells with distinct differentiation states. (e) The variations
of metabolic pathway activities along with the pseudotime.
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differentiation proceeded to Malignant_C6 and Malignant_C4,

followed by Malignant_C0, Malignant_C2, and Malignant_C1,

with Malignant_C5 occupied the final stage of the developmental

trajectory (Figure 3d). The pseudotime differentiation points of

the subpopulations corresponded with their differentiation

potentials. The observations were consistent with the activity

patterns of the four metabolic pathways across various

subpopulations. Malignant_C3 and Malignant_C6 showed early

and strong activation of these pathways, followed by Malignant_C4,

Malignant_C0, Malignant_C1, and Malignant_C2, while

Malignant_C5 displayed the latest stage of activation and the

weakest intensity among the pathways. The Glycolysis/

Gluconeogenesis pathway was overall more active than the other

three pathways in all subpopulations (except Malignant_C6), with an

inverse trend in activity compared to the other pathways. The lowest

activity of this pathway was observed in Malignant_C6, whereas the

peak activity of the other three pathways was seen in Malignant_C6.

As pseudotime advanced, the activation patterns of Glycosphingolipid

biosynthesis-ganglio series, Glycosaminoglycan degradation, and
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Glycosphingolipid biosynthesis-globo and isoglobo series exhibited

greater similarity among the subpopulations (Figure 3e).
3.4 Analysis of differential expression and
pathway enrichment

Using a combined bulk RNA-seq dataset (TCGA-LUAD,

TCGA-LUSC), we first performed differential expression analysis.

Volcano plots and heatmaps revealed that, compared to tumor

tissues, normal tissues exhibited a higher number of genes with

elevated expression levels (Figures 4a, b). Next, we performed KEGG

pathway analysis on DEGs. As illustrated by bar plots, the

enrichment of DEGs was predominantly highlighted in pathways

related to immune responses and inflammation (e.g., Systemic lupus

erythematosus, Neutrophil extracellular trap formation, Cytokine-

cytokine receptor interaction), cell structure and motility pathways

(e.g., Cytoskeleton in muscle cells, Cell adhesion molecules, Focal

adhesion) (Figure 4c). We also conducted GO analysis and
FIGURE 4

Identification and functional enrichment analysis of DEGs between NSCLC patients and controls. (a) Volcano plot of DEGs between OS and control
in the merged cohort of TCGA-LUAD and TCGA-LUSC. p < 0.05 and |log2FoldChange|>1 was identified as significant DEGs. (b) Heatmap of DEGs. (c,
d) KEGG pathways (c), and barplots of the BP, CC, MF (d) of DEGs.
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visualized top five enriched pathways in BP, CC, and MF. Similar to

KEGG results, DEGs were considerably enriched in immune-related

pathways (e.g., Leukocyte mediated immunity, Lymphocyte

mediated immunity, Antigen binding, Immune receptor activity),

cell adhesion andmigration pathways (e.g., Positive regulation of cell

adhesion, Chemotaxis, Integrin binding), and extracellular matrix

and membrane-related pathways (e.g., Collagen-containing

extracellular matrix, Extracellular matrix structural constituent,

Glycosaminoglycan binding) (Figure 4d).
3.5 WGCNA identification of metabolism-
related hub genes

We investigated activation levels of four metabolic pathways in

the combined TCGA-LUAD and TCGA-LUSC cohort using GSVA

scoring, visualized with a heatmap. Overall, these four metabolic

pathways were upregulated in most samples (Figure 5a). We then
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performed network topology analysis, selecting b = 3 as the optimal

soft threshold determined by scale independence and mean

connectivity, which resulted in a network with favorable scale-free

characteristics and moderate sparsity (Figure 5b). We constructed a

hierarchical clustering dendrogram of co-expression modules,

identifying ten distinct modules (Figure 5c). Following this, we

calculated the correlations among the ten modules and the four

metabolic pathways, revealing a significant negative association

between the MEturquoise module and three of these pathways (R

< -0.1, p < 0.05, Figure 5d). Genes from the MEturquoise module

were then selected for further screening, leading to the identification

of hub genes (Figure 5e). Finally, analysis of GO of these hub genes

demonstrated that they were predominantly enriched in DNA

binding and hydrolysis-related activities (e.g., ATP hydrolysis

activity, Catalytic activity acting on DNA, ATP-dependent DNA

helicase activity, Single-stranded DNA binding), cytoskeleton-

related pathways (e.g., Tubulin binding), cell cycle and division-

related pathways (e.g., Mitotic cell cycle phase transition, Nuclear
FIGURE 5

Metabolism-related genes were screened by WGCNA. (a) Heatmap of the four highly activated metabolic pathways. (b) Analysis of the scale-free
index for various soft-threshold powers (b). (c) Cluster dendrogram of the co-expression modules. Each color indicates a co-expression module.
(d) Module-trait heatmap displaying the correlation between module eigengenes and clinical traits. (e) Correlation between module membership
and gene significance in the turquoise modules. Dots in colors were regarded as the hub genes of the module. (f) The top enriched GO terms of the
hub genes of the module.
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division, Chromosome segregation), and DNA replication

pathways (e.g., DNA replication, DNA-templated DNA

replication) (Figure 5f).
3.6 Developing a risk signature for NSCLC
patients utilizing the TCGA
combined cohort

First, through the overlapping process of hub genes identified

via WGCNA analysis, marker genes from single-cell analysis, and

DEGs, we obtained a collection of 36 genes, which was depicted in a

Venn diagram (Figure 6a). We conducted Cox regression analysis

on these genes and found that several were associated with poor

prognosis in NSCLC (Figure 6b). Also, we executed analysis of

LASSO regression on intersecting genes (Figure 6c), selecting

optimal lambda value of 0.040 to refine the prognostic gene set.
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Through cross-validation curves and coefficient path distributions,

we identified 13 genes with corresponding coefficients, yielding the

following risk score formula:

Risk score  =  TOP2A * (0:05)  +  CDC20 * (0:013) 

+  TPX2 * (0:03)  +  MMP11 * ( − 0:012) 

+  PITX1 * ( − 0:022)  +  COL10A1 * (0:007) 

+  CRABP2 * ( − 0:047)  +  MMP12 * (0:024) 

+  MMP1 * ( − 0:124)  +  COL17A1 * ( − 0:007) 

+  GPX2 * (0:019)  +  KRT6B * (0:047) 

+  KRT6A * (0:057)

We used TCGA combined cohort as training set and validated

model using datasets GSE31210 and GSE37745. KM survival curves

for all three cohorts revealed significantly worse prognosis for high-
FIGURE 6

Construction of risk signature in the merged TCGA cohort. (a) Venn diagram analysis of hub genes of modules, single-cell markers, and DEGs from
the merged TCGA cohort. (b) Univariate cox regression analysis of 36 genes in the merged TCGA cohort. (c) The selection of prognostic genes
based on the optimal parameter l that was obtained in the LASSO regression analysis. (d) K-M curves displayed survival outcomes of patients in two
risk groups from the three cohorts. (e) Time-dependent ROC curves were drawn to assess survival rate at 1-year, 3-year, and 5-year in the
three cohort.
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risk group in comparison with low-risk group (p < 0.05, Figure 6d).

Furthermore, ROC curves for 1-, 3-, and 5-year survival rates in all

three independent cohorts demonstrated that the model exhibited

good predictive performance (AUC > 0.55, Figure 6e).
3.7 Correlation analysis based on
risk signature

Further analyses were conducted, categorizing individuals into

high-risk and low-risk groups based on their respective Risk scores.

At the outset, we analyzed and contrasted the expression variations

of signature genes and clinical attributes between the two risk

groups, subsequently presenting the findings through a heatmap

visualization (Figure 7a). The comparison showed that a greater

proportion of patients in high-risk group had deceased, and Risk

scores of deceased patients were notably higher compared to those

of surviving patients (p < 0.001, Figure 7b). Conversely, the Risk

scores and patient proportions among various age groups did not

exhibit any statistically significant differences (Age < 65 and Age ≥

65, p > 0.05, Figure 7c). Additionally, the high-risk group comprised

a larger percentage of Stage IV patients in comparison to the low-

risk group (p = 0.025). Moreover, the Risk scores for patients in

Stage IV were markedly elevated compared to those in Stages I, II,

and III (p = 0.0044, Figure 7d).

Next, we conducted GSEA based on DEGs in the high-risk

group. The findings revealed a notable increase in the expression of

multiple pathways within the high-risk cohort, including IL-17
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Signaling Pathway, Staphylococcus Aureus Infection, Motor

Proteins, Cell Cycle, and Fructose and Mannose Metabolism

(adjusted p-value < 0.05, Figure 8a). Conversely, Systemic Lupus

Erythematosus showed significant upregulation in the low-risk

group (adjusted p-value < 0.05, Figure 8b).

We further GSVA to compare the scores of different cancer

hallmark pathways between the two risk groups. The analysis

indicated that high-risk group had significantly lower GSVA

scores than low-risk group for following pathways: APICAL_

JUNCTION, CHOLESTEROL_HOMEOSTASIS, APICAL_

SURFACE, EPITHELIAL_MESENCHYMAL_TRANSITION,

DNA_REPAIR, E2F_TARGETS, ESTROGEN_RESPONSE_LATE,

G2M_CHECKPOINT, HEDGEHOG_SIGNALING, HYPOXIA,

MTORC1_SIGNALING, MYC_TARGETS_V1, KRAS_

SIGNALING_DN, MITOTIC_SPINDLE, MYC_TARGETS_V2,

P53_PATHWAY, SPERMATOGENESIS, UNFOLDED_

PROTEIN_RESPONSE, PI3K_AKT_MTOR_SIGNALING,

UV_RESPONSE_UP, and WNT_BETA_CATENIN_SIGNALING

(p < 0.05, Figure 8c).

Following that, we applied the CIBERSORT algorithm to

quantify the infiltration levels of 22 immune cell types in both

risk groups. Among the results that were statistically significant, the

low-risk group exhibited significantly elevated levels of immune cell

infiltration in comparison to the high-risk group (p < 0.05,

Figure 9a). Boxplot analysis further revealed that high-risk group

had significantly higher expression levels of T cell exhaustion

markers (HAVCR2, CXCL13, LAYN, LAG3, PDCD1, TIGIT) and

M2 polarization regulators (CXCR2, CCL2, IL10, CXCR4, IL6,
FIGURE 7

Correlation analysis of risk scores with clinical characteristics. (a) Heatmap of risk model and clinical characteristics. (b–d) Relationship between age,
stage, and survival status with the analysis model.
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TGFB2, TGFB1, TGFB3) In contrast to the low-risk group (p <

0.001, Figures 9b, c).

To further investigate distinctions in immune evasion

capabilities between risk groups, we assessed TIDE scores. The

stacked plot revealed a notably smaller proportion of “True”

responses in the high-risk group, in comparison to the low-risk

group (p = 0.001, Figure 9d). Additionally, the violin plot showed

that infiltration levels of MDSC and CAF were significantly higher

in high-risk group in comparison with low-risk group (p < 0.001,

Figure 9e). Ultimately, we conducted a drug sensitivity prediction

using Inhibitory Concentration 50 (IC50) values, observing that

patients belonging to the high-risk group demonstrated reduced

sensitivity to Bortezomib, Olaparib, Tamoxifen, and Axitinib when

compared to those in the low-risk group (p < 0.05, Figure 9f).
3.8 KRT6B enhances tumorigenic potential
in lung cancer cells

To evaluate the variation in KRT6B mRNA expression among

five cell lines, we initiated the process by conducting RT-qPCR.

Subsequently, we used siRNA-mediated knockdown of KRT6B

expression in the A549 and NCI-H358 lung cancer cell lines and

conducted CCK8 assays. The results obtained from RT-qPCR

indicated that the expression of KRT6B was markedly elevated in

four lung cancer cell lines, in contrast to the normal BEAS-2B cell
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line (p < 0.01, Figure 10a). To validate the knockdown efficiency, we

confirmed that both siRNAs effectively reduced KRT6B expression

(p < 0.01, Figure 10b). The results of the CCK8 assay showed a

notable reduction in absorbance for both cell lines when KRT6B

was knocked down, in comparison to the control groups, indicating

that KRT6B promotes lung cancer cell proliferation (p < 0.01,

Figures 10c, d).
4 Discussion

Globally, lung cancer holds the distinction of being the most

common malignancy and persists as the leading cause of cancer-

related deaths among both males and females (16). NSCLC

accounts for roughly 85% of all lung cancer instances (17). The

etiological factors for NSCLC include smoking, secondhand smoke,

air pollution, genetic predisposition, and other environmental

influences. Despite advancements in early detection and

treatment, the five-year survival rate for NSCLC remains below

20% (18). Recently, targeted therapies have gained traction, but only

a small proportion of patients benefit, and the development of

resistance is common. Recent studies indicate that metabolic

reprogramming is crucial for cancer progression. Tumor cells

typically exhibit the “Warburg effect”, where they preferentially

rely on glycolysis for energy production, even under aerobic

conditions (19). This metabolic shift supports rapid tumor
FIGURE 8

Biological characteristics between high-and low-risk groups. (a, b) The upregulated (a) and downregulated (b) KEGG pathways in high-risk group. (c)
The differences of estimated GSVA scores of cancer hallmarks between high- and low-risk groups. A p value < 0.05 was considered statistically
significant (* p < 0.05; ** p < 0.01; **** p<0.0001; ns, no significance).
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proliferation and results in the accumulation of lactate, which

acidifies the TME and promotes the development of drug

resistance. Furthermore, the degradation products of (GAGs have

been shown to influence tumor invasion and metastasis.

Additionally, glycosphingolipids play important roles in cell

signaling and recognition, with aberrant expression of

gangliosides closely linked to the invasiveness and drug resistance

of NSCLC. Therefore, a deeper understanding of the regulatory

mechanisms governing these metabolic pathways and their

activation in NSCLC cells could not only offer insights into the

progression of NSCLC but also recognize potential therapeutic

targets for future treatment approaches.
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For the current study, we sourced bulk RNA-seq, scRNA-seq

data, along with clinical information pertaining to NSCLC, from

various databases including TCGA, GEO, and TISCH2. We first

identified genes with significant differential expression across

various cell types in single-cell dataset. The results revealed

that genes such as MALAT1, S100A6, HSPA1A, TAC3, CCL17,

FGG, FTL, CD74, and TYROBP exhibited notable expression

differences between cell types. These expression heterogeneities

may reflect the roles of these genes in the onset and progression

of NSCLC, providing valuable clues for subsequent mechanistic

investigations. Next, we annotated the cell subpopulations and

successfully determined 13 major cell types. A comparison
FIGURE 9

Distinct TME landscapes and therapeutic agents between high-and low-risk groups. (a) Box plot illustrating the distributions of 22 immune cell
subsets determined by CIBERSORT between two risk groups. (b, c) Box plot illustrating the expression profiles of T cell exhaustion markers (b) and
M2 polarization regulators (c) between two risk groups. (d) Stacked plot showed the distribution of predicted responders determined by the TIDE
webtool between two risk groups. (e) Violin plot displaying the infiltration levels of CAF and MDSC between two risk groups. (f) Violin plot displaying
the estimated IC50 of therapeutic agents between two risk groups. A p value < 0.05 was considered statistically significant (* p < 0.05; ** p < 0.01;
*** p < 0.001; **** p<0.0001; ns, no significance).
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between the distribution of the top 20 PCs and the 13 identified cell

types indicated that some subpopulations might warrant further

subdivision. These cell type annotations offer valuable insights into

the TME of NSCLC. Notably, after comparing the expression levels

of marker genes across these subpopulations, our findings showed

that the CREM gene was highly expressed in several cell types.

Established as a crucial transcriptional regulator, CREM is involved

in numerous physiological processes including the control of the

cell cycle, the response to stress, and the modulation of the immune

system (20). The high expression of CREM in different cell

subpopulations suggests that it may play multifaceted roles

in NSCLC.

Subsequently, we performed a metabolic analysis involving the 13

primary cell types to investigate the metabolic diversity present among

various cell populations. Our findings revealed that four specific

metabolic pathways—Glycolysis/Gluconeogenesis, Glycosphingolipid

biosynthesis (ganglio series), Glycosaminoglycan degradation, and

Glycosphingolipid biosynthesis (globo and isoglobo series)—were

significantly activated in cancerous cell subpopulations. These

changes in metabolism indicate the capacity of tumor cells to adjust

to their surroundings. Moreover, we hypothesize that the heightened

activity of these pathways is linked to the tumor-specific metabolic

reprogramming, which supplies the energy and support necessary for

cancer cells’ rapid proliferation, invasion, and metastasis. Furthermore,

we noted activation of these four pathways was generally higher in the

Mono/Macro cell subpopulations compared to other subtypes. Given

that Mono/Macro cells are typically involved in immune regulation,
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these metabolic changes may relate to the functional status of immune

cells, such as promoting inflammatory responses or immune

suppression, which may, in turn, facilitate immune escape and

tumor progression. In addition, the discovery of the highly activated

state of four key metabolic pathways in malignant cells provides new

insights into the metabolic characteristics of NSCLC. First, with respect

to treatment resistance, we observed that malignant cells support their

rapid proliferation and survival by enhancing metabolic pathways such

as glycolysis/gluconeogenesis, which may explain why some traditional

therapies are less effective (21, 22). For example, lactic acid

accumulation leads to acidification of the tumor microenvironment,

promoting the development of drug resistance (23). Secondly, in terms

of immune escape, changes in metabolic activity affect the infiltration

and function of immune cells, such as the high activation of metabolic

pathways in mononuclear/macrophage subsets may lead to the

formation of immunosuppressive microenvironments.

In addition, although the current targeted therapy has a certain

effect, the proportion of patients who benefit is low and prone to

drug resistance. In contrast, risk models based on metabolic

characteristics can more accurately identify high-risk patient

groups and provide a basis for personalized treatment. Combined

with immune checkpoint inhibitors, interventions targeting specific

metabolic pathways may reverse immunosuppressive states and

improve treatment response rates. For example, modulating

glycolysis levels or altering specific lipid metabolic pathways may

enhance T cell activity, resulting in synergies with immunotherapy.

In-depth understanding of metabolic reprogramming in NSCLC
FIGURE 10

In vitro validation of the role of KRT6B in NSCLC. (a) RT-qPCR analysis shows high expression of KRT6B in cancer cells. (b) RT-qPCR results confirm
that both si-KRT6B constructs effectively knock down KRT6B expression. (c) CCK8 assay demonstrates that KRT6B knockdown significantly inhibits
the proliferation of A549 cells. (d) CCK8 assay shows that KRT6B knockdown significantly inhibits the proliferation of NCI-H358 cells. A p value <
0.05 was considered statistically significant (** p < 0.01; *** p < 0.001; **** p<0.0001).
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not only helps to reveal the mechanism of disease progression, but

also provides a theoretical basis for developing new combination

treatment strategies.

Through unsupervised clustering analysis, we identified two

distinct groups (C1 and C2), with C2 showing significantly higher

activation in three metabolic pathways, excluding Glycosphingolipid

biosynthesis-ganglio series, compared to C1. This suggests that the two

groups exhibit notable differences in their metabolic profiles, with C2

displaying higher metabolic activity. Additional enrichment analysis

using ORA showed that genes with high expression in C2 are

predominantly associated with various pathways and biological

processes related to cellular signal transduction, immune response,

transcriptional regulation, endocytosis and intracellular transport,

RNA and protein stability, and protein folding and aggregation. In

contrast, C2 showed relatively lower gene enrichment in pathways such

as cell development and remodeling, substance metabolism, and cell-

cell interactions, indicating a less active state in these processes. GSEA

results further corroborated our conclusions. We propose that C2 cells

may possess enhanced protein synthesis capabilities and exhibit

metabolic reprogramming, making them more adaptable and

responsive to the TME’s metabolic demands and immune responses,

while showing reduced activity in processes like phagocytosis and cell

adhesion. Overall, our findings highlight significant metabolic

heterogeneity between different cell subpopulations, providing new

perspectives for understanding the metabolic processes in NSCLC and

their impact on disease progression, and offering potential avenues for

the development of prognostic therapeutic strategies in NSCLC.

Next, we focused on the Malignant cell subpopulations for

targeted analysis. Using UMAP dimensionality reduction and

clustering, we identified seven subgroups and revealed gene

expression differences among them. These subgroups exhibit

considerable diversity in gene expression patterns, with each

subgroup displaying unique marker genes, indicating significant

functional and expression differences even within the same

Malignant cell category. The analysis conducted using CytoTRACE2

and pseudotime revealed substantial differences in the differentiation

potential and developmental pathways among the subpopulations.

Moreover, the activity of four metabolic pathways in different

subgroups was generally consistent with their positions on the

differentiation trajectory. In summary, Malignant_C3, positioned at

the starting point of the developmental pathway, exhibits the strongest

differentiation potential and high metabolic activity; Malignant_C6, at

an early stage of differentiation, shows considerable fluctuations in

metabolic pathway activity; following the differentiation of

Malignant_C4, which has high differentiation potential, into

Malignant_C0, Malignant_C2, and Malignant_C1, the changes in

metabolic pathway activity become more stable; and Malignant_C5,

potentially representing the terminal state of the differentiation

trajectory, still retains some differentiation potential and metabolic

activity. These dynamic changes in metabolic characteristics are closely

linked to cell differentiation pathways, highlighting the complex

cellular heterogeneity within Malignant cells and offering potential

therapeutic targets and novel strategies for NSCLC treatment.

In differential expression and enrichment analysis, KEGG and

GO enrichment results for DEGs revealed significant enrichment in

immune system and inflammation-related pathways, cell adhesion
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and migration, and extracellular matrix in tumor tissues. These

findings indicate that changes in the immune microenvironment

might be critical for the progression of NSCLC. Specifically, the

activation of immune responses and inflammation could be key

mechanisms that allow tumor cells to evade immune surveillance

and drive tumor progression.

Based on the GSVA scores derived from the activation levels of

four metabolic pathways in the combined cohort, we successfully

constructed a scale-free network and identified 10 co-expression

modules by using WGCNA analysis. Upon observation, a notable

inverse relationship was observed between the MEturquoise module

and three distinct metabolic pathways in our analysis. GO analysis

further revealed that the hub genes within the MEturquoise module

were primarily enriched in pathways and biological processes

related to cell cycle regulation, DNA replication, and maintenance

of genomic stability. These recommendations indicate that these

hub genes might be essential for tumor cell proliferation and

survival, and could potentially serve as biomarkers or therapeutic

targets for NSCLC in the future.

Based on these discoveries, we developed a risk signature

utilizing data from the merged cohort. By employing Cox

regression and LASSO regression analyses, we identified 13

prognostic genes in the model: TOP2A, CDC20, TPX2, MMP11,

PITX1, COL10A1, CRABP2, MMP12, MMP1, COL17A1, GPX2,

KRT6B, and KRT6A. TOP2A encodes a protein that activates the

activity of type II DNA topoisomerase and plays a pro-cancer role

in NSCLC (24). CDC20 is a positive regulator of cell division, and

previous studies have shown its elevated expression in lung

adenocarcinoma (25). The gene TPX2 encodes a microtubule-

associated protein and has been established as both a diagnostic

and prognostic indicator in various cancers (26). MMP11 encodes a

secreted protein that regulates multiple physiological processes and

signaling pathways, influencing cell behavior and playing a key role

in the TME (27). The PITX1 gene, belonging to the PITX family, is

crucial for normal embryonic development. Studies have shown

that PITX family members exhibit overexpression in NSCLC

compared to healthy lung tissue (28). The upregulation of

COL10A1, which is a distinct cleavage product of type X collagen,

is prominent in malignant tumors and holds a pivotal role in the

development and advancement of tumors (29). CRABP2 encodes a

special carrier for retinoic acid (RA), and its expression is notably

elevated in NSCLC tissues relative to adjacent normal lung tissue

(30). MMP12 encodes a matrix metalloproteinase and serves as an

immune cell-related biomarker for squamous cell carcinoma of the

lung, reflecting disease status and prognosis (31). MMP1, a member

of the same gene family as MMP12, is considered an adverse

prognostic factor in NSCLC (32). COL17A1 encodes the a chain

of type XVII collagen and promotes cell proliferation in cancer

tissues (33). GPX2, an enzyme belonging to the glutathione

peroxidase group, protects cells from oxidative damage by

converting hydrogen peroxide and fatty acid hydroperoxides into

less reactive forms (34). KRT6B and KRT6A, members of the

keratin gene family, are closely associated with clinical stage,

tumor infiltration, and metastasis in patients (35, 36). The

survival analysis using the Kaplan-Meier method revealed a

notably worse outcome for the high-risk group in contrast to the
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1546764
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1546764
low-risk group, highlighting the robust predictive stability of our

model across three validation cohorts. Additionally, the model

exhibited excellent predictive performance, as evidenced by the

ROC curves corresponding to 1-year, 3-year, and 5-year survival

rates. Our study offers a crucial foundation for evaluating prognosis

and tailoring treatment plans for patients with NSCLC.

To further validate the clinical relevance of the risk signature

model, we performed extensive biological and immunological

investigations. Comparing the two groups, the proportion of

deceased patients was significantly higher in the high-risk group

compared to the low-risk group, and the risk scores of deceased

patients were markedly elevated compared to survivors.

Examination of clinical stage distribution showed a greater

percentage of Stage IV patients within the high-risk group, with

Stage IV patients exhibiting notably higher risk scores than those in

other stages. This suggests that our model has potential for

predicting patient prognosis and staging, offering strong support

for clinical decision-making. Subsequently, we performed GSEA,

which revealed that significant upregulation of the IL-17 signaling

pathway was observed in high-risk group. The upregulation of the

IL-17 pathway may reflect an enhanced inflammatory response in

high-risk patients, which could be associated with immune

responses and tumor progression in the TME (37). Furthermore,

we used GSVA to compare the scoring of various cancer hallmark

pathways between different risk groups. We found that the

pathways in GSVA outcomes have in common the fact that they

all influence cell fate decisions, viability, growth rate, differentiation

state, and response to environmental changes to some extent. In the

high-risk group, lower GSVA scores for these pathways indicate

that their activity is suppressed, which may be a manifestation of

dysregulation of intracellular mechanisms during tumor

development or may reflect the effect of therapeutic interventions.

They all point to a central question: how cells lose their normal

regulation and turn into a malignant phenotype.

The CIBERSORT algorithm revealed that immune cell

infiltration levels in low-risk group were generally higher than

those in high-risk group. This suggests that stronger tumor

immunity is potentially a key factor contributing to better

prognosis in low-risk patients. Moreover, expression levels of T

cell exhaustion markers and M2 polarization regulators were

significantly higher in the high-risk group, indicating a more

severe immunosuppressive state that could promote tumor

progression (38). This may be one of the reasons for the poorer

prognosis observed in the high-risk group. Further TIDE analysis

confirmed that tumors from high-risk patients were more prone to

evading immune surveillance. The high-risk group demonstrated

notably increased infiltration levels of MDSCs and CAFs in

comparison to the low-risk group. Frequently linked to the

formation of an immunosuppressive microenvironment, the

significance of these cell types emphasizes the crucial function of

the TME in tumor progression and highlights its potential as a

viable therapeutic target.

The prediction of drug sensitivity utilizing IC50 values revealed

that patients belonging to the high-risk group displayed decreased

responsiveness to drugs, which included Bortezomib, Olaparib,

Tamoxifen, and Axitinib as opposed to the low-risk group. This
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suggests that patients classified as high-risk may face greater

challenges in treatment and may require more personalized

therapeutic approaches to overcome resistance to traditional

chemotherapy agents.

What’s more, we confirmed the high expression of KRT6B in

lung cancer cells through RT-qPCR. Subsequently, KRT6B was

knocked down, and CCK8 assays demonstrated that KRT6B

significantly enhances the proliferative capacity of lung cancer

cells, thereby promoting tumorigenesis in lung cancer.

However, there are some limitations in this study. It includes

the heterogeneity among different databases and the limitation of

experimental conditions. In addition, because the data are from

public databases, clinical information may not be comprehensive

enough to fully account for individual patient differences. And these

findings are only based on bioinformatics methods and lack further

experimental verification. Finally, although the constructed risk

prediction model performed well in multiple independent

cohorts, its clinical value needs to be confirmed by further

prospective studies.

In conclusion, this study not only provides a detailed analysis of

heterogeneity of NSCLC cells and metabolic features but also

develops a risk signature for NSCLC patients, providing robust

backing for prognosis estimation and customized treatment

strategies. Additionally, notable variations in gene expression

patterns, immune microenvironments, and drug responsiveness

were discernible among various risk groups, offering valuable

insights for the identification of novel prognostic biomarkers.

Addressing these limitations in future research could help

confirm the results of our research.
5 Conclusion

To summarize, single-cell data from public databases was

utilized to reveal the heterogeneity of gene expression and

metabolic characteristics in NSCLC cells. Focusing on the

malignant cell subpopulations, we identified four highly

activated metabolic pathways. Utilizing WGCNA, we discovered

modules and hub genes that have notable correlations with these

metabolic pathways. Subsequently, a risk signature for NSCLC

patients was constructed based on a combined TCGA dataset, and

an in-depth analysis of the model followed. The NSCLC patients

benefit from this model, which offers strong backing for evaluating

prognosis and devising individualized treatment plans. This

research not only provides a comprehensive exploration of

metabolic reprogramming and its biological functions in NSCLC

but also offers new insights into early diagnosis, prognostic

evaluation, and targeted therapies for NSCLC, with significant

clinical implications.
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