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Sciences, Fudan University, Shanghai, China, 2Department of Clinical Laboratory, Shanghai Ninth
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Background:Hyperoxia plays a key role in the development of bronchopulmonary

dysplasia (BPD), a chronic lung disease of preterm infants. This study aimed to

investigate the role of NLRP3/caspase-1/gasdermin D (GSDMD)-mediated

pyroptosis in hyperoxia-induced lung injury in neonatal mice and to evaluate the

potential protective effects of the caspase-1 inhibitor VX-765 on alveolar and

vascular development in hyperoxia-exposed lungs.

Materials and methods: C57/BL6 mouse pups were randomized on postnatal

Day 4 (PN4) to receive daily intraperitoneal injections of VX-765, an effective and

selective caspase-1 inhibitor, or a vehicle during exposure to room air or

hyperoxia (85% O2) for 10 days. Alveolarization was assessed by H&E staining.

Pulmonary vascular development was detected by CD31 immunohistochemistry.

The degree of fibrosis was analyzed by Masson staining. TUNEL and Ki67

immunofluorescence staining was performed to assess overall cell survival in

lung tissue. Concentrations of IL-1bwas detected by ELISA in lung homogenates.

The expressions of pyroptosis-associated proteins, NLRP3, Caspase-1 p20, N-

GSDMD and mature IL-1bwere evaluated by Western blot. Immunofluorescence

colocalization of F4/80 with NLRP3/Caspase-1/IL-1b was performed. CD68 and

AQP5 protein expression was analyzed by immunohistochemistry.

Results: Hyperoxia activated the NLRP3 inflammasome, increased the

production of mature IL-1b, and upregulated the expression of N-GSDMD, the

active form of GSDMD that is responsible for the programmed cell death

mechanism of pyroptosis in lung tissue. Importantly, VX-765 decreased NLRP3,

IL-1b activation, and N-GSDMD expression and improved alveolar and vascular

development by inhibiting pyroptosis of macrophages in hyperoxia-exposed

lungs. Moreover, VX-765 also promoted cell proliferation and AT1 survival in the

hyperoxia-exposed lung.
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Conclusion: NLRP3/Caspase-1/GSDMD-mediated pyroptosis plays a critical role

in hyperoxia-induced neonatal lung injury, and targeting this pathway may be

beneficial for the prevention of lung injury in preterm infants.
KEYWORDS

bronchopulmonary dysplasia (BPD), macrophage, pyroptosis, gasdermin D (GSDMD),
VX-765
1 Introduction

Over 15 million infants are born preterm annually worldwide

(1). Extremely premature infants, born at less than 28 weeks’

gestation, have a high risk of developing multi-organ injury and

developmental abnormalities, predominantly affecting the lungs,

brain, and eyes (2, 3). These premature infants, born with immature

lungs, often experience respiratory failure shortly after birth and

require oxygen (O2) therapy to survive. However, while high-

concentration O2 therapy (hyperoxia) is life-saving, it can also

cause lung inflammation that leads to bronchopulmonary

dysplasia (BPD). BPD is characterized by disrupted alveolar and

vascular development and reduced lung function (2). In the United

States, treating BPD costs approximately $3 billion annually.

Additionally, the mortality rate for patients with severe BPD

complicated by pulmonary hypertension is as high as 50% (4).

Despite recent advances in neonatal intensive care and extensive

research, the pathogenesis of BPD in premature infants remains

poorly understood, and no effective therapy has been identified.

Thus, identifying new molecular pathways that impair alveolar

growth and regeneration after injury of the immature lung may

lead to potential novel therapeutics.

Pyroptosis, a novel form of pro-inflammatory cell death, has been

implicated in various respiratory diseases, including idiopathic

pulmonary fibrosis (IPF) (5), acute lung injury (ALI) (6), and asthma

(7). This process is tightly regulated by inflammasomes, which are

intracellular multiprotein complexes composed of nucleotide-binding

domain leucine-rich repeat containing (NLR) proteins, the adaptor

protein apoptosis-associated speck-like protein containing CARD

(ASC), and the effector enzyme caspase-1 (8). Inflammasomes are

activated by the innate immune system in response to various stimuli,

including pathogen-associated molecular patterns (PAMPs) and host-

derived danger-associated molecular patterns (DAMPs). In pyroptosis,

the signaling cascade is initiated by NOD-like receptor pyrin domain-

containing 3 (NLRP3) inflammasome assembly, typically triggered by

PAMPs and DAMPs (9). Activated caspase-1 subsequently undergoes
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auto-proteolysis to generate active p20 and p10 subunits, which

mediate two key events: cleavage of gasdermin D (GSDMD) to form

membrane pores, and processing of pro-IL-1b and pro-IL-18 into

mature cytokines (10, 11). Elevated levels of NLRP3 and its

downstream effectors—such as caspase-1, GSDMD, and IL-1b—have

been detected in the lungs of animal models of BPD. Notably,

genetic deletion of NLRP3 or GSDMD alleviates inflammation and

reduces vascular leakage in these models (12, 13). Through

simultaneous induction of cell lysis and the release of pro-

inflammatory cytokines, pyroptosis drives a vicious cycle of tissue

damage and immune activation.

There is a growing recognition of the crucial role IL-1b plays in the
inflammatory pathogenesis of BPD. Clinical studies have shown that

increased levels of IL-1b in the tracheal aspirates of preterm infants

correlate with a higher incidence of BPD (14, 15). Experimental models

of BPD have also demonstrated that treatment with an IL-1 receptor

antagonist can prevent lung inflammation and injury in newborn mice

exposed to antenatal inflammation and moderate postnatal hyperoxia

(16). These findings highlight the critical role of IL-1b in the

pathogenesis of neonatal lung injury. While previous studies have

primarily focused on upstream inflammasome components or

downstream cytokine blockade (e.g., IL-1 receptor antagonists,

NLRP3 knockout) (13), the direct targeting of caspase-1, the central

effector protease, remains underexplored in neonatal lung disease. This

gap is notable given the established safety profile of caspase-1 inhibitors

in other inflammatory conditions and their potential advantage over

broad-spectrum anti-inflammatory approaches that may compromise

host defense. Therefore, we utilized VX-765, an effective and specific

inhibitor of caspase-1 (17, 18), to investigate the mechanism and effects

of pyroptosis on lung injury following hyperoxia exposure in

newborn mice.
2 Materials and methods

2.1 Western blotting

Lungs were lysed with RIPA lysis buffer. SDS-PAGE was used to

quantify total protein, which was then transferred to a

polyvinylidene difluoride (PVDF) membrane (Millipore, Bedford,

MA, USA) for immunoblotting using the antibodies listed below:

anti-b-tubulin diluted 1:5000 (ab6046, Abcam, UK), anti-GSDMD
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diluted 1:1000 (ab209845, Abcam, UK), anti-NLRP3 diluted 1:1000

(AG-20B-0042, Adipogen, USA), anti-caspase1 (caspase-1 p20)

diluted 1:1000 (AG-20B-0014, Adipogen, USA), anti-IL-1b
diluted 1:1000 (12507, CST, USA), anti-VEGF diluted 1:1000 (sc-

7269, Santa Cruz, USA), anti-VEGFR2 diluted 1:1000 (sc-6251,

Santa Cruz, USA), anti-a-SMA diluted 1:1000 (sc-53142, Santa

Cruz, USA), Rabbit Anti-Mouse IgG L(D3V2A) (HRP) diluted

1:5000 (58802, CST, USA), and Mouse Anti-Rabbit IgG L27A9

(HRP) diluted 1:5000 (5127, CST, USA). Proteins were visualized

using enhanced chemiluminescence reagents (A38555, Thermo

Scientific, USA) and were analyzed using a Bio-Rad ChemiDoc

XRS + gel documentation system.
2.2 Animals

Male and female, 8–10-week-old C57BL/6 mice were obtained

from Beijing Vital River Laboratory Animal Technology Co., Ltd.

(under license number SCXK(Jing)2021-0006). Adult and neonatal

mice were housed in a temperature- (22 ± 1°C) and humidity- (60 ±

5%) controlled room with a 12-hour light/dark rotation. Water and

standard rodent chow were provided ad libitum. All experiments

were authorized by the Animal Care and Use Committee at the

Children’s Hospital of Fudan University (No. 2020-64), which

complies with the Care and Use of Laboratory Animals guidelines

of the National Institutes of Health (1978 revision, National

Institutes of Health publication #8023).
2.3 Neonatal mouse model of BPD

Newborn mice were pooled and randomized to dams at the day

of birth (born within 12 h of each other). Half of each litter was

exposed to 85% O2 (hyperoxia, HO) for 7 or 14 days, whereas the

other pups were exposed to room air (21% O2, RA) as described

previously (19). The nursing dams were rotated between hyperoxia

and Room Air litters every 24 h to avoid O2-related toxic effects on

the dams. Exposure to hyperoxia was performed in a 90 × 42 × 38

cm plexiglas chamber. Oxygen concentrations were monitored with

a Miniox II monitor (Hangzhou, China).
2.4 Treatment with VX-765

Newborn C57BL/6 mice were randomized to receive room air

(21% O2) plus vehicle (normal saline), room air plus VX-765 (a

potent and selective inhibitor of the IL-converting enzyme/caspase-

1), hyperoxia (85% O2) plus vehicle, or hyperoxia plus VX-765 from

Postnatal Day 4 (PN4) after being exposed to a hyperoxic

environment. VX-765 (50 mg/kg, HY-13205, MedChemExpress,

USA) or an equal volume of vehicle was administered daily using

intraperitoneal injection during continuous exposure to room air or

hyperoxia for 10 days. On PN14, the pups were anesthetized using

0.1% isoflurane, tracheotomized, and cannulized, and subsequently

euthanized for analyses.
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2.5 Histopathological analysis

Lungs were infused with 4% paraformaldehyde via a tracheal

catheter at 25 cm H2O pressure for 5 min, fixed overnight,

embedded in paraffin wax, and then sectioned. The lung samples

were sliced into 5 mm paraffin sections. The sections were stained

with a hematoxylin and eosin (H&E) staining kit (G1003,

Servicebio, China) and a Masson’s trichrome (MASSON) staining

kit (G1006, Servicebio, China) according to the manufacturer’s

instructions. Immunohistochemical staining of paraffin sections

was also performed to localize specific protein antigens in the

lungs. Briefly, sections were subjected to antigen repair,

endogenous enzyme quenching, and blocking with 5% goat

serum. Primary antibodies anti-CD68 diluted 1:200 (GB113109-

100, Servicebio, China), anti-CD31 diluted 1:200 (GB11063-2-100,

Servicebio, China) and anti-AQP5 diluted 1:200 (GB113318-100,

Servicebio, China) were incubated at 4 °C overnight.

After secondary antibodies were added, specific antigens were

visualized with the DAB substrate kit (G1211, Servicebio, China),

counterstained with hematoxylin, and sealed with neutral gum. All

stained sections were microphotographed using a bright field

microscope (Olympus BX53, Olympus, Japan).
2.6 Immunofluorescence assay

Lung sections were blocked with 5% goat serum and then

incubated with the following primary antibodies: anti-Ki67

diluted 1:200 (GB121141-100, Servicebio, China), anti-NLRP3

diluted 1:200 (AG-20B-0042, Adipogen, USA), anti-caspase-1

(caspase-1 p20) diluted 1:200 (AG-20B-0014, Adipogen, USA),

anti-GSDMD diluted 1:200 (ab209845, Abcam, UK) and anti-F4/

80 diluted 1:200 (GB113373-100, Servicebio, China) overnight in a

4°C humidified chamber. Next, fluorescent secondary antibodies

diluted 1:500 (G1222 and G1223, Servicebio, China) were added to

each slide before counterstaining the section with DAPI (G1012,

Servicebio, China). Finally, the slides were sealed with 50% glycerol.

Images were captured using a Pannoramic MIDI slide scanner.
2.7 Immunofluorescence double-staining
assay

Lung sections were dewaxed, antigen-repaired, and incubated

with two primary antibodies: anti-caspase-1 (caspase-1 p20) diluted

1:200(AG-20B-0014, Adipogen, USA) and anti-F4/80 diluted 1:200

(GB113373-100, Servicebio, China) followed by fluorescent

secondary antibodies (G1222 and G1223, Servicebio, China).

DAPI (G1012, Servicebio, China) was used to stain the sections,

and images were captured using a Pannoramic MIDI slide scanner.
2.8 Lung Histology and Morphometry

Lungs were infused with 4% paraformaldehyde via a tracheal

catheter at 25 cm H2O pressure for 5 min, fixed overnight,
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embedded in paraffin wax, and then sectioned. Hematoxylin and

eosin staining was performed for lung histology, radial alveolar

count (RAC), and mean linear intercept (MLI) measurements as

previously described (20). Micro-vessel density (MVD) assesses the

degree of microvascular development by CD31 staining in lung

tissues (21).
2.9 Assessment of lung inflammation

Macrophage infiltration was determined by immunostaining

with an anti-CD68 antibody. The number of CD68-stained cells in

the alveolar airspaces of lung tissue sections were counted from five

random high power fields (HPF) taken from the 20 × objective on

each slide.
2.10 Terminal transferase dUTP nick-end
labeling

In situ TUNEL for the detection of apoptosis was performed on

PN14 tissue sections using an in situ cell death detection

fluorescence kit (G1504-50T, Servicebio, China) as the per

manufacturer’s instructions. TUNEL-positive cells were counted

in at least 10 nonoverlapping HPFs (×400 magnification) from

three to four animals per group.
2.11 Assessment of lung cell proliferation
and death

Cell proliferation was assessed by immunofluorescent staining

for Ki67, and the proliferating index was calculated as the average

percentage of Ki67-positive nuclei in total nuclei in five random

HPF on lung sections from each animal. Cell death was studied

using a TUNEL assay and the cell death index was calculated as the

average percentage of TUNEL-positive nuclei in total nuclei in five

random HPF on lung sections from each animal (22).
2.12 IL-1b ELISA

Lung tissue homogenate was used for ELISA to determine the

IL-1b concentration. ELISA was performed according to the

manufacturer’s guidance (IL-1b Mouse Uncoated ELISA Kit,

Invitrogen, #88-7013-22, USA).
2.13 ROS staining of frozen section
experiment

Lung tissue frozen sections were stained with ROS dye solution

(Sigma Aldrich, D7008, USA) to detect ROS level according to the

manufacturer’s instructions.
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2.14 Statistical data analysis

Image Pro Plus 6.0 and Image J software were used for

quantitative analysis of histological sections and western blotting.

All data are given as mean value ± SEM. Statistically significant

differences between different groups were investigated using one-

way analysis of variance (ANOVA) with Prism 9.0 software

(GraphPad Software, Inc.) supplemented with Student’s t-test (ns,

not significant, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001).

Tukey’s multiple comparison test was also used. For data in

Gaussian distribution and without homogeneity variance, Welch’s

correction was used.
3 Results

3.1 Hyperoxia impaired alveolar tissue and
vascular growth in neonatal mice

Exposure to hyperoxia led to lung impairment on postnatal Day

7 (PN7) and postnatal Day 14 (PN14), characterized by a

heterogeneous distribution of enlarged air spaces, reduced radial

alveolar count (RAC), and increased mean linear intercept (MLI) at

both time points (Figures 1A–D). CD31 immunohistochemistry

staining revealed that exposure to hyperoxia significantly

suppressed vascular development in the lung of pups, resulting in

reduced mean micro-vessel density (MVD) on both PN7 and PN14

(Figures 1E, F). Masson staining showed no difference in collagen

deposition between the control and hyperoxia group on PN7, but a

significant increase in collagen deposition was observed on PN14

(Figures 1G, H), suggesting that lung tissue fibrosis mainly occurs in

the late stage of BPD. These results were consistent with the

pathological hallmarks of BPD, indicating that hyperoxia

impaired the growth of alveolar and vascular tissues in

neonatal mice.
3.2 Cell survival decreased and cell death
increased in the hyperoxia-exposed lungs

Impaired vascularization and pulmonary vascular remodeling

are key features of hyperoxia-induced lung injury and are associated

with the development of pulmonary hypertension. Compared to the

room air group, the hyperoxia group exhibited lower expression

levels of vascular endothelial growth factor (VEGF) and VEGF

receptor 2 (VEGFR2), but had higher protein levels of a-smooth

muscle actin (a-SMA), a pulmonary fibrosis biomarker on PN14

(Figures 2A, B). Immunofluorescence staining showed that

hyperoxia significantly suppressed cell proliferation and increased

cell death in the lungs of pups (Figures 2C–E). Additionally,

hyperoxia reduced the expression of aquaporin 5 (AQP5), an

important marker of type I alveolar epithelial cells (ATI),

indicating severe impairment of ATI in hyperoxia-stimulated

lungs (Figures 2F, G). Furthermore, the levels of reactive oxygen
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FIGURE 1

Hyperoxia impaired alveolar tissue and vascular growth in neonatal mice. (A) Schematic representation of mouse model of hyperoxia-induced
bronchopulmonary dysplasia (BPD). Newborn mice were exposed to room air (21% O2, RA) or hyperoxia (85% O2, HO) from postnatal Day 1 (PN1) to
postnatal Day 14 (PN14). Mice were sacrificed on PN14. (B) Representative H&E staining lung tissue sections from PN7-RA, PN7-HO, PN14-RA, and
PN14-HO mice (scale bar = 50 mm). (C) Quantitative analysis of radial alveolar count (RAC) analyzed using Image J on H&E staining. (D) Quantitative
analysis of mean linear intercept (MLI) analyzed using Image J on H&E staining. (E) IHC staining of CD31 (marker of endothelial cells, yellow-brown
area) expression in the lungs of pups on PN7 and PN14 (scale bar = 20 mm). (F) Quantitative analysis of mean micro-vessel density (MVD) measured
using Image-Pro Plus 6.0 on IHC staining of CD31. (G) Masson staining in the lungs of pups on PN7 and PN14 (scale bar = 50 mm). (H) Quantitative
analysis of collagen of the septal area analyzed using Image J on masson staining. Data represent results from three individual studies. Statistical
analysis of the data was performed using Student’s t test (C, D, F, H). Data are shown as mean ± SEM; n = 6 per group. ns, not significant, **P<0.01,
****P<0.0001. H&E, hematoxylin and eosin; IHC, immunohistochemistry.
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species (ROS) were significantly elevated in hyperoxia-exposed

lungs (Figures 2H, I). We also found that hyperoxia significantly

increased the production of mature IL-1b in the lungs of pups on

PN14 (Figure 2J). This indicates that sustained hyperoxic

stimulation creates a hyperinflammatory environment in the lung

tissue of BPD mice.
3.3 NLRP3/Caspase-1/GSDMD-mediated
macrophage pyroptosis was significantly
enhanced in bronchopulmonary dysplasia

Western blot analysis revealed significant activation of NLRP3

inflammasome, significant increases in Caspase-1 p20 expression, N-

GSDMD cleavage, and the secretion of mature IL-1b in the hyperoxia
group on PN7 and PN14; in contrast, these markers were nearly

undetectable in the air control group (Figures 3A-D). Histological

examination showed a marked infiltration of macrophages in the

hyperoxia-exposed lungs on PN7 and PN14 compared to those of the

control group (Figures 3E, F). Additionally, we performed double

fluorescent staining on lung sections to evaluate co-localization of

NLRP3, Caspase-1 p20, and N-GSDMD (shown in red) with F4/80

(shown in green) on PN14. The hyperoxia group exhibited the

brightest red and green fluorescence, and importantly, the

fluorescence merged completely (yellow color) in the hyperoxia

group (Figures 3G-J); whereas, the co-localized yellow color was

significantly weaker in the room air group. These findings indicated

that the canonical signaling pathway of pyroptosis in macrophages

was markedly activated after exposure to hyperoxia.
3.4 Caspase-1-specific inhibitor VX-765
improved alveolar development in the
mice of hyperoxia-induced
bronchopulmonary dysplasia

We investigated the effects of caspase-1 inhibition on alveolar

development (Figure 4A). As shown in Figure 4B, there was no

difference in the degree of alveolarization between the groups exposed

to room air. However, histologically, hyperoxia-exposed animals

showed marked simplification of the alveoli, evidenced by larger

alveoli with increased alveolar diameters, whereas treatment with

VX-765 increased alveolarization as evidenced by decreased

simplification. VX-765 administration increased RAC and

decreased the MLI in treated hyperoxia-exposed lungs, indicating

improved alveolarization compared with hyperoxia-exposed, vehicle-

treated lungs (Figures 4C, D). Additionally, treatment with VX-765

significantly increased MVD (Figures 4E, F) and reduced collagen

deposition (Figures 4G, H) during hyperoxia, compared with the

hyperoxia-exposed, vehicle-treated group. Consistent with increased

vascular development, VX-765 also upregulated the expression of

VEGF as well as VEGFR2 and downregulated the expression of a-
SMA (Figures 5A, B). These results indicated that the inhibition of

caspase-1 improves angiogenesis and decreases vascular remodeling

during hyperoxia exposure in newborn mice.
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3.5 VX-765 enhanced cell survival and
reduced cell death in the mice lung tissue
of bronchopulmonary dysplasia

As previously stated, hyperoxia is known to reduce cell survival

and cause cell death in BPD models. We observed that the

hyperoxia-exposed, vehicle-treated group showed a distinct

reduction in cell proliferation compared to the RA-exposed,

vehicle-treated group (Figures 5C, E). However, the VX-765-

treated hyperoxic group exhibited markedly increased cell

proliferation compared to the vehicle-treated hyperoxic group

(Figures 5C, E). When assessing cell death, the results showed

that the hyperoxia-exposed, vehicle-treated group had a significant

increase in cell death compared to the RA-exposed, vehicle-treated

group (Figures 5D, E). In contrast, the hyperoxia-exposed group

treated with VX-765 had significantly less cell death than the vehicle

hyperoxic group (Figures 5D, E). Furthermore, VX-765 treatment

greatly increased AQP5 expression and promoted AT1 cell survival

in hyperoxia-stimulated lungs, thereby exerting a protective effect

on the alveolar epithelium (Figures 5F, G). Additionally, VX-765

administration substantially reduced the secretion of mature IL-1b
in hyperoxic lungs (Figure 5H).
3.6 VX-765 inhibited NLRP3/Caspase-1/
GSDMD-mediated macrophage pyroptosis
in the mice lung tissue of
bronchopulmonary dysplasia (BPD).

We examined the effect of VX-765 administration on caspase-1

activity and the expression of NLRP3 inflammasome signaling

proteins, along with pyroptosis-related proteins. Hyperoxia

increased the expression of NLRP3, active Caspase-1 p20, and N-

GSDMD in the vehicle-treated mouse pups, but these levels were

significantly decreased in VX-765-treated mice (Figures 6A, B).

Caspase-1 inhibition also significantly reduced the maturation and

secretion of IL-1b (Figures 5H, 6A, B). The hyperoxia-exposed,

vehicle-treated mouse pups had a large increase in macrophage

counts compared to the RA-exposed, vehicle-treated group

(Figures 6C, D). However, VX-765 administration markedly

decreased macrophage infiltration induced by exposure to

hyperoxia (Figures 6C, D). Furthermore, immunofluorescence

staining of lung tissue sections showed increased expression of

NLRP3, Caspase-1 p20, and N-GSDMD in vehicle-treated mouse

pups exposed to hyperoxia. Treatment with VX-765 also reduced

the enhanced expression of these proteins in lung macrophages

(Figures 6E-H).
4 Discussion

Bronchopulmonary dysplasia (BPD) is a leading cause of

chronic lung disease in preterm infants, contributing significantly

to long-term respiratory morbidity and mortality. Understanding

the underlying mechanisms and developing effective therapies are
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FIGURE 2

Cell survival decreased and cell death increased in hyperoxia-exposed lungs. (A) Western blots of VEGFR2, VEGF, and a-SMA expression in hyperoxic
lungs on postnatal Day 14 (PN14). (B) Quantification of protein expression on (A) measured using Image J. (C) TUNEL Assay (green signals) and DAPI
nuclear stain (blue signals) were used to identify dead cells on PN14 (scale bar = 20 mm). (D) IF staining for Ki67 (red signals) and DAPI staining (blue
signals) were performed to assess cell proliferation on PN14 (scale bar = 20 mm). (E) Quantification of cell death (percentage of apoptotic nuclei
divided by total nuclei) and the cell proliferation index (percentage of Ki67 positive nuclei divided by total nuclei). (F) IHC staining for AQP5 (yellow-
brown area) was performed to evaluate the survival of alveolar epithelial cells type I (ATI) on PN14 (scale bar = 20 mm). (G) Quantitative analysis of
the AQP5-positive area analyzed using Image J. (H) IF staining for reactive oxygen species (ROS) (red signals) was performed to assess the redox
level in lung on PN14 (scale bar = 20 mm). (I) Quantitative analysis of the mean fluorescence intensity of ROS analyzed using Image J. (J) IL-1b was
detected using ELISA in the lungs of pups on PN14. Data represent results from three individual studies. Statistical analysis of the data was performed
using Student’s t test (B, E, G, I, J). Data are shown as mean ± SEM; n = 6 per group. **P < 0.01, ***P < 0.001, ****P < 0.000. IHC,
immunohistochemistry; IF, immunofluorescent.
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FIGURE 3

NLRP3/Caspase-1/GSDMD-mediated macrophage pyroptosis was significantly enhanced in bronchopulmonary dysplasia (BPD). (A, B) Western blots
of pyroptosis-related proteins expression in the hyperoxic lung on postnatal Day 7 (PN7) and postnatal Day 14 (PN14). (C, D) Quantification of
protein expression in Figure (A, B) measured using Image J. (E) IHC staining for CD68 (marker of macrophages, indicated with red arrows) in the
lungs of pups on PN7 and PN14 (scale bar = 20 mm). (F) Quantitative analysis of the CD68-positive area analyzed using Image J. (G) IF co-
localization images of F4/80 (marker of mouse macrophages, green) with NLRP3 (red) in lung tissues on PN14, DAPI (blue) (scale bar=20 mm). (H) IF
co-localization images of F4/80 (green) with Capase-1 p20 (red) in lung tissues on PN14, DAPI (blue) (scale bar=20 mm). (I) IF co-localization images
of F4/80 (green) with N-GSDMD (red) in lung tissues on PN14, DAPI (blue) (scale bar=20 mm). (J) Quantitative analysis of double-positive cells on
Figure (G-I). Data represent results from three individual studies. Statistical analysis of the data was performed using Student’s t test (C, D, F, J). Data
are shown as mean ± SEM; n = 6 per group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.000. IHC, immunohistochemistry; IF, immunofluorescent.
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FIGURE 4

Caspase-1-specific inhibitor VX-765 improved alveolar development in the mice of hyperoxia-induced bronchopulmonary dysplasia (BPD). (A)
Schematic representation of mouse model of hyperoxia-induced BPD with VX-765 treatment. Newborn mice were randomized to receive room air
(21% O2) plus vehicle (saline), room air plus VX-765, hyperoxia (85% O2) plus vehicle, or hyperoxia plus VX-765 from postnatal Day 4 (PN4) after
being exposed to a hyperoxic environment. Mice were sacrificed on postnatal Day 14 (PN14). (B) Representative H&E staining lung tissue sections
from each group on PN14 (scale bar = 50 mm). (C) Quantitative analysis of radial alveolar count (RAC) analyzed using Image J on H&E staining. (D)
Quantitative analysis of mean linear intercept (MLI) analyzed using Image J on H&E staining. (E) IHC staining of CD31 (marker of endothelial cells,
yellow-brown area) expression in the lungs of pups from each group on PN14 (scale bar = 20 mm). (F) Quantitative analysis of mean micro-vessel
density (MVD) measured using Image-Pro Plus 6.0 on IHC staining of CD31. (G) Masson staining in the lungs of pups from each group on PN14
(scale bar = 50 mm). (H) Quantitative analysis of collagen of the septal area analyzed using Image J on masson staining. Data represent results from
three individual studies. Statistical analysis of the data was performed using one-way ANOVA (C, D, F, H), followed by Tukey’s multiple comparisons
test. Data are shown as mean ± SEM; n = 6 per group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. H&E, hematoxylin and eosin;
IHC, immunohistochemistry.
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critical for improving outcomes in this vulnerable population.

Hyperoxia-induced neonatal lung injury models in newborn

rodents are widely used for mechanistic studies and exploring

potential therapies because they share many developmental
Frontiers in Immunology 10
similarities with preterm infants at risk for BPD (23, 24). In this

study, we used a newborn mouse model to test the hypothesis that

hyperoxia-induced lung injury is mediated by inflammasome

activation and that inhibition of caspase-1, a critical component
FIGURE 5

VX-765 enhanced cell survival and reduced cell death in the mice lung tissue of bronchopulmonary dysplasia (BPD). (A) Western blots of VEGFR2,
VEGF expression in the lungs of mice from each group on postnatal Day 14 (PN14). (B) Quantification of protein expression on (A) measured using
Image J. (C) IF staining for Ki67 (red signals) and DAPI staining (blue signals) were performed to assess cell proliferation on PN14 (scale bar = 20 mm).
(D) TUNEL Assay (green signals) and DAPI nuclear stain (blue signals) were used to identify dead cells on PN14 (scale bar = 20 mm). (E) Quantification
of cell death (percentage of apoptotic nuclei divided by total nuclei) and the cell proliferation index (percentage of Ki67 positive nuclei divided by
total nuclei). (F) IHC staining for AQP5 (yellow-brown area) was performed to evaluate the survival of alveolar epithelial cells type I (ATI) on PN14
(scale bar = 20 mm). (G) Quantitative analysis of the AQP5-positive area analyzed using Image J. (H) IL-1b was detected by ELISA in the lung of pups
from each group on PN14. Data represent results from three individual studies. Statistical analysis of the data was performed using one-way ANOVA
(B, E, G, H), followed by Tukey’s multiple comparisons test. Data are shown as mean ± SEM; n = 6 per group. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. IHC, immunohistochemistry; IF, immunofluorescent.
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FIGURE 6

VX-765 inhibited NLRP3/Caspase-1/GSDMD-mediated macrophage pyroptosis in the mice lung tissue of bronchopulmonary dysplasia (BPD). (A)
Western blots of pyroptosis-related protein expression in the lung from each group on postnatal Day 14 (PN14). (B) Quantification of protein
expression on the Figure (A) measured using Image J. (C) IHC staining for CD68 (marker of macrophages, indicated with red arrows) in the lungs of
pups from each group on PN14 (scale bar = 20 mm). (D) Quantitative analysis of the CD68-positive area analyzed using Image J. (E) IF co-
localization images of F4/80 (marker of mouse macrophages, green) with NLRP3 (red) in lung from each group on PN14, DAPI (blue) (scale bar=20
mm). (F) IF co-localization images of F4/80 (green) with Capase-1 p20 (red) in lung from each group on PN14, DAPI (blue) (scale bar=20 mm). (G) IF
co-localization images of F4/80 (green) with N-GSDMD (red) in lung from each group on PN14, DAPI (blue) (scale bar=20 mm). (H) Quantitative
analysis of double-positive cells on Figure (E-G). Data represent results from three individual studies. Statistical analysis of the data was performed
using one-way ANOVA (B, D, H), followed by Tukey’s multiple comparisons test. Data are shown as mean ± SEM; n = 6 per group. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001. IHC, immunohistochemistry; IF, Immunofluorescent.
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of the inflammasome cascade, attenuates hyperoxia-induced lung

injury in neonatal mice. We observed that hyperoxia activated the

NLRP3 inflammasome, increased macrophage infiltration, and

decreased alveolarization and vascular development as well as

pulmonary fibrosis in the neonatal lung. More importantly, we

demonstrated that caspase-1 inhibition with VX-765, a potent

bioavailable and nontoxic small molecule inhibitor of caspase‐1

(25), downregulated the NLRP3 inflammasome, reduced lung

inflammation, decreased pyroptosis-mediated cell death, increased

cell proliferation, improved alveolarization and vascular

development, and reduced pulmonary fibrosis in hyperoxia-

exposed mice. These results suggest that hyperoxia-induced lung

injury may be mediated by the NLRP3-caspase-1-GSDMD axis, and

targeting the inflammasome may be beneficial for preventing lung

injury in preterm infants.

Macrophages play key roles in maintaining tissue homeostasis by

initiating and resolving inflammation in the immune system (26).

Clinical and animal studies have demonstrated increased neutrophils

and macrophages in bronchoalveolar lavage fluid (27, 28) and

tracheal aspirates from subjects with BPD (15) In this study, we

found that antagonism of caspase-1 downregulated the expression of

NLRP3 inflammasome proteins, leading to decreased macrophage

infiltration in the alveolar spaces of lungs exposed to hyperoxia. This

finding aligns with those of previous research showing that caspase-1-

deficient mice exhibit markedly reduced leukocyte infiltration in the

airway after rhinovirus infection (29). Recent findings have shown

(30) that hyperoxia activates immature macrophages in the lungs,

promotes the release of inflammatory cytokines, and damages

regenerative sites in alveolar epithelial cells via the IL-6/STAT3

axis, thereby inhibiting lung growth and development. However,

the mechanism by which hyperoxia leads to the massive release of

inflammatory cytokines from macrophages is not fully understood.

Based on the activation of NLRP3-mediated pyroptosis in BPD lung

tissues, we further determined the occurrence of pyroptosis in

massively infiltrated macrophages in the lung tissues of BPD mice

using immunofluorescence co-localization of F4/80 with NLRP3,

caspase-1 p20, and N-GSDMD. Pyroptosis further amplifies the

lungs’ inflammatory immune response, resulting in epithelial and

endothelial injury. As a result, lung macrophages play a crucial role in

developing BPD in the early stages of inflammation and subsequent

impaired alveolarization.

In contrast to previous studies, Fredrick et al. identified the

presence of hyperactivated NLRP1-mediated pyroptosis in lung

tissues of BPD rats (31), but our study also found that the cells

undergoing NLRP3-mediated pyroptosis may be mainly

inflammatory macrophages that are heavily infiltrated in the

lungs. In addition, we found that NLRP3/Caspase-1/GSDMD

mediated pyroptosis was also significantly activated in the 7-day

hyperoxia group, suggesting that inflammation and pyroptosis are

involved in the development of the disease at an early stage.

However, collagen fibers were not significantly overexpressed

until day 14, suggesting that inflammation and pyroptosis occur

earlier than pulmonary fibrosis, and may be an important

etiological factor in exacerbating the long-term pulmonary

fibrosis and severe vascular dysplasia in BPD mice.
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Although we demonstrated that hyperoxia induced macrophage

pyroptosis to be activated in lung tissues of BPD mice, we still cannot

exclude the possibility that other non-immune cells, such as epithelial

or endothelial cells, also undergo pyroptosis. Moreover, pyroptosis is

mainly an innate immune response. Macrophages are a central

component of the intrinsic immune system, and it has also been

shown that lung macrophages are essential for immunoregulatory

functions in BPD (26, 32, 33). Therefore, we may be more inclined to

consider that pyroptosis in intrinsic immune cells (i.e., macrophage)

play a more dominant role in the pathogenesis of BPD than

parenchymal cells in the lungs. Neutrophils are also an important

component of the intrinsic immune system and are also involved in

the inflammatory response in the BPD lungs (28); however, most

studies on GSDMD-induced pyroptosis have focused on

macrophages. Although GSDMD has been shown to have a role in

neutrophil function, in contrast to macrophages, GSDMD activated

by NLRP3 in neutrophils does not readily lead to pyroptosis (34), but

rather promotes neutrophil extracellular trap (NET) formation by

targeting nucleus formation (35). Recently, it has also been reported

that neutrophils can indeed promote lung injury in BPD through

NET (36, 37).

The deleterious effects of hyperoxia result from both direct injury

mediated by reactive oxygen species (ROS) and indirect injury from

lung inflammation (38). Hyperoxia causes cell injury because cellular

antioxidant defenses become overwhelmed, leading to the

accumulation of toxic levels of ROS and subsequently apoptosis of

alveolar epithelial cells (39). Similarly, we found that ROS activity was

significantly enhanced in hyperoxia-stimulated lungs, which is

consistent with the findings of previous reports (40). The mechanism

linking hyperoxia to the upregulation of caspase-1 in the pathogenesis

of BPD remains unknown. Recent research indicates that

mitochondrial ROS production is situated upstream of the NLRP3

inflammasome (41, 42) and that ROS can serve as a redox signaling

molecule to activate the NLRP3 inflammasome (43). Furthermore,

ROS blockade via chemical scavengers of ROS, as well as

pharmacological and genetic inhibition of NADPH oxidase, have

been shown to suppress inflammasome activation and pyroptosis in

response to a wide range of stimuli (44, 45). Collectively, our results

support the finding that NLRP3 inflammasome-mediated pyroptosis

plays a key role in the pathogenesis of hyperoxia-induced lung injury.

BPD is characterized by alveolar simplification with “dysmorphic”

microvasculature and decreased vessel growth (2, 24, 46). Among

inflammatory mediators, IL-1 has emerged as a promising therapeutic

target in neonatal inflammatory lung diseases. This is supported by

evidence showing that treatment with an interleukin-1 receptor

antagonist (IL-1Ra) mitigates murine BPD induced by perinatal

inflammation and hyperoxia (47–49). VX-765, a peptidomimetic

caspase-1 inhibitor, selectively blocks the cleavage of pro-IL-1b,
thereby reducing IL-1b production during pyroptosis (50, 51).

Although VX-765 has not previously been evaluated in experimental

models of BPD, our study demonstrates, for the first time, its dual

therapeutic potential in attenuating hyperoxia-induced pulmonary

inflammation and preserving alveolar architecture. Specifically,

pharmacological inhibition of caspase-1 signaling with VX-765

significantly improved alveolarization following 14 days of hyperoxia
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exposure. Further, we found improved vascular density accompanied

by improved alveolarization in the VX-765-treated hyperoxia pups.

Moreover, these structural changes were associated with increased

expression of VEGF and VEGFR2. VEGF signaling is impaired in

rodents exposed to chronic hyperoxia (52). The disruption of

pulmonary VEGF leads to abnormal vascular and alveolar

development and lung hypoplasia (53, 54). Previous studies have

reported that caspase-1 activation impairs VEGFR2 expression and

caspase-1 depletion improves angiogenesis (55, 56). Therefore, we

postulate that the protective effects of VX-765 in alveolar and

vascular development are due to its anti-inflammatory effects and

ability to augment angiogenesis via caspase-1 inhibition. Our study has

some limitations. First, we used extremely high levels of oxygen to

induce lung injury, which is rarely used clinically in preterm infants.

However, lung injury induced by this level of oxygen was like clinically

severe BPD. Second, the etiology of lung injury in preterm infants is

multifaceted, and we did not assess other contributing factors such as

intrauterine infection and mechanical ventilation. It will be important

to further investigate the role of caspase-1-mediated pyroptosis in

intrauterine infection, postnatal moderate hyperoxia-induced injury,

and mechanical ventilation-induced lung injury.

VX-765 was also well tolerated, as we did not observe any

deleterious effects of caspase-1 inhibition in the lungs of room-air-

exposed animals. Furthermore, VX‐765 has been proven to be safe for

humans when administered orally in a 6-week-long phase II clinical

trial that studied epilepsy (57). VX-765 has also been shown to

alleviate Alzheimer’s disease and cardiovascular disease in animal

models (58). Additionally, VX-765 has already advanced to clinical

trials (NCT01048255, NCT00205465, NCT05164120), underlining

its translational potential. For the first time, our animal experiments

demonstrated that VX-765 alleviated tissue injury and effectively

treated BPD in preclinical models by inhibiting caspase-1, thereby

blocking the maturation of proinflammatory cytokines. Unlike

broad-spectrum anti-inflammatory agents such as glucocorticoids,

VX-765 selectively targets caspase-1, potentially reducing

immunosuppressive side effects (e.g., infection risk). Therefore, VX-

765 appears to be a promising therapeutic candidate warranting rapid

translation into clinical trials for BPD patients. However, additional

studies in neonatal animals are needed to assess the pharmacokinetics

and effects on other developing organs before it can be used in clinical

trials as a novel strategy to prevent and treat BPD in preterm infants.

Therefore, we hope to further investigate the specific mechanism of

inflammatory lung injury caused by the inflammatory death of

macrophage pyroptosis in the early stages of hyperoxia exposure.

While our study focused on the role of pyroptosis and inflammasome

activation in BPD pathogenesis, it is important to acknowledge that

BPD development involves multiple interconnected pathways

beyond oxidative stress and inflammation. Emerging evidence

highlights several critical mechanisms that contribute to impaired

alveolarization and vascular dysregulation in preterm lungs, for

example, dysregulated growth factor signaling (59), mitochondrial

dysfunction (60) and microbiome dysbiosis (61). Future

investigations should aim to elucidating these connections, which

could offer deeper insights into BPD pathogenesis and inform

combination therapeutic strategies.
Frontiers in Immunology 13
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In summary, we demonstrated that macrophage pyroptosis

occurs in the early stages of BPD, and VX-765 can alleviate the

development of BPD by inhibiting the pyroptosis signaling pathway.

Inhibition of NLRP3/Caspase-1/GSDMD-mediated pyroptosis

largely reversed the injurious effects of hyperoxia, resulting in

attenuated lung inflammation, improved alveolarization and

pulmonary vascular development, and alleviated pulmonary fibrosis.
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