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Chronic suppurative otitis
media: disrupted host-
microbial interactions and
immune dysregulation
Vincent G. Yuan*, Anping Xia* and Peter L. Santa Maria*

Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center,
Pittsburg, PA, United States
Recent research has uncovered new mechanisms that disrupt the balance

between the host and microbes in the middle ear, potentially leading to

dysbiosis and chronic suppurative otitis media (CSOM). Dysbiotic microbial

communities, including core pathogens such as persister cells, are recognized

for displaying cooperative virulence. These microbial communities not only

evade the host’s immune defenses but also promote inflammation that leads

to tissue damage. This leads to uncontrolled disorder and pathogen proliferation,

potentially causing hearing loss and systemic complications. In this discussion,

we examine emerging paradigms in the study of CSOM that could provide

insights into other polymicrobial inflammatory diseases. Additionally, we

underscore critical knowledge gaps essential for developing a comprehensive

understanding of how microbes interact with both the innate and adaptive

immune systems to trigger and maintain CSOM.
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Chronic suppurative otitis media: when
inflammation disrupts equilibrium

CSOM is a persistent inflammatory condition driven by biofilms that results in

perforation of the tympanic membrane, hearing loss, and recurrent or persistent ear

discharge (otorrhea) (1–3). A middle ear biofilm is a leading cause of CSOM, eliciting the

host’s immune response against the multiple pathogens within the biofilm and ultimately

leading to the destruction of the tympanic membrane or eardrum (4). Besides the hearing

loss, severe CSOM can negatively impact systemic health by increasing the risk of

osteomyelitis, Guillain-Barré syndrome (GBS), and ankylosing spondylitis (5–8).

Archaeological evidence suggests that chronic otitis media existed in ancient times and

became more common over time due to pathogen infections (9). According to a recent
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study of ancient skeleton, approximately 2,000 years ago,

Pseudomonas aeruginosa and other bacteria associated with otitis

media were less prevalent than they are today (9).

The studies of the middle ear microbiota have uncovered major

changes in microbial community composition that occur as the ear

transitions from a healthy state to disease (10–12). Until recent years,

the dominant belief was that specific organisms were responsible for

the cause of CSOM, with notable examples including Pseudomonas

aeruginosa, Staphylococcus aureus, Enterobacteriaceae, and Klebsiella

pneumoniae (13). Recent progress from mechanistic investigations

collectively suggests that CSOM development is driven by a mix of

microbial imbalances and polymicrobial interactions (10, 14–16).

Dysbiosis of the middle ear microbiota reflects a shift in the relative

abundance of bacterial community components compared to their

levels in a healthy state (17, 18). This imbalance leads to changes in

host-microbe interactions, which can trigger destructive

inflammation (10, 19–21).

The damage to hair cells in the cochlea during later stages of CSOM

is well-documented in both human and animal models (22–24). This

damage primarily involves inflammatory mediators, endotoxins, and

free radicals, as assessed through short-term cultures of isolated outer

hair cells (21, 25, 26). However, the initiating mechanisms associated

with this damage are not as well understood. Indeed, themechanisms by

which a dysbiotic microbiota triggers uncontrolled or persistent middle

ear inflammation, potentially leading to pathological endothelial

damage, are not well understood. Furthermore, the sources of

dysbiosis and whether it serves as a driving factor or a consequence

of the disease remain unclear. Understanding the role and interaction

between the host’s immune responses and microbiota in CSOM is

difficult. The main aim of this paper is to argue that, while CSOM is

clearly an infectious disease, it can also be viewed as a disordered

communication between the host and the pathogen.
Pseudomonas aeruginosa: a
multifaceted pathogen in CSOM

Pseudomonas aeruginosa has long been linked to CSOM in

humans, and our current rodent models further support its role as

a key pathogen in the disease (27–29). Nevertheless, Pseudomonas

aeruginosa not only manipulates the host response but also actively

induces inflammation, a trait typically associated with bacteria

involved in inflammatory diseases (27, 30). Pseudomonas

aeruginosa plays a multifaceted role in immune responses,

leveraging various surface structures and secretion systems to

compromise host defenses (Figure 1). In chronic infections, such as

in cystic fibrosis (CF) patients, its flagella and pili, which facilitate

motility, are often downregulated to evade immune detection. The

bacterium further modulates its immune visibility by altering flagellin

expression to reduce activation of Toll-like receptor 5 (TLR5). Its

lipopolysaccharides (LPS) also vary, with more acylated forms in

chronic infections triggering stronger TLR4 responses. Additionally,

Pseudomonas aeruginosa’s Type 2 and 3 secretion systems (SS)

release virulence factors that damage host tissues and impair

immune cells, with toxins like ExoU inhibiting inflammasome

activation and inducing necrosis. Other factors, such as pyocyanin
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and rhamnolipid, induce immune cell death, promoting bacterial

survival. Through quorum sensing, Pseudomonas aeruginosa

regulates these virulence factors to adapt to diverse environments,

aiding its persistence in chronic infections (31, 32).

Pseudomonas aeruginosa emerges as a dominant pathobiont in

the middle ear due to its advanced survival strategies, including

biofilm formation, quorum sensing, and metabolic adaptability (33–

35). Unlike many other bacteria, P. aeruginosa produces robust

biofilms that shield it from antibiotics and immune clearance, while

its sophisticated quorum sensing (QS) system tightly regulates

virulence factor expression (36, 37). Additionally, it exhibits

metabolic flexibility, thriving in nutrient-poor environments by

utilizing diverse carbon sources and efficiently scavenging iron

through siderophores like pyoverdine and pyochelin (38–40).

These adaptations allow Pseudomonas aeruginosa to establish

persistent infections, outcompeting other bacterial species in the

middle ear.

This persistence of Pseudomonas aeruginosa weakens host

defenses and alters the bacterial growth environment, causing a

harmful imbalance between the immune system and the microbiota

(41). Therefore, Pseudomonas aeruginosa can worsen disease when

the equilibrium is disturbed. Its capacity to exacerbate

inflammatory disease through widespread supportive effects

within the community has led to its classification as a core

pathogen. It is important to recognize that the virulence of a core

pathogen such as Pseudomonas aeruginosa persiser cells (non-

replicating, metabolically dormant cells with no active

transcription or translation) does not depend on pre-existing

disruptions in homeostasis (42). This contrasts with pathobionts,

which require specific environmental changes in the host, such as a

compromised immune system, to induce inflammation (43). Core

pathogens have the ability to induce or contribute to the breakdown

of homeostasis, meaning that pathobionts typically operate

downstream of these core species (10). Bacteria associated with

otitis media, including Pseudomonas aeruginosa, Staphylococcus

aureus, Klebsiella species, and Escherichia coli, are strongly linked

to severe inflammatory responses (44, 45). These bacteria not only

provoke destructive inflammation but also disrupt the host’s

immune response in ways that could potentially enhance the

survival of other bystander species (46). Pseudomonas aeruginosa

is one of the most common pathogens responsible for CSOM, with

an incidence exceeding 20% (47, 48). It’s unique ability to drive

inflammatory diseases through its widespread impact on

community health has led to its classification as a core pathogen,

akin to the essential pillars that support bridges (27).

Beyond its intrinsic survival mechanisms, Pseudomonas

aeruginosa actively suppresses competing bacteria through direct

antimicrobial activity and resource competition. It secretes

bacteriocins (pyocins) and rhamnolipids, which selectively kill

rival microbes (49), while phenazines such as pyocyanin generate

oxidative stress that damages other bacteria (50). Moreover,

Pseudomonas aeruginosa interferes with the quorum sensing of

competitors, inhibiting their ability to form biofilms or coordinate

virulence (51). By sequestering essential nutrients like iron and

modulating the host immune response through proteases and

exotoxins (52, 53), it further weakens the local microbiota,
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ensuring its dominance. These combined factors make

Pseudomonas aeruginosa a key driver of microbial dysbiosis and

prolonged inflammation in the middle ear.

The abundance of pathobionts is not necessarily low; however,

they often need changes in the host environment to trigger

inflammation. In contrast, a core pathogen does not necessarily

rely on disrupted homeostasis to exert its effects (54). Core

pathogens have the potential to disrupt homeostasis, meaning

that pathobionts generally act downstream of core species.

Certain bacteria found in the middle ear, including S.

pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis,

are closely linked to severe inflammatory responses (55). As such,

Pseudomonas aeruginosa emerges as a core pathogen. Specifically, it

is not only a dominant component of biofilms in the middle ear but

also exhibits significant proliferation in diseased CSOM.

Deciphering how core bacteria regulate immune responses is

crucial for understanding the CSOM microenvironment.

Pseudomonas aeruginosa has the ability to modulate adaptive

immunity. For example, CD4(+) T cell responses to Pseudomonas

aeruginosa differentiate into Th1, Th17, and Th22 subsets (56). If

Pseudomonas aeruginosa infection is not eliminated in the acute

stage, it advances to a persistent infection marked by the formation of

a mucoid biofilm. Therefore, it can be hypothesized that
Frontiers in Immunology 03
Pseudomonas aeruginosa exerts core effects by manipulating T cell

development in a manner that promotes Th-mediated inflammation.

Since Pseudomonas aeruginosa is one of the primary pathogens that

cause CSOM, examining the roles of its symbionts could provide

valuable insights. Although symbionts have a mutualistic relationship

with the host, they share microbe-associated molecular patterns with

pathogens. Consequently, they have the potential to trigger

inflammation by activating pattern-recognition receptors (PRRs) (57).

A recent investigation has found that the occurrence of A. otitidis is

more frequently linked to chronic otitis media than to acute otitis media.

This indicates that A. otitidis likely contributes to the continuation of

inflammation in otitis media rather than acting as a direct pathogenic

agent (58). Research has shown that A. otitidis stimulates an immune

reaction by promoting the secretion of interleukins from macrophage

cell lines in reaction to A. otitidis (59). In vivo investigations

demonstrated that A. otitidis-positive middle ear fluid included similar

levels of inflammatory cytokines to those found in S. pneumoniae-

positive middle ear fluid (60). However, A. otitidis often co-occurs with

other major pathogens, such as Pseudomonas aeruginosa and

Staphylococcus aureus (61). The idea that certain commensals can

opportunistically trigger destructive inflammation aligns with the

growing recognition of previously uncultivable or underappreciated

bacteria being linked to otitis media (62). Although most of these
frontiersin.or
FIGURE 1

Pseudomonas aeruginosa is equipped with numerous virulence factors that increase its ability to cause disease These include flagella, pili, and
lipopolysaccharides (LPS), which facilitate bacterial adhesion and colonization within the host. The secretion systems, T2SS and T3SS, inject effector
proteins into host cells, leading to tissue damage. Additionally, toxins such as pyocyanin and rhamnolipid induce immune cell death, thereby
promoting bacterial survival. As a key pathogen, Pseudomonas aeruginosa further disrupts homeostasis in the middle ear, promoting bacterial
proliferation and biofilm formation.
g

https://doi.org/10.3389/fimmu.2025.1547206
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2025.1547206
species have not yet been cultivated, studies on more accessible

organisms have revealed virulence traits indicative of a pathobiont

status. For example, the discovery of Alloiococcus within cells suggests

potential pathogenic capability (63).

As previously mentioned, inflammation provides essential

nutrients and greatly impacts the types of otitis media pathogens

by supporting bacteria that can utilize the decomposition products

(Figure 2). On the other hand, pathogens that are unable to adjust to

these environmental shifts or are negatively impacted by host

inflammation may be outcompeted. The selective proliferation of

pathobiont bacteria can trigger a self-perpetuating chain reaction,

resul t ing in addit ional t i ssue damage and excess ive

bacterial proliferation.
Determinants of susceptibility
to CSOM

While the concept of key pathobionts offers valuable insights into

CSOM, it also raises several unanswered questions and requires

further clarification. For example, the imbalance that promotes the

growth of opportunistic microbes may not always result from major

pathogens within the microbial community. The balance between

microbes and the body can be disturbed bymultiple factors, including

aging, which is associated with decreased immune regulation and

function, elevating the risk of CSOM and hearing loss (64, 65).

Since Pseudomonas aeruginosa can be found in healthy people,

it’s natural to wonder why it doesn’t always cause CSOM (66). One

possible explanation is that certain individuals may possess an

innate capacity to withstand or adapt to changes in their middle

ear microbial community, preventing it from transitioning from a

healthy to an imbalanced state, due to their distinct inflammatory

responses (67). Gaining insight into the individual factors that affect

vulnerability to microbial immune evasion may provide important

knowledge. However, variations in vulnerability might also be

attributed to differences in bacterial strains and virulence within

the population.

Although ASO has the potential to progress to CSOM, it does not

always do so, which suggests that protective host responses might play

a role. When ASO does advance to CSOM, it is likely due to the acute

infection applying selective pressure that promotes the development of

an inflammation-pronemicrobiota (1). This evolving community may

include components, such as persister cells, that can evade or impair

the immune system, thus promoting the formation and persistence of

a biofilm associated with disease (68).

Understanding cellular and molecular
mechanisms of CSOM

One of the primary features of CSOM is the extensive

accumulation of macrophages, particularly in middle ear tissues

like the junctional epithelium (22). The involvement of

macrophages in the development of a chronic condition like

CSOM is unsurprising, given their typical association with the

extended host reaction to infections (Figure 3). Macrophages are
Frontiers in Immunology 04
increasingly recognized for their involvement in persistent

inflammatory disorders, including rheumatoid arthritis (69).

Nonetheless, it remains unclear whether the chronic nature of

otitis media results from progressive disease deterioration or a

cyclical pattern of remission and exacerbation. Additional

research is necessary to elucidate the significance of either or both

of these frameworks.

Any alteration in typical macrophage function can disturb the

balance of middle ear tissue, potentially resulting in various types of

the condition, spanning from early-stage otitis media to CSOM in

both children and adults (22). The critical role of macrophages in

maintaining middle ear health during inflammation is further

reinforced by mechanistic studies in mice. Notably, NOD-, LRR-,

and pyrin domain-containing protein 3 (NLRP3) is a key molecule

involved in inflammation in the middle ear and hearing loss (70).

This multiprotein complex consists of NLRP3, the adaptor protein

ASC (apoptosis-associated speck-like protein), and pro-caspase-1.

Upon activation by various stimuli in the cochlea (Figure 4),

including pathogen-associated molecular patterns or danger-

associated molecular patterns during CSOM, NLRP3 in

macrophages or T helper (Th) cells undergoes conformational

changes, leading to the recruitment of ASC and the activation of

caspase-1. Caspase-1 subsequently converts pro-inflammatory

cytokines, such as pro-IL-1b and pro-IL-18, into their active

variants. These cytokines are subsequently released, triggering a

robust inflammatory response. In our study, NLRP3-deficient mice

exhibited reduced inflammation in chronic otitis media models,

suggesting that NLRP3 could be a potential therapeutic target for

sensorineural hearing loss (71).

Macrophages can contribute to the destruction of middle ear

tissue, which may initiate CSOM, by releasing degradative enzymes

such as matrix metalloproteinases and cathepsins, along with

cytotoxic substances like reactive oxygen species (72, 73). The

cochlea contains a resident population of macrophages that react

to injury by proliferating and enhancing the expression of pro-

inflammatory molecules. NLRP3 is an essential element of the

cochlea macrophages that plays a role in promoting the CSOM.

Research has demonstrated that the maturation and activation of

macrophages infected with S. pneumoniae are contingent upon

inflammasome activation, specifically the assembly of NLRP3

inflammasomes (74). Gain-of-function mutations in NLRP3 lead

to its abnormal activation and are associated with autosomal

dominant systemic autoinflammatory diseases (75). The

underlying mechanism indicates that macrophage NLRP3

recognizes a variety of danger signals through a complex pathway

involving post-translational modifications and organelle stress.

Activated NLRP3 subsequently encourages the oligomerization of

ASC into an extensive platform that enables the activation of

caspase-1 (70). Furthermore, mice with the NLRP3 D301N

mutation exhibit severe inflammation and hearing loss following

intraperitoneal lipopolysaccharide injection, indicating that NLRP3

inflammasome activity in macrophages can also contribute to

hearing damage through inflammasome-dependent mediators

(71). Furthermore, macrophages might contribute to indirect

harmful effects by promoting the recruitment of Interferon

gamma-producing Th1 cells and Th17 cells, which are implicated
frontiersin.org
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in autoimmune responses (76). The recruitment of Th1/Th17 cells

mediated by macrophages seems to involve the production of IL-12

subunit p40, p35, and p19 by macrophages, along with the

repression of the gene encoding IL-10. As a result, activated
Frontiers in Immunology 05
macrophages create an environment conducive to a strong Th1

and Th17 response (77).

CD4+ Th1 cells are characterized by their distinctive cytokine

production profiles, including IFN-g and IL-12, and play a crucial
FIGURE 2

Interactions among multiple microbial species and microbial imbalance in vulnerable hosts contribute to CSOM. A healthy middle ear depends on a
regulated inflammatory environment to maintain the balance between host and microbes. However, when there are defects in the host’s
immunoinflammatory status or unfavorable environmental factors—defining what can be considered a susceptible host—the balance can shift
towards dysbiosis. Dysbiosis occurs when previously benign commensal microbes become proinflammatory pathobionts. Core pathogens (e.g.,
persister cells) can also play a role in microbial imbalance, even in hosts that do not exhibit clear genetic predispositions. Interactions with pattern
recognition receptors (PRRs) frequently drive this imbalance, causing inflammation that ultimately harms middle ear tissue. The resultant tissue
damage releases nutrients that further support dysbiosis, creating a vicious cycle of tissue destruction and inflammation. Host susceptibility is a key
factor not only in shifting the microbiota from a balanced state to dysbiosis but also in increasing the risk of inflammation that can lead to
permanent tissue damage.
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role in determining whether an infectious agent is cleared from

the body or leads to a chronic infection (78). When Th1 cytokines

are necessary for macrophage activation, antigen presentation

may be reduced during the early immune response to T-cell-

dependent antigens (79). In individuals with otitis media with

effusion (OME), Th1 cytokines triggered by IL-12 may affect the

initiation or advancement of the condition. Given that IL-12 was

found in all patients with OME, it may play a role in the treatment

of OME by decreasing late-phase immunological inflammation in

the middle ear mucosa caused by lipopolysaccharides, regardless

of allergic status or the type of middle ear effusions (MEEs) (80).

It is important to highlight that IL-18 or IL-1b production by the
Frontiers in Immunology 06
NLRP3 inflammasome plays a crucial role in directing the

differentiation of CD4+ T cells into Th1 responses (81).

Ev idence of the inflammasome ’ s ro l e in promot ing

autoimmune diseases through Th1 responses has been observed

in a mouse model of multiple sclerosis. Consistently, NLRP3-

deficient and IL-18-deficient mice showed protection from the

disease, accompanied by impaired IFN-g production (82, 83).

Treatment targeting the NLRP3 inflammasome has shown

remarkable therapeutic benefits in multiple preclinical models

of immune-related diseases, including models of experimental

autoimmune encephalomyelitis (84). This inhibitory effect on

Th1 differentiation by NLRP3 inflammasome inhibitors, such as
FIGURE 3

Immune Cell Contributions to Inflammation and Tissue Damage. Macrophages, along with dendritic cells and gd T cells, produce key
proinflammatory mediators, including TNFa, IL-1b, and IL-17.These cells also contribute to the differentiation of Th cell subsets, which in turn
amplifies and exacerbates the inflammatory response. IL-17 influences a range of innate immune cells as well as different types of connective tissue
cells. Activated macrophages stimulate the production of matrix metalloproteinases (MMPs) and reactive oxygen species (ROS), leading to tissue
degradation. Additionally, activated lymphocytes, including B cells and Th1 and Th17 T cells, play significant roles in immune regulation and tissue
damage. The interaction between innate and adaptive cells highlights key destructive mechanisms in unresolved inflammation.
frontiersin.org
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MCC950, or anti-IL-1b antibodies was also observed in Nlrp3-/-

mouse models (85).

To gain a more integrated understanding of middle ear T cells,

examining Th17 cells is crucial. The abundance of IL-17+/Foxp3+

cells is significantly elevated in chronic otitis media, indicating that

this may represent an intermediate stage in the transformation

process (86). In inflamed middle ears, there is a positive correlation

between the number of IL-23+ macrophages and both the severity

of inflammation and the frequency of IL-17+ T cells, which

constitute the dominant T cell subset (87). Moreover, cytokines

that promote Th17 differentiation, such as IL-6, can disrupt the

balance between Th17 cells and Tregs (88).

The balance between Th17 cells and regulatory T cells (Tregs) is

crucial for maintaining immune homeostasis, particularly in

chronic inflammatory conditions such as otitis media with

effusion (89). Under normal conditions, Tregs, primarily

characterized by the transcription factor Foxp3, suppress

excessive inflammation by inhibiting Th17-mediated immune

responses through the production of IL-10 and TGF-b (90).

However, in CSOM, persistent infection and unresolved
Frontiers in Immunology 07
inflammation drive an imbalance, skewing the response toward

Th17 dominance (89). Inflammatory cytokines such as IL-6 and IL-

23 promote Th17 differentiation while simultaneously inhibiting

Treg function, further shifting the balance toward a pro-

inflammatory state (91, 92). Additionally, chronic inflammation is

associated with changes in Treg numbers and function, potentially

limiting their ability to counteract Th17-driven pathology (89, 93).

The resulting increase in IL-17 production amplifies neutrophil

recruitment and tissue damage, creating a self-perpetuating

inflammatory loop (94, 95). Targeting the Th17/Treg imbalance

with immunomodulatory therapies may provide effective strategies

to restore immune equilibrium in CSOM.

Although Th17 ce l l s are known for their s trong

proinflammatory effects, their overall role in inflammatory

diseases triggered by microbes is still unclear. IL-17 can enhance

protective innate immunity and activate macrophages.

Additionally, IL-22, which is also secreted by Th17 cells,

stimulates the production of antimicrobial peptides by epithelial

cells (96). Nonetheless, the ongoing presence of Th17 cells in

inflamed areas can transform an acute response into a chronic
FIGURE 4

Cochlear macrophages and Th1/Th17 cells promote inflammatory signaling in cases of CSOM via the NLRP3 signaling pathway. In CSOM, the
activation of the NLRP3 inflammasome in cochlear macrophages and Th cells initiates Caspase-1, which processes pro-IL-1b and pro-IL-18 into
their active forms, thereby intensifying the inflammatory response.
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immunopathological condition (97). Interestingly, much like Th1

cells, Th17 cells also exhibit activation of the NLRP3 inflammasome

under inflammatory conditions (98). This activation is associated

with both disease activity and elevated IL-17A levels. Moreover,

inhibiting caspase-1, the IL-1 receptor, or ROS production can

reduce NLRP3 inflammasome activation and IL-1b secretion in

CD4+ T cells, which subsequently suppresses Th17 differentiation

(99). In a related finding, NLRP3 mutant knock-in mice (R258W)

develop spontaneous skin lesions. The inflammation seen in these

mice is associated with elevated levels of IL-17 family cytokines,

including IL-17A, IL-17F, IL-21, RORgt, and IL-22 (100).

Establishing the role of IL-17 in the pathogenesis of human

CSOM necessitates the initiation of future clinical trials. Given the

high prevalence of CSOM, this topic could also be explored by

monitoring patients with CSOM receiving IL-17-targeted therapies

for systemic diseases (101). Although IL-17 is primarily recognized

as a signature cytokine of Th17 cells, it is also secreted by several

other cell types, including innate lymphoid cells (102). The

involvement of innate lymphoid cells in CSOM has yet to be

investigated. For instance, gd T cells play a crucial role in IL-17

production, which is strongly induced by TLR signaling activation,

likely via the indirect stimulation of phagocytes that produce IL-1b
and IL-23 (103).

Assessing the host response in the middle ear is complex, as

antimicrobial activity may also cause inflammatory tissue damage.

As a result, defining the exact roles of macrophages and specific

effector T cell subsets in otitis media remains challenging. However,

macrophages, along with Th1 and Th17 cells, are expected to play a

critical role in driving inflammation in the middle ear (Figure 5).
Clinical perspectives

While antibiotics remain a cornerstone of CSOM management,

concerns persist regarding recurrent infections, tissue damage, and

the rise of antibiotic resistance. These challenges underscore the

need for therapies that target inflammation and its signaling

pathways rather than solely addressing infection (13). Since

middle ear dysbiosis is both a consequence and a driver of

inflammation, modulating immune responses may help mitigate

tissue damage and restore microbial balance. Experimental

therapies targeting early inflammation aim to prevent excessive
Frontiers in Immunology 08
immune cell recruitment and activation—key contributors to

chronic inflammation and hearing loss (104, 105). In animal

models, IL-1 receptor antagonists and NLRP3 inhibitors like

MCC950 have shown promise in reducing inflammation and

slowing disease progression, paving the way for clinical trials in

human CSOM patients (71, 106).

Beyond immunomodulation, advances in personalized

medicine may refine treatment strategies by identifying patient

subgroups most likely to benefit from specific therapies based on

biomarkers of immune dysregulation (107). Additionally, novel

drug delivery systems, such as nanoparticle-based formulations

that selectively target immune cells, offer a promising strategy to

enhance treatment precision while minimizing systemic side effects

(108). Improving diagnostic tools, including molecular profiling of

inflammatory mediators and microbiome analysis, may facilitate

early detection and tailored interventions (109).

Future clinical research should integrate these novel therapeutic

avenues with improved diagnostic and management strategies to

develop more effective, individualized treatments for CSOM. A

multidisciplinary approach combining immunology, microbiology,

and bioengineering holds the potential to shift CSOM management

from symptomatic relief to precision-targeted interventions that

address the underlying inflammatory and immune dysregulation

driving disease progression.
Concluding remarks

The maintenance of middle ear homeostasis serves as a

protective barrier that separates the host from the microbiota,

effectively managing occasional microbial invasions through

prompt immune system responses. This controlled state of

inflammation reflects a protective response by the host. The onset

of chronic CSOM arises from the combination of a disrupted

microbiota and a vulnerable host, resulting in intricate

inflammatory responses. Dysbiotic microbial communities often

participate in cooperative interactions that improve their capacity to

colonize, secure nutrients, and persist within an inflamed setting,

increasing their adaptive advantage. Although key pathogens like

Pseudomonas aeruginosa can interfere with the host’s defenses and

lead to homeostatic imbalance, certain other bacteria may function

as pathobionts, triggering damaging inflammation that engages
FIGURE 5

Th Cell Differentiation Model in CSOM. Naive CD4+ T cells differentiate into Th1 cells in the presence of IL-12, T-bet, and STAT4. Th1 cells play a
crucial role in cell-mediated immunity, producing IFN-g and TNFa. In contrast, the differentiation of Th17 cells is driven by TGF-b and IL-6, regulated
by STAT3 and RORgt. Th17 cells are vital for host defense against extracellular pathogens and in the context of autoimmune diseases.
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both the innate and adaptive immune systems. From a microbial

perspective, inflammation is vital as it supplies essential nutrients,

though it can also lead to collateral damage to middle ear tissues.

Therefore, targeting inflammation is central to treating CSOM;

however, a comprehensive model of pathogenesis still needs

further research.
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