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SARS-CoV-2 reactive central
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Introduction: This study presents an optimised cultured ELISpot protocol for

detecting central memory T-cell interferon gamma (IFNg) responses against

SARS-CoV-2 peptides following an initial priming with either peptides, or

whole spike protein.

Methods: Key variations optimised include the culture length, timing of

exogenous survival signals (IL-2), and endpoint analysis modality and cell

density to enhance assay sensitivity without compromising specificity for

central memory T-cell IFNg recall responses to cognate antigen.

Results: We noted a culture duration of 10 days, combined with a delayed IL-2

administration on day 5 to enhance assay sensitivity while maintaining response

specificity towards cognate antigen when compared with shorter culture periods

or earlier exogenous survival signal provision. With regards to lower-frequency

T-cell interactions, as we observed with our donor SARS-CoV-2 epitope

responses, our findings suggest Fluorospot to be preferable to the

chromogenic ELISpot modality, and an immediate cell washing after culture

collection to better facilitate cognate antigen responses. Fluorospot enabled a

higher cell density while minimising the generation of visual artefacts, meanwhile

immediate cell washing was critical for improving endpoint assay sensitivity.

CCR7+ cell depletion was used to demonstrate our optimised protocol to

selectively demonstrate central memory T-cell responses. Lastly, we provide

evidence for the capacity of our assay to delineate individual responding peptides
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following peptide pool priming, and to explore cross-reactivity between viral

variant peptides.

Conclusion: This work advances the methodology for investigating T-cell

immunity, particularly in the context of SARS-CoV-2, and emphasises the

balance between enhancing specific cognate central memory responses while

limiting non-specific activation.
KEYWORDS

ELISpot, Fluorospot, method, SARS-CoV-2, COVID-19, COVID, central memory T-cell
responses, immune responses
1 Introduction

As vaccination strategies seek to ensure long-lasting protection,

analysing the memory T-cell compartment becomes crucial for

understanding immune responses and optimising future vaccine

development and effectiveness (1, 2). Memory T cells, sub-

categorised into tissue-resident and circulating memory T cells,

provide a cellular compartment of immunological memory (3, 4).

Circulating memory T cells are sub-categorised into effector and

central memory T cells (1). C–C Chemokine receptor type 7

(CCR7) expression on central memory T cells permits their

migration between lymphoid organs through the vasculature,

whereas effector memory T cells survey peripheral organs in

addition to tissue-resident memory T cells (3, 4) providing robust

recall responses to their cognate antigen during repeated infection

or exposure post-vaccination. Both T-cell compartments, effector

and central memory, can be analysed respectively through the

functional assays, ex-vivo Enzyme-Linked Immunospot (ELISpot)

and Fluorospot, or the cultured ELISpot method (5–7). The

immediate provision of recall antigen in ex-vivo ELISpot

preferentially investigates effector T cells (5), whereas the antigen-

primed culture period of cultured ELISpot assays favours the

preferential proliferation of central memory T cells, generating an

expanded pool of cognate cells able to respond rapidly by cytokine

secretion to subsequent challenges (8–10). Cultured ELISpot

techniques enhance the expansion of central memory T cells by

1) culturing cells for 8–14 days before analysis and 2) providing

exogenous survival signals such as interleukin (IL)-2. Delaying

administration of IL-2 allows for the elimination of non-cognate

adaptive cells and many innate immune cells, while promoting the

preferential proliferation of antigen-stimulated central memory T

cells (8–10). Several studies have investigated the relationship

between ex-vivo and cultured ELISpot T-cell responses. Flanagan

et al. initially proposed that antigen-specific ex-vivo and cultured

ELISpot responses do not necessarily predict one another (11), with

subsequent studies demonstrating central memory T cells, but not

effector memory T cells, to drive cultured ELISpot responses to T-

cell epitopes correlated with protection against malaria, whereas ex-
02
vivo ELISpot responses were not (12). Subsequently, no correlation

was noted between ex-vivo and cultured ELISpot interferon gamma

(IFNg) responses towards the hepatitis C virus genotype 1a peptides

(5). However, with reference to acute infections, ex-vivo and

cultured ELISpot responses appear comparable around 7 days

post-infection, whereas over time, the ratio of cultured ELISpot to

ex-vivo responses shows a substantial increase (7). These studies

highlight the necessity for robust techniques to separately study

effector T-cell and central memory T-cell compartments.

The spike (S) protein of SARS-CoV-2 is broadly sub-categorised

into two subunits, S1 and S2, with the S1 region containing the N-

terminal domain (residues 14–205) and the receptor-binding

domain (residues 319–541) that facilitates angiotensin-converting

enzyme 2 (ACE-2) recognition (13). The spike protein and its ACE-

2-binding domain are predominantly targeted by vaccines aiming

to induce antibodies to block this interaction and prevent cell

recognition and entry (14). T cells have been recognised for their

role in providing directly to protective immunity against SARS-

CoV-2, with a link between a deficiency of IFNg-producing CD4+ T
cells, and weaker neutralising antibody responses to SARS-CoV-2

and higher risk of hospitalisation (15). Additionally, T follicular

helper cells indirectly assist with SARS-CoV-2 responses through

supporting B-cell maturation (16). Although significant literature

exists on measuring circulating effector CD4+ T cells reactive to

SARS-CoV-2 proteins post-infection or vaccination, particularly

through ex-vivo ELISpot (17–19), there is limited understanding of

how long-term central memory CD4+ T-cell reservoirs are

generated. These reservoirs are essential for rapid activation and

expansion in responses to future antigenic challenges. Indeed, while

it is acknowledged that the induction and persistence of central

memory T cells is key to the establishment of long-term protection

against a wide variety of diseases, there is no harmonised assay to

measure central memory functionally for direct comparison with

the effector T-cell compartment in a high-throughput manner. Flow

cytometry and tetramer-based assays are labour intensive and

require substantial cell quantities, making them challenging to use

as a high-throughput method to measure multiple T-cell epitopes or

assessing broad functional cross reactivity (20, 21). The leading
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central memory functional assay, the cultured ELISpot, is capable of

offering high-throughput analysis and has been used to study

central memory immunity across cancer (22), viral diseases (23),

and parasitic diseases (11, 12). However, cultured ELISpot protocols

vary significantly between laboratories, with no systematic

investigation for their implementation in analysing SARS-CoV-2

cellular immune responses (Table 1). By its nature, the cultured

ELISpot technique generates a myriad of variables to fine-tune to

quantify cognate antigen responses. Using SARS-CoV-2 antigens,

we investigate these variables and outline a comprehensive protocol

designed to elicit central memory immune responses to specific

SARS-CoV-2 proteins or peptides. This protocol demonstrates the

capacity to map diverse epitopes and assess cross-reactivity between

viral variants through the prime, culture, and restimulation phases

inherent to the cultured ELISpot technique. We further show that

combining cultured ELISpot with modern Fluorospot analysis

enhances the assay’s capability to detect central memory immune

responses. Herein, we assess and optimise the cultured ELISpot

assay for the study of central memory T-cell immune responses

against the S1 region of SARS-CoV-2.
2 Materials and methods

2.1 Study population

Six blood samples containing concentrated white blood cells

(buffy coat) from donors were supplied by the Australian Red Cross

Lifeblood (RMIT HREC #21681). Whole blood was collected by the

Cancer Ageing and Vaccines Research Group from one local donor

(Melbourne, Australia) as approved by the RMIT Human Research

Ethics Committee (Ethics #: 24280). Blood donors were randomly

spread across sex and age with 57% being female (4/7) with a

median age of 57 years and IQR of 30.5 years and randomly

assigned a deidentified identifier from A to G (Supplementary

Table S1). The HLA haplotype was not assessed for donors, and

information regarding prior SARS-CoV-2 exposure or vaccination

history was not available for Australian Red Cross Lifeblood donors.

Donor A was included across all experiments with additional

replicates spread across donors B–G (as defined in Supplementary

Tables S2-S8). Donor data were collected and managed using

REDCap (RRID: SCR_003445) electronic data capture tools

hosted at RMIT University (24, 25).
2.2 Isolation of PBMCs from buffy coats
and whole blood

In sterile conditions, buffy coat samples were diluted 3:2 with

RPMI 1640 (no L-glutamine, Gibco, 21870100). Whole blood was

collected from the volunteer in EDTA vacutainer tubes (BD

Vacutainer, BD, USA). Either buffy coat or fresh whole blood

were processed via the same protocol detailed below. Whole-
Frontiers in Immunology 03
blood or RPMI-diluted buffy coat was carefully overlaid at a 45°

angle onto 10 mL of Ficoll-Plaque PLUS (GE Healthcare, GEHE17-

1440-03) and centrifuged at 2,000 RPM for 20 min at room

temperature with half-speed acceleration and no brake. The

PBMC layer was carefully collected and washed with RPMI

(centrifugation at 1,400 RPM for 4 min at room temperature,

brake on). Samples underwent red blood cell removal (RBC lysis

buffer, BioLegend, 420301) for 5 min before a second wash. Pellets

were resuspended in RPMI supplemented with 5% heat-inactivated

human serum (Sigma, H4522-100mL) before counting with Trypan

blue (Gibco, 15250-061) in duplicate using a Countess 3 FL Cell

Counter (Thermo Fisher). RPMI and human serum were removed

and PBMCs resuspended in human serum with 10% DMSO and

frozen gradually with the Mr Frosty (Thermo Scientific, 5100-0001)

before long-term storage in LN2.
2.3 Peptides and proteins

The Immune Epitope Database and Tools resource (IEDB, RRID:

SCR_006604) (26) was used to initially investigate experimentally

validated IFNg-stimulating epitopes within the Wuhan SARS-CoV-2

(ID: 2697049) spike glycoprotein (UniProt: P0DTC2). Peptide

regions within the spike glycoprotein subunit 1 between 15 and 20

amino acids in length were then investigated in silico with the IEDB

MHC II Binding T Cell Epitope Prediction against a list of common

Australian HLA haplotypes (Supplementary Table S9) defined in the

Allele Frequencies in Worldwide Populations Database (RRID:

SCR_007259) (27). Additional peptides were cross-checked and

selected from the literature (28). The predicted rank, score, and

capacity to bind multiple common Australian HLA haplotypes were

considered when selecting peptide sequences for inclusion in our S1

peptide pool; in total, eight peptides were selected across the S1 region

(Figure 1). SARS-CoV-2 XBB.1.5 mutations were obtained from the

GISAID COVID-19 mutation dashboard (29), with viral variant

peptides generated from aligning mutational variants overlapping

individual S1 peptides in the S1 peptide pool. The XBB S1

overlapping peptide pool contained the following three peptides at

a pooled concentration of 50 µg/mL: 1) XBB SP_71-90 (SGTNG

TKRFDNPALPFNDGV), 2) XBB SP_346-360 (TFASVYAWNR

KRISN), and 3) XBB SP_455-460 (PSGNYNYLYRLFRKSK)

(Figure 1). All peptides were synthesised to 95% purity, with free

ends by Mimotopes (Clayton, VIC Australia). Conditions requiring

NaOH or DMSO to facilitate peptide solubility are outlined in

Supplementary Table S10. Whole 2019-nCoV Spike protein was

purchased from Sino Biological (>90% purity, 40589-V08B1) for

the investigation of whole protein priming in cultured ELISpot. A

known strong IFNg-inducing cytomegalovirus (CMV) peptide,

CMV-495 (NLVPMVATV) (30), was used as a housekeeper

peptide for initial experiment optimisations. Purified protein

derivative (PPD, AJ Vaccines) was used as a known strongly

responsive recall antigen to investigate assay specificity through

providing a comparable non-cognate recall response.
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TABLE 1 Diversity within published cultured ELISpot protocols.

Culture variables
Survival stimulant

variables
Endpoint variables

Culture
length

Prime stimulant
Washing/
resting

Days of
provision

Stimulant,
concentration

Endpoint
ELISpot
cells/well

Endpoint analysis Reference

14 Days

25 µg/mL/peptide
15-mer

Circumsporozoite
protein peptides

Washed 3 times
after harvest

Days 5,
and 10

Lymphocult-T,
10 U/mL

10K cells/well

Correlated ex vivo and
cultured ELISpot with
proliferation assays
Whole protein and
peptide priming

Pinder et al.
(2004)
(39)

14 Days

25 µg/ml/peptide
15-mer

Circumsporozoite
protein peptides

Washed once
after harvest

Days 5,
and 10

Lymphocult-T,
10 U/mL

20K cells/well

Correlated post-vaccination
cultured ELISpot responses
with subsequent malaria

parasitemia, and protection
Cultured ELISpot time course

for IFNg release
after vaccination

Reece et al.
(2004)
(12)

14 days

25 µg/mL/peptide
15-mer overlapping
Circumsporozoite
protein peptides

Washed once
after harvest

Days 5
and 10

IL-2, 0IU/mL 10K cells/well

Compared sensitivity of ex vivo
and cultured ELISpot
Correlated ex vivo and
cultured ELISpot with

antibody levels, proliferative
assays, and blood smear

positivity (malaria)

Flanagan et al.
(2001)
(11)

12 days

4 µg/mL peptide pools
in 100 µL for 1 h at 37°

C, before twofold
dilution

15-mer overlapping by
11 amino acid peptide
pools covering HBV
genotypes B and C

Washed on day
10, rested for
36 hours

Day 0
Days 3, 7,
and 8

rhIL-7, 25ng/mL
rhIL-2, 10 or
100 ng/mL

20K cells/well

Correlated ex vivo and
cultured ELISpot HBV

responses
Compared IL-2 concentration

of assay sensitivity

Chen et al.
(2021)
(40)

12 days

10 µg/mL peptide
15-mer

non-overlapping
Hepatitis C

Virus peptides

Washed three
times and
immediately
assayed

Days 3,
6, and 9

Lymphocult T, 10% 25K cells/well

Correlated ex vivo and
cultured responses over 24

months
CCR7, and CD8 depletion of

cultured ELISpots

Godkin et al.
(2002)
(5)

10 days
200 µL of 40 µM

DENV
serotype peptides

Wash and rest
for 1-2 days

Days 3 and 7 IL-2, 100 IU/mL 40K cells/well
Dengue virus serotype-

specific responses

Jeewandara
et al. (2018)

(23)

10 days

EBV peptide pools
15-mer overlapping by
11 amino acids peptide
pools covering several

EBV proteins

Washed three
times after
harvest

Days 3 and 7 rhIL-2, 20 IU/mL 4K cells/well

Comparative ex vivo and
cultured ELISpot EBV

responses
Cultured ELISpot quantitative

reproducibility
CD4, and CD8 depletion in

cultured ELISpot

Calarota et al.
(2013)
(6)

10 days

5–10 µg/mL of peptides
57 20-mer overlapping
by 10 amino acids
peptides covering
TRAP protein

Washed three
times on day 9,
rested overnight.

Days 3 and 7 IL-2, 50 U/mL n/a

Correlated ex vivo and
cultured ELISpot responses in
unvaccinated or prime-boosted

individuals
Time course characterisation
of IFNg SFC, cognate antigen
tetramer staining, memory

marker staining
CCR7, and CD62L depletion

on ex vivo and
cultured ELISpot

Todryk et al.
(2009)
(7)

10 days

10 µg/mL/peptide of 57
20-mer overlapping by
10 amino acids covering

the TRAP peptides

Washed three
times on day 9,
overnight rest,
washed again

Days 3 and 7
Lymphocult,
10 IU/mL

Approx 25K
cells/well

TRAP memory T-cell
responses

Keating et al.
(2005)
(38)
F
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2.4 Thawing of frozen PBMCs

PBMC vials were briefly thawed in a water bath at 37°C and

then transferred to a BSCII and diluted with complete RPMI (RPMI

1640 [Gibco, 21870076] supplemented with L-glutamine [2% v/v

200 mM, Gibco, A2916801], penicillin–streptomycin [1% v/v

10,000 U/mL, Gibco, 15140-122], heat-inactivated human serum

[5% v/v, Sigma, H4522-100ML], and hepes [2% v/v, Gibco, 15630-

080]). Following centrifugation at 700 g for 7 min at room

temperature, supernatant was discarded, and cells were

resuspended in fresh complete RPMI before centrifugation at

1,400 RPM for 4 min at room temperature. PBMCs were

resuspended in fresh complete RPMI before counting on the

Countess 3 FL Cell Counter, diluted to 5 × 106 cells/mL, and

rested for 3 h at 37°C in a humidified incubator with 5% CO2. Post-

rest, cells were passed through a 100-µm cell strainer to remove

debris, washed, and resuspended in complete RPMI for counting

and resuspension for downstream analysis according to the

specified cells/mL required for ex-vivo and cultured ELISpot

analysis, respectively (refer to below sections).
2.5 Cultured ELISpot cell culture

To set up cultured ELISpot, PBMCs were thawed as above and

plated immediately on day 1 of the time course. PBMCs were plated

in a sterile 48-well flat-bottom plate (CELLSTAR, 677-180) at 2.5 ×

106 cells/well in 250 µL of complete RPMI and primed with 1)

Wuhan SARS-CoV-2 S-protein (50 µg/mL, Sino Biological, 40589-

V08B1), 2) S1 peptide pool (peptides each at a concentration of 50

µg/mL, Figure 1), or 3) CMV-495 (50 µg/mL). Cells were primed for
Frontiers in Immunology 05
1 h at 37°C in a humidified incubator before topping each well up to

1 mL with complete RPMI. Stimulants specifically used for both

priming and later downstream restimulation were all used at 50 µg/

mL. Wells were monitored for a yellow media colour indicative of a

low pH and subsequent nutrient depletion, upon which a media

change involving the careful aspiration of 500 µL of culture media

and supplementation with 500 µL of fresh and warmed complete

RPMI. In the media supplementation on day 5 of culture, 10 IU of

recombinant human IL-2 (Thermo Fisher Scientific, PCH0021) per

500 µL was included unless otherwise specified in the Results

section. Unless otherwise specified, end-point analysis occurred

after 10 days of culture where PBMCs were collected from the

plate, washed, counted, and resuspended to 2 × 106 cells/mL and set

up as per the ex-vivo ELISpot assay detailed below, with varied

PBMC numbers/well as outlined in each respective figure

description. Samples that underwent an overnight wash were

washed once and resuspended in 1 mL of complete RPMI and

rested overnight before analysis in Fluorospot ELISpot (Figure 2).
2.6 Chromogenic ELISpot and Fluorospot

Both ex-vivo chromogenic ELISpot and cultured ELISpot

endpoint analysis with chromogenic or Fluorospot plates followed

the same protocol. Antigen-specific CD4 T-cell effector IFNg
responses were evaluated with chromogenic ELISpot. 96-well

filtration plates (MSIP plates, MSIPS4510, Millipore, Billerica,

MA USA) were activated with 15 µL/well of 35% ethanol for less

than 1 min, washed five times with 200 µL/well of PBS, and coated

with 100 µL/well of anti-human IFNg unconjugated monoclonal

antibody (mAb) (5 µg/mL, 1-DIK, MAB3420-3-1000, Mabtech,
FIGURE 1

SARS-CoV-2 S1 peptide pool and overlapping XBB variants. Schematic representation of the SARS-CoV-2 spike protein (1–1,273 amino acids).
Defining S1 (residues 14–685), and S2 (residues 686–1273) regions. Sub-section of the S1 region containing eight 2019-nCOVID S1 peptide
sequences, including the CD4 dominant peptide (SP_166-180) consisting of the S1 peptide pool. Three overlapping variant XBB.1.5 peptides are also
shown with their respective S1 peptides; mutations are highlighted purple (55).
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Sweden) overnight at 4°C. Plates were then washed five times with

PBS at room temperature and blocked with complete RPMI for 1–2

h at 37°C. Thawed PBMCs were resuspended to 0.1–2 × 106 cells/

mL (depending on culture conditions stated in Figure legends), and

50 µL was added in singlicate to triplicate with 50 µL of recall

antigens to a final concentration of 50 µg/mL: CMV-495, S1 pool

(all peptides each at a final concentration of 50 µg/mL), SP_131-

145, SP_166-180, XBB S1 overlapping pool (all peptides each at a

final concentration of 50 µg/mL), or 25 µg/mL of purified protein

derivative (PPD) (31) before incubation for 16 h for chromogenic,

or 18 h for Fluorospot at 37°C in a humidified incubator with 5%

CO2. CD4 peptides have previously been shown to require final

concentrations between 25 and 100 µg/mL for efficient ELISpot

analysis (12, 32–34). Due to our endpoint investigation of

potentially less dominant and cross-reactive responses, we used

peptides at a higher prior validated concentration of 50 µg/mL.

Anti-CD3 (0.5 µg/mL, Mabtech) was used as a positive control. As

some peptides required reconstitution with additive DMSO or

NaOH, control wells containing media alone, media with 0.49%

v/v 1 M NaOH, or media with 0.375% v/v DMSO were used as

background controls (averaged and graphed as “Media”). NaOH

and DMSO background concentrations were selected to match

potential maximal concentrations, and all conditions assessed

contained less solvents than present in the background controls

(Supplementary Table S10). Plates were washed for 5 min with

ultrafiltered reverse osmosis water (Milli-Q) to lyse cells before

washing five times with PBS and incubating with anti-human IFNg
Frontiers in Immunology 06
biotinylated mAb (1 µg/mL MAB-3420-6-1000, Mabtech, Sweden)

at room temperature, protected from light, for 2 h. After washing

five times with PBS, streptavidin-alkaline phosphatase was added to

a final concentration of 1 µg/mL and incubated at room

temperature, protected from light, for 1.5 h. Plates were washed

five times with PBS, and then with Milli-Q, and spots were

developed with a colorimetric AP kit (Bio-Rad, Philadelphia,

USA) following the manufacturer’s instructions. Antigen-specific

CD4 T-cell effector and central memory T-cell IFNg and IL-10

responses were evaluated with IFNg/IL-10 Fluorospot. Fluorospot

assays were run as per manufacturer’s protocol (IFNg/IL-10 plates

X-01A07B-10, Mabtech, Sweden) with an 18-h incubation at 37°C

in a humidified incubator with 5% CO2. For both the chromogenic

ELISpot and Fluorospot, dry plates were imaged, and spots were

counted with AID Multispot System software (v 7.0, AID,

Strabberg, Germany).
2.7 Cultured ELISpot on CCR7+-depleted
cell fractions

For depletion experiments, samples were split after resting the

cells into non-depleted and depleted experimental wells. Briefly,

non-depleted wells were set up and cultured as described above at

2.5 × 106 cells/well. Depleted samples were generated by

resuspending in 800 µL of FACS buffer (PBS with 5% v/v heat-

inactivated FBS: Sigma-Aldrich,18J032) per 108 cells with CCR7-PE
FIGURE 2

Graphical methodology of the cultured ELISpot protocol. Yellow stars indicate the areas of optimisation discussed in this paper (56).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1547220
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jerome et al. 10.3389/fimmu.2025.1547220
antibody (552176, BD Pharmingen) for 15 min at room

temperature with light protection. Cells were centrifuged at 1,400

RPM for 4 min at room temperature, resuspended with 800 µL

Miltenyi buffer (PBS with 2 mM EDTA, and 0.5% BSA w/v,

Bovogen, BSAS 0.1) per 108 cells and 200 µL/108 cells of anti-PE

negative selection microbeads (Miltenyi Biotec, 120-000-294), and

incubated for 15 min at 4°C. The cells were washed in Miltenyi

buffer with 10–20 times the labelling volume before centrifugation

at 300xg for 10 min. Cells were resuspended in 1 mL of Miltenyi

buffer, and an LD column (Miltenyi Biotech, 130-042-961) was

prepared with a 3-mL wash of Miltenyi buffer. Cells were then run

through the column on the magnetic field MACS separator, after

which the column was washed twice with Miltenyi buffer. Pre- and

post-MACS separation, cell fractions were collected for subsequent

flow cytometry analysis and CCR7 depleted cells were set up for

cultured ELISpot at 2.5 × 106 cells/well as per non-depleted cells.
2.8 Flow cytometry

CCR7 depletion was validated by flow cytometry of the following

cell factions: 1) pre-MACS separated, 2) flow-through, and 3) cells

collected within the LD column (Supplementary Figure S1,

Supplementary Table S11). Unlabelled pre-MACS cells were labelled

as per above with the PE-CCR7 antibody and then transferred to a 96-

well v-bottom plate and centrifuged at 1,400 RPM, 4°C for 4 min;

supernatants were removed by flicking the plate; and cells were

washed with 150 µL of FACS buffer and centrifuged again. Cells

were resuspended in 30 µL/well of Zombie Aqua (BioLegend, 423102,

1:1,000 dilution) and incubated with light protection at room

temperature for 15 min. Cells were then washed, resuspended in

100 µL/well of PBS containing 1% paraformaldehyde, and then

transferred to microtubes for analysis with a Fortessa X-20

benchtop (BD). Cytometry results were analysed using FlowJo™

v10.8 Software (BD Life Sciences, RRID: SCR_008520).
2.9 Data analysis and statistics

Data are presented as stimulation index (SI). SI calculations

divide all individual responses including the various media

conditions by their respective unstimulated average background

responses to adjust for the variable background reactivity of

individual donors. Where individualised data are required, such

as in our investigation of individual peptide responses, and cross-

reactivity between reference and XBB.1.5 viral variant peptides, spot

forming units (SFU) per million PBMCs (SFU/×106 cells) are

presented. All Figures (unless otherwise stated) depict one

representative donor’s responses, with all individualised donor

data available in Supplementary Tables S2-S8. As indicated,

unpaired t-test, one-way ANOVA, and two-way ANOVA were

used for statistical analysis. Graphs were generated and statistically

analysed using GraphPad Prism v.10.3.1. Data were analysed

against the null hypothesis, with a statistically significant rejection

of the null hypothesis considered at p ≤ 0.05.
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3 Results

3.1 Varying cell input numbers and ELISpot
readout modality from chromogenic to
fluorescent, to enable detection of SARS-
CoV-2 S1 central memory T-cell responses

Effector memory T-cell responses by ex-vivo ELISpot were

initially used to screen donors for their potential corresponding

central memory T-cell responses by cultured ELISpot. For this

screening, we chose a broadly known T-cell epitope from

cytomegalovirus (CMV-495) known to elicit strong IFNg-
producing effector T-cell responses in humans (35, 36), with a

57% seropositive rate for Australian adults (37), and a pool of

experimentally validated (28) and predicted peptides capable of

binding common Australian HLA haplotypes (Supplementary

Table S9) corresponding to key T-cell epitopes from the SARS-
FIGURE 3

Increased cultured ELISpot assay sensitivity for less robust antigens
requires increased cell numbers tested in a fluorogenic assay. IFNg
stimulation index (SI) to media and cognate antigen in ex-vivo
ELISpot with 350 × 103 cells/well for (A) CMV-495 and (B) S1 pool.
(C) Cultured ELISpot analysis of PBMCs primed to either CMV-495
or S1 peptide pool and cultured for 10 days before re-exposure to
media or cognate antigen: CMV-495 or S1 pool, using 10 × 103

cells/well chromogenic ELISpot, (D) or to S1 pool using 100x103

cells/well in Fluorospot ELISpot. Graphs present the mean ±
standard deviation (SD) of SI of one representative donor [donor A,
Supplementary Tables S1, S2–S4] of two-three donors analysed in
duplicate-triplicate. (A, B, D) Unpaired t-test, and (C) one-way
ANOVA were used for statistical significance and depicted as
**p < 0.01, ***p < 0.005; ns, not significant.
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CoV-2 S1 region (S1 pool). Generally, CMV-495 elicited robust

effector (Figure 3A) and central memory responses (Figure 3C),

which could be detected using as little as 5 × 103 cells/well in the

subsequent chromogenic ELISpot assay following 10 days of

culture. Although ex-vivo responses to the S1 pool were

significantly higher than media (Figure 3B), responses following

cultured ELISpot could not be detected under the same conditions

or with double the cell density (10 × 103 cells/well) as CMV-495

(Figure 3C). Further increasing cell/well densities were investigated

for their capacity to separate S1 recall responses without inducing

background visual artefacts. Cell/well densities of 20 × 103 were

unable to depict robust recall responses to S1 peptides, whereas 100

× 103 generated background visual artefacts in the chromogenic

ELISpot (Figure 4). Substituting chromogenic ELISpot for a

fluorescent detection modality (Fluorospot) enabled an increased

cell density of 100 × 103 cells/well to detect antigen-specific S1 pool

IFNg recall responses without a substantial increase in non-specific

background activity (Figures 3D, 4G).
3.2 Optimisation of culture period, IL-2
provision, and overnight washing for
delineation of cognate central memory
antigen recall responses to SARS-CoV-2

A significant number of technical variables associated with the

cultured ELISpot method have been extensively documented in the

literature, highlighting the need for standardised protocols to ensure

consistency and reliability in results; key examples are provided in

Table 1. By incorporating Fluorospot endpoint analysis, our cultured

ELISpot protocol achieves a 2.5-fold increase in cell density per well

compared with what has been previously documented in the

literature (38). As such, we aimed to investigate three of the
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ELISpots for their impact in our Fluorospot analysis of SARS-CoV-

2 IFNg responses. Shortening the culture period from 10 to 8 days

reduced recall SI responses of S1 pool primed and re-exposed

cultured ELISpot values by 0.45-fold of the 10-day response

(Figure 5A), indicating a higher assay sensitivity for a 10-day

culture. Predominantly, shorter cultured ELISpot protocols of 10

days favours IL-2 provision on days 3 and 7 of culture (6, 7, 23, 38),

whereas longer cultures of 14 days delay the initial IL-2 addition to

day 5, with a second dose on day 10 (11, 12, 39). During analysis,

cognate antigen responses were compared with both media, to define

assay sensitivity, and an unrelated recall antigen-purified protein

derivative (PPD; an extract from tubercule bacillus, Mycobacterium

tuberculosis), to define assay specificity. As an unrelated antigen,

significantly increased PPD IFNg responses indicates expansion of

non-cognate responses during the cultured ELISpot protocol,

detailing a reduced assay specificity for responses to the primed

cognate antigen of interest. In 10-day cultures, provision of IL-2 on

day 5 of culture demonstrated significant IFNg recall responses to the
cognate S1 pool, without inducing unrelated PPD responses.

Meanwhile, an earlier and more frequent provision of IL-2 (days 3

and 7) significantly enhanced both cognate and unrelated PPD

responses by 55% and 305%, respectively (Figure 5B). Delayed

provision of IL-2 on day 5 provided a greater assay specificity,

albeit with a slightly reduced cognate antigen sensitivity. Following

culture, cells were washed and rested to downregulate pro-

inflammatory mechanisms prior to their restimulation during

endpoint ELISpot analysis. Published protocols vary washes

between overnight with a rest (7, 40) or immediately upon cell

collection (11, 12). An overnight wash and rest were not beneficial

in our assays, as IFNg SI was either not impacted (Supplementary

Table S10) or reduced to 0.11-fold of the recall response observed

when cells were washed immediately after collection (Figure 5C).
FIGURE 4

The fluorescent ELISpot modality, Fluorospot, enables the required specificity and sensitivity for SARS-CoV-2 antigen IFNg recall responses.
Representative images of recall IFNg responses to unstimulated (media) and prime antigen matched restimulation (cognate antigen) for (A, B) CMV-
495, or (C-G) S1 pool. CMV-495 recall responses were observed at either (A) 5 × 103 or (B) 10 × 103 cells/well. Chromogenic analysis with cell/well
densities of (C) 5 × 103, (D) 10 × 103, or (E) 20 × 103 did not have the required sensitivity to demonstrate S1 pool IFNg recall responses, meanwhile
(F) 100 × 103 cells/well increased background visual artefacts. (G) Fluorescent ELISpot (Fluorospot) enhanced assay sensitivity and specificity to
separate S1 pool IFNg recall responses from background responses without visual artefacts with cells at 100 × 103 per well.
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3.3 S1 pool-induced IFNg recall responses
are reduced in CCR7-depleted PBMCs

Several papers demonstrate cultured ELISpot protocols to

reliably detect responses from the central memory T-cell

compartment with depletion of CCR7-expressing central memory

T cells reducing cognate antigen responses when compared with

complete fractions (5–7). Given our modifications to published

protocols, we aimed to confirm that we were similarly detecting

IFNg responses from central memory T cells. Depletion of CCR7+

PBMCs prior to priming and culture served to selectively remove

the central memory T-cell compartment to determine if they were

the driving cells of the cultured response. Post-culture viability of

CCR7-depleted and complete fraction wells were 72% and 74%,

respectively (Supplementary Table S11). CCR7 depletion reduced

IFNg SI to 10% of the complete fraction recall response (Figure 6),

confirming that our cultured ELISpot protocol detects a central

memory T-cell driven response, as previously documented in the

literature (Figure 6) (5–7).
3.4 Individual peptide responses including
cross-reactive epitopes following pooled
peptide-stimulated cultures

The requirement for two antigen stimulation periods in cultured

ELISpot assays provides the novel capacity to investigate specific

responding antigens. Through priming with a broad antigen such as

whole protein, and subsequently stimulating with individual peptides

during secondary re-exposure in the cultured ELISpot end-point

assay, responding peptides and/or cross-reactive epitopes can be
FIGURE 5

Comparison of an 8- or 10-day culture period, an alternate IL-2
provision schedule, and overnight wash and rest for SARS-CoV-2-
primed cultured ELISpot. Unless otherwise stated, all cultured
ELISpot assays were primed with the S1 pool and assessed following
10 days of culture with 100 × 103 cells/well in Fluorospot. (A) IFNg
stimulation index (SI) to media, and S1 pool following an 8- or 10-
day culture. (B) IFNg SI to media, S1 pool, and a non-cognate
antigen, purified protein derivative (PPD) with IL-2 supplementation
occurring on either day 5 (IL-2 (d5)), or on days 3 and 7 (IL-2 (d3, &
7)) of culture. (C) IFNg SI to media, and S1 pool with cell washes
occurring either immediately upon cultured cell collection
(immediate wash), or the prior evening with an overnight rest
(overnight wash). Graphs present the mean ± standard deviation
(SD) of the SI one representative donor [(A) donor B, (B, C) donor A,
Supplementary Tables S1, S5–S7] of two–three donors analysed in
two to four replicate wells. Two-way ANOVA was used for statistical
significance with the following classifications: *p < 0.05, **p < 0.01,
****p < 0.001; ns, not significant.
FIGURE 6

CCR7+ cell depletion ablates cultured ELISpot cognate antigen IFNg
responses. IFNg stimulation index (SI) to media and S1 pool in
Fluorospot assay with 100 × 103 cells/well following S1 pool primed
10-day culture in complete and CCR7+ depleted cell fractions. Data
are presented as mean ± standard deviation (SD) of duplicate wells
from donor A (Supplementary Table S1). Two-way ANOVA was used
for statistical significance and significance shown as ***p < 0.005;
ns, not significant.
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delineated. Figure 7 demonstrates a capacity to recall reactivity to

pooled peptides (S1 pool) following in vitro priming with whole S-

protein. As donor MHC haplotype and environmental exposures

may influence individual epitope reactivity, Figures 8 and 9 show

independent data for each donor tested. Indeed, although all three

donors had an IFNg response to S1 pool recall, responses to two of the
individual peptides present within the pool varied. Donor A

positively recalled to SP_131-145 (Figure 8A), donor B to neither

peptide (Figure 8B), and donor C to both SP_131-145 and SP_166-

180 independently (Figure 8C). Furthermore, we investigated

whether our assay could be used to examine cross-reactive recall

responses to variant peptides, through initial culture priming with

reference antigens such as our S1 pool, and subsequent restimulation

during end-point analysis with variant peptides such as from XBB.1.5

SARS-CoV-2. Positive recall responses are indicative of potential

cross-reactivity, either from preexisting central memory XBB-reactive

T cells receiving sufficient survival signals during reference antigen

priming, or from reference-primed central memory T cells

demonstrating capacity for recall responses to XBB.1.5 variant

peptides. Following culture primed with the S1 pool, we

demonstrate variable capacities for the induction of potential cross-

reactive IFNg recall responses to a pool of three S1 overlapping

XBB.1.5 viral variant peptides. Two out of the three donors

demonstrated a significant cross-reactive response when primed

with S1 pool and restimulated with the XBB variant pool when

compared with media. Indeed, donor A demonstrated a non-cross-

reactive recall response despite significant IFNg release following S1

pool restimulation (Figure 9A), whereas donors B and D showed

evidence for cross-reactive IFNg recall responses with significant

IFNg release following XBB.1.5 variant peptide restimulation as

compared with media. Of particular interest was no significant
FIGURE 7

Pooled peptide responses following whole SARS-CoV-2 S-protein-
primed cultured ELISpot. Media and S1 pool IFNg responses in 100 ×
103 cells/well Fluorospot following whole SARS-CoV-2 S-protein-
primed 10-day cultured ELISpot. Graph depicts the mean ± standard
deviation (SD) of the stimulation index (SI) of a representative donor
[donor A, (Supplementary Tables S1, S8] of two donors analysed in
two to four replicate wells. Unpaired t-test was used for statistical
analysis with ***p < 0.005.
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FIGURE 8

Individual peptide IFNg recall responses following S1 pool-primed
cultured ELISpot. Three individual donor IFNg recall responses to
media, S1 pool, and two individual peptides from the S1 pool
(SP_131-145, and the CD4 dominant: SP_166-180) following 10-day
cultured ELISpot primed with S1 pool. (A) Donor A demonstrated
SP_131-145 to be a responding peptide within the S1 pool. (B)
Donor B responded to neither peptide but responded to the S1 pool
and (C) donor C recalled to both SP_131-145 and SP_166-180.
Graphs present mean ± standard deviation (SD) of the spot forming
unit (SFU) per 1 × 106 cells of one to four replicates. One-way
ANOVA was used for statistical analysis with * denoting p < 0.05,
and **p < 0.01; ns, not significant.
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change in the magnitude of IFNg SFU between S1 pool and XBB.1.5

peptide restimulation for donors B and D (Figures 9B, C).
4 Discussion

Cultured ELISpot protocol design requires consideration of the

culture length, survival signal provision (IL-2), and endpoint analysis

modality (chromogenic vs. Fluorospot) to facilitate sensitive and

antigen-specific recall of central memory T-cell responses. While

many of the published protocols will generate measurable results to a

varying extent, our study showed weaker immune responses to

require a more robust protocol, requiring at least 10 days in culture

and delayed provision of growth factors (IL-2 on day 5) (Figure 5).

Although both chromogenic ELISpot and Fluorospot require similar

stages of initial analyte capture during an incubation process and then

antibody sandwich detection of the captured analytes, their method

of detection differs. Chromogenic ELISpot utilises colorimetric

detection such as streptavidin–alkaline phosphatase to generate a

colorimetric stain through reaction with chromogenic substances

such as a colorimetric AP kit, whereas Fluorospot directly tags the

secondary detection antibody with one of four fluorescent markers

for excitation/detection at wavelengths of 380nm/430nm, 490nm/

510nm, 550nm/570nm, and 640nm/660nm, providing the capacity

for multiplex detection of co-expressed cytokines from individual

cells and increased sensitivity as compared with flow cytometry (21).

Certainly, our analysis demonstrates an enhanced sensitivity for the

Fluorospot technique with a higher than previously reported input of

cultured cells (2.5-fold higher) over chromogenic ELISpot for the

post-culture quantification of central memory T cells, to enable the

determination of antigen–cell interactions for lower frequency T cells,

such as those to some SARS-CoV-2 epitopes (Figures 3, 4).

Specifically, we observed that an extension of the culture period

from 8 to 10 days led to a substantial increase in SI (Figure 5A),

indicating enhanced assay sensitivity with the longer culture period,

potentially due to an enhanced proliferative window for cognate

central memory T cells (8). The cultured ELISpot protocol treads a

fine line between providing survival signals to enhance central
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memory T-cell priming, without enhancing the survival of non-

specific, non-central memory T cells capable of IFNg production,

such as effector T cells (41) or innate immune cells such as natural

killer (NK) cells (42). Within published cultured ELISpot protocols,

shorter culture periods are associated with earlier provision of IL-2

(6, 38). Within our system, an earlier schedule for provision of IL-2

(day 3 and day 7) enhanced both the cognate S1 pool and unrelated

PPD recall responses, whereas IL-2 provision on day 5 supported

the specific detection of responses to the priming antigen

(Figure 5B). Given the stringent requirement for specificity for

cognate–antigen responses when investigating individual and cross-

reactive peptide reactivity, we concluded that the slight reduction in

cognate antigen sensitivity to be a worthwhile compromise for an

enhanced assay specificity using the delayed IL-2 protocol. Further

optimisations of survival signal provision for cultured ELISpots may

also include the provision of non-IL-2 survival signals such as IL-7

and IL-15 (40, 43). Cell washing is critical to enhancing endpoint

assay sensitivity for cultured ELISpot, as it removes potentially pro-

inflammatory cytokines within the cell media capable of enhancing

non-specific antigen responses upon endpoint ELISpot analysis. We

demonstrated a preference for the cell wash to occur immediately

after culture cell collection rather than the evening before with an

overnight rest, as the latter reduced IFNg SI (Figure 5C). Multiple

studies have demonstrated the specificity for central memory T-cell

responses in the cultured ELISpot assay via CCR7+ cell depletion

(5–7). Our results further replicated these studies, confirming our

assay conditions to similarly enable the study of central memory T

cells (Figure 6).

We further explored the assay’s capacity for 1) recalling

responses to pooled peptide epitopes following whole protein

antigen priming, 2) independent single-peptide epitope responses

following pooled peptide priming, 3) and cross-reactivity with viral

variant peptides. The initial results support the potential flexibility

that this assay may offer for the study of central memory T-cell

responses. Contrasting the single provision of recall antigen during

ex-vivo ELISpot, the requirement for a priming followed by a recall

antigen in the cultured ELISpot technique provides a unique

capacity to delineate individual antigenic peptides driving whole
FIGURE 9

Preliminary demonstration of cross-reactive recall IFNg responses following S1 peptide pool priming in cultured ELISpot. Three independent donor
IFNg recall responses to media, S1 pool (cognate), and XBB overlapping S1 peptides (XBB, cross-reactive) following cultured ELISpot primed with the
SARS-CoV-2 S1 peptide pool. (A) Donor A demonstrated no cross-reactive XBB responses following priming culture with the S1 peptide pool.
(B) Donors C and (C) D demonstrated evidence of cross-reactive recall responses to an XBB peptide pool containing XBB.1.5 strain variants of three
corresponding peptides to the Wuhan SARS-CoV-2 S1 peptide pool. Graphs are presented as mean ± standard deviation (SD) of spot forming units
(SFU) per 1 × 106 cells of one to four replicates. One-way ANOVA was used for statistical analysis with the following classifications: *p < 0.05, ***p <
0.005, ****p < 0.001; ns, not significant.
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protein or peptide pool responses (23). When investigating

individualised responses, such as to responding peptides, the

donor’s past exposure to antigen (44) or HLA haplotype (45, 46)

can significantly vary results. As observed in Figure 8, despite all

three donors responding to the S1 peptide pool, each demonstrated

varied capacity for IFNg release following individual recall of S1

peptide. This demonstrates that our cultured ELISpot protocol can

delineate individually responding peptides following peptide pool-

primed culture. Additionally, when whole S-protein was used for

initial stimulation, subsequent pooled peptide responses were

observed, suggesting a potential capacity for our assay to

delineate the individual responding peptides following whole

protein priming (23) (Figure 7). Furthering the concept of

delineating individual peptide responses, we next examined the

potential for our assay to investigate cross-reactive cellular immune

responses. Following culture primed with the S1 peptide pool, we

examined recall responses to the identical S1 pool, and a pool of

three overlapping SARS-CoV-2 XBB.1.5 strain variant peptides,

demonstrating functional recall responses in two of three donors

assessed (Figure 9). Given the numerous and ever evolving

collection of SARS-CoV-2 variants following the pandemic (47,

48), vaccine formulations need to remain competitive with current

variant strains to offer beneficial populational protective immunity

(49). As such, regions containing various viral variants should be

investigated not only for altered immunogenicity but for potential

protective cross-reactivity. The capacity of our cultured ELISpot

protocol to demonstrate cross-reactive recall responses at an

individualised donor level may provide an assistive tool for the

literature for future investigations for beneficial cross-reactive

immunogenic sites to facilitate vaccine development capable of

expanding either the breadth or longevity of protection conferred

(50, 51). Furthermore, the variable cross-reactive responses

observed between the donors investigated in Figure 9 stresses the

importance for subsequent studies aimed at specifically describing

cross-reactive peptides to consider not only an individual’s HLA

haplotype but also those within the population of interest to ensure

identified cross-reactive sequences are beneficial across the

populational level (49, 52–54).

Our study aimed to investigate the potential for our cultured

ELISpot protocol to delineate individual or cross-reactive peptide

responses but is limited by the few donors examined to conclusively

identify the individual peptides driving recall responses to the S1

pool. For future studies implementing our optimised cultured

ELISpot protocol, we recommend users to consider stratifying

donors based on ex-vivo antigen responsiveness and HLA

haplotype to ensure a robust delineation of individual peptides

driving pooled responses, or the capacity for cross-reactivity on not

only an individualised, but a populational stratification. The

capacity to identify individual peptide responses, along with the

demonstration of cross-reactivity between viral variants, may offer a

valuable approach for investigating how viral variants influence the

functional central memory T-cell response. This combined capacity

can enhance our understanding of immune system adaptability and

effectiveness in the face of evolving viral challenges, ultimately
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aiding in the development of more effective vaccines and

therapeutic strategies.
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