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Identification of common
hub genes and construction
of immune regulatory
networks in aplastic anemia,
myelodysplastic syndromes,
and acute myeloid leukemia
Mingliang Shan1,2, Li Xu3, Wenzhe Yang4, Lili Sui2, Ping Sun2,
Xiumei Zhuo2 and Shiguo Liu1*

1Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China, 2Post -
Doctoral Innovation Practice Base, Gaomi Maternity and Child Health Hospital, Gaomi, China, 3School
of Management, Shandong Second Medical University, Weifang, China, 4College of Acupuncture and
Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
Background: Aplastic anemia (AA), myelodysplastic syndromes (MDS), and acute

myeloid leukemia (AML) exhibit complex pathogenic mechanisms and

interrelated characteristics. We aimed to identify the common hub genes,

establishing a foundation for preventing disease progression.

Methods: We selected relevant datasets from the Gene Expression Omnibus

(GEO) database for differential gene expression, gene set enrichment, and

weighted gene co-expression network analyses to identify hub genes, and

then validated them. Subsequent analyses included immune infiltration

analysis, single-cell sequencing, and cell communication analysis. We

performed Mendelian randomization to screen inflammatory factors and

immune cells. We used RT-qPCR, Enzyme - Linked Immunosorbent Assay

(ELISA), and cell proliferation assays to validate the identified hub genes, their

relationship with cellular communication mediators and inflammatory factors,

and their impact on cellular function.

Results: POLG and MAP2K7 were identified as common hub genes, with low

expression observed across AA, MDS, and AML. There were distinct immune

differentials among these diseases, with an enhanced correlation between

immune cells and hub genes as the disease progressed. Macrophage Migration

Inhibitory Factor(MIF) emerged as a key mediator of cellular communication. We

identified 20 regulatory pathways of immune cells and inflammatory factors

across different disease stages. In vitro validation confirmed low expression of the

hub genes, which were inversely correlated with MIF and inflammatory factors,

though they showed no significant impact on cell proliferation or migration.
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Conclusions: POLG and MAP2K7 demonstrate crucial roles in the progression

from AA to MDS and, ultimately, to AML. These genes regulate more than 20

immune regulatory pathways through MIF-mediated communication, thereby

influencing disease progression.
KEYWORDS

aplastic anemia, myelodysplastic syndromes, acute myeloid leukemia, hub gene,
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1 Introduction

Within the expansive realm of hematological research, aplastic

anemia (AA), myelodysplastic syndromes (MDS), and acute

myeloid leukemia (AML) stand as major diseases that captivate

the attention of researchers worldwide. These diseases exhibit

intricate connections and distinctions in their pathogenesis,

clinical manifestations, therapeutic responses, and prognosis (1).

AA, with an incidence of 2–3 cases per million people (2), is

characterized as an immune-mediated bone marrow hematopoietic

failure (3–5), where T lymphocytes mount an immune assault

against hematopoietic stem/progenitor cells (6). Recently, the

advent of immunomodulatory therapies has significantly refined

treatment strategies for AA, markedly enhancing patient outcomes

(7, 8). Nevertheless, the underlying pathogenesis remains

incompletely elucidated (9–11), necessitating further investigation

(3). Additionally, a large percentage of AA patients may progress to

MDS (12). Long-term survivors of AA are at a high risk of

developing MDS and AML following immunosuppressive therapy

(IST) (13, 14). Approximately 15% to 20% would develop secondary

MDS/AML within a decade of follow-up (15).

MDS, with an incidence of 3–4 per one hundred thousand (16),

are heterogeneous clonal hematopoietic stem cell disorders (17),

characterized by dysplastic blood cell development and varying

degrees of cytopenias (18, 19). This disease is postulated to have

significant immunological abnormalities (20), and patients often face

a high risk of progression to AML, a process entwined with complex

genetic alterations (21, 22). Progression rates from MDS to AML

range from 5-15% in low-risk cases to 40-50% in high-risk cases (23).

Furthermore, the lack of distinctive clinical features often results in

delayed treatment, increasing the risk of AML transformation.

AML, with an incidence of 4.3 cases per one hundred thousand

(24),an aggressive hematological malignancy, is closely associated

with genetic and epigenetic alterations (25, 26), alongside marked

immunological aberrations (27). Both immunophenotyping and

immunotherapy have become essential components of AML

management (25, 28, 29). High-throughput sequencing has

greatly advanced the molecular classification of AML (30),

providing support for the implementation of precision medicine
02
(31, 32). However, the treatment faces various challenges, including

drug resistance and high relapse rates (33), leading to increased

treatment complexity and mortality rates (25). Preventing disease

progression to this advanced stage is therefore critical for reducing

treatment difficulty and improving prognosis.

Immune abnormality is the common feature of the above three

diseases, and they share certain similarities in their transformation

and immunological features. Thus, we hypothesized that they have

common abnormally expressed genes, which play vital roles in

immunological regulation throughout disease progression.

This study aimed to identify common hub genes among the

three diseases, assess their immune characteristics, and explore their

interrelationships. We identified key mediators through cell

communication analysis and constructed immune regulatory

networks using Mendelian Randomization (MR) analysis. In vitro

validation confirmed the reliability of common hub genes and

communication mediators, shedding light on their roles in

immune pathways and their impact on cellular function. The

verification of the immune regulatory network and related

functions of the hub genes is conducive to clarifying their

importance in preventing the progression of the three diseases

during the disease progression, as well as mapping the different

immune networks regulated by them in the three diseases.
2 Materials and methods

2.1 Bioinformatics analysis

2.1.1 Data sources
The datasets were sourced from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) (34), specifically GSE15061 (404 AML

samples and 328 MDS samples) and GSE3807 (8 AA samples).

Additional data was retrieved from the GTEX dataset (11 datasets)

on the UCSC Xena platform (http://xena.ucsc.edu/), selecting 70

samples of normal bone marrow. The samples of the three diseases

were respectively combined with 70 normal samples, and batch

correction was performed on each set of combined data to eliminate

the batch effects. GSE185381 was selected as the single-cell sequencing
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analysis dataset for AML and normal cells. Detailed information for

each dataset is provided in Supplementary Table S1-datasets.

2.1.2 Differential gene expression analysis and
functional enrichment analysis

A threshold of P < 0.05 and |log2 fold change (FC)| > 1(a difference

of more than twice) was set. We took the intersection of upregulated

and downregulated genes for each disease, respectively, and subjected

them to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses. Intersection genes were

further analyzed using TRRUST (https://www.grnpedia.org/trrust/)

for transcription factor enrichment, and a regulatory network was

subsequently constructed.

2.1.3 Weighted gene co-expression network
analysis

We clustered genes from each disease and excluded outliers.

The fitting index and average connectivity were determined by

calculating the optimal power value and were used to construct the

optimal scale-free network. We draw the scale-free topology to

validate network construction success. A distance matrix was

derived, and gene clustering was performed. Dynamic module

identification was carried out with the criteria that the number of

genes in each module should be ≥ 30. Similar modules were

clustered and merged, and heatmaps between modules and

clinical traits were plotted to identify significant modules. Gene

significance (GS) > 0.5 and module membership (MM) > 0.8 were

set as thresholds to identify key module gene sets.

2.1.4 Identification and validation of common
hub genes

We intersected the upregulated and downregulated genes from

the key modules identified in the WGCNA with the upregulated

and downregulated genes from each disease. The resulting key

genes underwent validation through Least Absolute Shrinkage and

Selection Operator (LASSO) regression analysis. We draw boxplots

for each disease to assess the differential expression of common hub

genes between groups. Additionally, receiver operating

characteristic (ROC) curves were generated for further validation.

2.1.5 Expression of common hub genes and gene
set enrichment analysis of synergistic gene

We visualized the expression profiles of common hub genes

across various tissues, differentiated by gender. The synergistic gene

set interacting with the hub genes was extracted from a merged

dataset of the three diseases, followed by GSEA analysis to identify

enriched pathways.

2.1.6 Immune infiltration analysis
Immune-related GSEA analysis was performed for each disease,

with P < 0.05 considered statistically significant and |log2 FC| set to

> 1. Additionally, the single sample GSEA (ssGSEA) analysis was

conducted to assess changes in immune infiltration during disease

transformation and its potential role.
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2.1.7 Single-cell sequencing and cell
communication analysis

Based on the hypothesis that the transformation from normal

cells to AA, then to MDS, and ultimately to AML represents a

dynamic process, we utilized available single-cell datasets for

normal cells and AML, which represent the initial and terminal

stages, respectively. Due to the lack of complete single-cell datasets

for AA and MDS, we used data from existing literature to

supplement the analysis and form a complete single-cell study

(35, 36). Therefore, we could infer similarities and differences

between the three diseases at the single-cell level.

We processed single-cell transcriptomic data using the package

“Seurat”, following established protocols (37). Single-cell

sequencing datasets for AML and normal samples were selected

from GSE185381, with filtering criteria including gene count > 50

and mitochondrial percentage < 5%. The 1500 genes with the

highest variation coefficients were selected for principal

component analysis (PCA) to reduce dimension. The top 20 most

significant PCA components were selected for t-distributed

stochastic neighbor embedding (t-SNE) clustering analysis and

cell annotation. The expression of common hub genes in various

cell types was visualized.

Based on the single-cell sequencing results, cell communication

analysis was performed and visualized. A ligand-receptor

interaction map was constructed, filtering out communications

involving fewer than 10 cells. We also generated graphs of the

number and strength of interactions. A bubble plot of receptor-

ligand interactions was created according to cell types, highlighting

core pathways that play critical roles in both normal and

AML groups.
2.2 MR analysis

The MR analysis was conducted following the TROBE-MR-

checklist (38, 39), utilizing the package “TwosampleMR”. All data

used in this study were derived from publicly accessible databases,

and the original studies had been ethically approved.
2.2.1 Data sources
Data on AA were sourced from the IEU database (https://

gwas.mrcieu.ac.uk/) (GWAS ID: ebi-a-GCST90018794),

comprising 473,500 samples and 24,192,378 SNPs. Data for AML,

MDS, immune cells, and inflammatory factors were retrieved from

the EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/). Accession

numbers of AML and MDS were GCST90435652 and

GCST9004394, respectively. Immune cell accession numbers

ranged from GCST90274758 to GCST90274848, covering 728

immune cell types and their corresponding GWAS IDs

(Supplementary Table S1-immune cell). Inflammatory factors had

accession numbers from GCST90274758 to GCST9027484,

encompassing 90 immune cell types with IDs listed in the EBI

GWAS Catalog (Supplementary Table S1-inflammatory factors).

All samples were drawn from European populations.
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2.2.2 Instrumental variable selection
IV needs to satisfy three assumptions: relevance, independence,

and exclusion restriction. All IVs must undergo linkage

disequilibrium (LD) test, heterogeneity test, and pleiotropy test.

Further screening involved: (1) IVs should adhere to genome-wide

significance thresholds (P < 5.0 × 10^-8). If significant SNPs were

unavailable, SNPs with P < 5×10^-6 were considered candidates; (2)

LD assessed using European samples from the 1000 Genomes

Projects was treated as the reference. The SNPs with the lowest P-

values at R2 = 0.001 (clumping window size = 10,000 kb) were

considered; (3) SNPs with a minor allele frequency (MAF) ≤ 0.01

were excluded; (4) Palindromic SNPs (A/T with ambiguous allele

frequencies or G/C polymorphisms) were excluded when

harmonizing exposure and outcome data. For each SNP included

in the analysis, the following methods were used to calculate R2 and

F values for efficiency evaluation according to the data situation: R2

= 2*EAF*(1-EAF)*b2 or R2 = b2/(b2+SE2*N), and F = R2(N-2)/(1-

R2), ensuring F ≥ 10.

2.2.3 Batch screening
Following established protocols (40), we conducted MR

analyses as follows: (1) Firstly, the collected 728 types of immune

cells and 90 inflammatory factors were used as exposures, with the

three diseases as outcomes, identifying positive immune cells and

inflammatory factors; (2) Positive immune cells and inflammatory

factors were further analyzed to identify bidirectional associations,

denoted as double-positive inflammatory factors and double-

positive immune cells; (3) Factors served as the outcomes in step

(2) were used as exposure, with the three diseases as outcomes in

subsequent MR analysis, identifying triple-positive immune Cells

and triple-positive inflammatory factors.

2.2.4 Mediation analysis
Based on the relationships of triple-positive immune cells and

inflammatory factors, we determined two components of the

mediated MR analyses: triple-positive immune cells act on triple-

positive inflammatory factors to cause diseases and triple-positive

immune cells act on triple-positive inflammatory factors to cause

diseases. Each batch of analysis included four steps: (1) The total

effect from exposure to outcome (beta_all) was evaluated; (2)

Potential reverse causation was assessed; (3) The effect of

exposure on mediator (beta1) was calculated; (4) The effect of

mediator to outcome (beta2) was calculated, utilizing distinct SNPs

from step three. The mediation effect was calculated as beta12 =

beta1*beta2. The total effect can be decomposed into the direct

effect of exposure on the outcome (beta_dir) and the indirect effect

of exposure mediated through the mediator (beta12). The

mediation proportion (Z) was calculated by dividing the indirect

effect by the total effect. We used the delta methods for 95%

confidence intervals (CI). The IVW and MR-Egger methods were

applied to determine causality (41, 42). IVW combines the causal

effects of each SNP through meta-analysis, and the premise is that

all SNPs are valid IVs, so this method needs to be used after

excluding pleiotropy. When IVW and MR-Egger results cannot
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satisfy P < 0.05 at the same time, the IVW results would be used as

the final judgment basis. When neither IVW nor MR-Egger results

satisfy P < 0.05, the results from the decomposition steps of IVW

and MR-Egger can be examined to determine if they meet the P <

0.05 threshold. If both methods show P < 0.05, the direction of each

step is then combined to define the overall effect direction.

2.2.5 Sensitivity analysis
Cochran’s Q statistic was utilized to measure the heterogeneity

of IVs, with P > 0.05 indicating no heterogeneity, calculated using

the mr_heterogeneity function. A random effects model was applied

when significant heterogeneity was detected among SNPs,

otherwise, a fixed effects model would be used. Additionally, a

“leave-one-out” analysis was performed to identify potential outlier

SNPs. Pleiotropy was evaluated based on the intercept calculated by

MR-Egger regression using mr_pleiotropy_test.
2.3 Experimental validation

2.3.1 Cell sources
This study was approved by the local hospital ethics committee

(No. 20230309-03), complying with the Declaration of Helsinki.

Written informed consents were obtained from both the donors

and their parents for the use of human tissues, body fluids, or

cell lines.

The AA cells were derived from the bone marrow sample of a

child with severe AA. The MDS cells were the MDS-L cell line

preserved in the laboratory, and STR identification had been carried

out before the experiment (see attached Supplementary Figure S1).

The AML cells were the KG-1a cell line (CELLCOOK, Guangzhou,

Guangdong, China), and STR verification was also conducted for

them (see attached Supplementary Figure S2). The normal control

cells were the human umbilical cord blood stem cells from an

individual whose umbilical cord blood stem cells were stored in our

hospital (protocol number: ZTQX0470663).

Cells were cultured in Dulbecco modified Eagle medium

(DMEM) (HyClone; GE Healthcare Life Sciences, Logan, UT,

USA) supplemented with 10% fetal bovine serum (FBS) (opcel,

Shanghai, China), and incubated at 37°C under a humid 5% CO2

atmosphere. Cells were plated in 6-well plates at a density of 1 × 105

cells per well, and these in the logarithmic growth phase were used

for subsequent experiments.
2.3.2 Plasmid construction
The pUC19 plasmid (Solarbio, Beijing, China) was selected as

the expression vector (Supplementary Figure S3), and vectors were

digested with HindIII (LMAI Bio, Shanghai, China) and NdeI

(KALANG, Shanghai, China). Gene sequences for Homo sapiens

POLG and MAP2K7 were retrieved from NCBI, and primers were

designed accordingly (Supplementary Table S1-Step 1). The DNA

fragment was ligated using overlap extension PCR (Supplementary

Figure S4). The ligation product was then transferred into

competent Escherichia coli DH5a (Wenzhou KeMiao
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Biotechnology Co., Ltd., Wenzhou, Zhejiang, China), which was

revived on blasticidin-free medium and subsequently grown on

kanamycin (Beijing Ita Biotechnology Co., Ltd., Beijing, China)

plates. Single colonies were randomly selected and subjected to

plasmid transfection. We performed qPCR to confirm the

successful construction of plasmid and expression of the hub

genes in the target cells.

2.3.3 Experimental grouping and plasmid
transfection

The cells were divided into the following groups: Normal

(human umbilical cord blood stem cells), AA Control (AA cells),

AA Experimental (AA cells transfected with plasmids), MDS

Control (MDS-L cells), MDS Experimental (MDS-L cells

transfected with plasmids), AML Control (KG-1a cells), and AML

Experimental (KG-1a cells transfected with plasmids). Each group

was cultured in 4500 µL of 20% DMEM (absin, Shanghai, China)

supplemented with 500 µL FBS (opcel) and 200 µL of penicillin-

streptomycin (P/S) (absin). Cells in the logarithmic growth phase

were transfected using Lipofectamine 2000 (Invitrogen, Hangzhou,

Zhejiang, China).Then, gently mix the diluted plasmid DNA with

the Lipofectamine 2000 reagent, and incubate them at room

temperature for 15–20 minutes to allow the formation of

transfection complexes. Add the transfection complexes drop - by

- drop into the culture vessel containing the cells. Gently shake the

culture vessel to ensure the complexes are evenly distributed on the

cell surface. Then, return the cell culture vessel to the cell incubator

and continue the cultivation for 6 hours. Each group was set up with

three replicate wells.

2.3.4 RT-qPCR
Total RNA was extracted using Trizol reagent (Life

Technologies, Grand Island, NY, USA) and quantified using

spectrophotometric readings at 260/280 nm. The RNA was

resuspended in RNase-free water and treated with DNase I (Life

Technologies) to remove potential DNA contamination. Reverse

transcription was carried out using the ReverTra Ace qPCR RT Kit

(TOYOBO, Japan) for 1 µg total RNA of each sample. First-strand

cDNA was synthesized in 20 mL of reaction mixture. cDNA was

stored at −20°C until further use.

Specific primer sequences were inserted (Supplementary Table

S1-Step 2). The expression levels of target genes were quantified

using the 2^−DDCT method, with GAPDH as the internal control.

Tianlong Gentier 96E PCR analysis system (TIANLONG, China)

and LEPU fluorescence quantitative PCR system (LEPU, China)

were used for analyses.

2.3.5 Expression of MIF and hub genes
Expression of MIF and hub genes was compared between the

normal and control groups for each disease using RT-

qPCR.Considering that the data scale of Group AA in the

bioinformatics section is relatively small, in order to enhance the

robustness of the differential expression analysis for this group,

Group AA was verified intensively by dividing it into two

independent cohorts.
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2.3.6 Impact of high-expression hub genes on
MIF and inflammatory factors expression, and
cellular function

After culturing the normal and experimental groups of each

disease for 72 hours, RT-qPCR was performed to assess the

expression of hub genes and MIF following plasmid transfection.

All subgroups were selected, and the medium was then replaced

with human serum, which was obtained from the remaining serum

after serum transfusion of neonates with coagulation disorders in

our hospital. Each group included three replicate wells. With

reference to a previous study (43), cells were cultured for 72

hours, and RT-qPCR was performed to evaluate the expression of

proliferating cell nuclear antigen (PCNA), B-cell lymphoma 2 (Bcl-

2), and Matrix metalloproteinase-2 (MMP-2) in each group

following the induced overexpression of hub genes.

PCNA plays a crucial role in cell proliferation, primarily

expressed in the nucleus (44). PCNA expression significantly

increases during the S phase of the cell cycle, where it functions

as a DNA polymerase auxiliary factor, promoting DNA synthesis

and replication (45). Bcl-2, an anti-apoptotic protein located on the

mitochondrial membrane, regulates cell survival by inhibiting

apoptosis through reducing cytochrome C release and other

pathways (46, 47). The balance of its family proteins determines

whether cells will undergo apoptosis. MMP-2, a member of the

protease family, is secreted by cells and is capable of degrading

extracellular matrix components (48). In physiological processes,

MMP-2 is involved in tissue remodeling, and in pathological

conditions, it is associated with tumor invasion, metastasis, and

various diseases. Inhibiting MMP-2 activity could be a therapeutic

strategy for several diseases (49).

The Normal, AA Control, MDS Control, AML Control, AA

Experimental, MDS Experimental, and AML Experimental groups

were used. From the 20 immune regulatory pathways identified

through MR, MIF and inflammatory factors relevant to each disease

were selected for analysis. To measure the cytokine levels, a double-

antibody sandwich enzyme-linked immunosorbent assay (ELISA)

method was performed on the collected medium. Centrifuge

samples of the culture mediums immediately at 4000 × g for 5

minutes to collect the conditioned supernatant, and store at −80°C

until use. Cytokine concentrations, including MIF, LIF (AA), HGF

(MDS), IL-20 (MDS), TWEAK (AA), TSLP (AML), and CCL19

(MDS), were measured using ELISA kits according to the

manufacturer’s protocol (for reagent information and the manual,

please refer to Supplementary Figure S5). Standard curves for each

cytokine were constructed using standard solutions, and cytokine

concentrations in the samples were calculated by comparing the

optical density (OD) values of the samples to the standard curves

(Supplementary Table S2). The assays were constructed using a

BioTek Epoch full-wavelength microplate reader (Epoch, USA).The

ELISA experimental procedure underwent enhanced validation

across two separate independent cohorts.

In parallel, cell proliferation was measured using the MTT

assay. Cells from all groups were cultured in human serum for 72

hours. Cell proliferation was assessed using the CellTiter 500T assay

kit (Wanlei Biotechnology, Shanghai, China) and a FlexA-200 full-
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wavelength microplate reader (Aosheng, Hangzhou, China). In

each group, three replicate wells were set, with 5000 cells seeded

per well in 96-well plates. The MTT concentration was set at 0.2

mg/mL, and the absorbance was measured at 570 nm.The MTT

experimental process was strengthened and validated in two

independent cohorts.
2.4 Statistical analysis

Statistical analyses were performed using SPSS 25.0 and R 4.4.1.

P<0.05 was considered statistically significant. Comparisons

between two groups were conducted using t-tests, while pairwise

comparisons between multiple groups were performed using LSD-

t tests.
3 Results

3.1 Bioinformatics analysis

3.1.1 Transcriptomic characteristics
A total of 985 differentially expressed genes (DEGs) were

identified between AA and normal samples, comprising 507

upregulated genes (log2FC > 1) and 478 downregulated genes

(log2FC < −1) (Figures 1A, B). Similarly, between MDS and normal

samples, 891 DEGs were identified, with 407 genes upregulated and

484 genes downregulated (Figures 1C, D). In AML and normal

samples, 879 DEGs were identified, including 421 upregulated genes

and 458 downregulated genes (Figures 1E, F). By intersecting the

upregulated and downregulated gene sets across the three diseases, we

identified 193 commonly upregulated genes in all three conditions

(Figure 1G), and 254 commonly downregulated genes (Figure 1H).

GO enrichment results indicated that all diseases were primarily

associated with viral infections (Figures 1I-K, O-Q, U-W), while

KEGG enrichment showed a link to endocrine and metabolism

(Figures 1L-N, R-T, X-Z). Among the common upregulated and

downregulated genes, the GO enrichment results showed that the

upregulated genes were closely associated with viruses, inflammation,

and T-cells (Figures 1A-C), while KEGG analysis showed a link to

pathogen infection and the degradation of biological compounds

(Figures 1D, E). The downregulated genes set was associated with

viruses (GO) and endocrine or metabolism (KEGG) (Figures 1F-J).

Further transcription factor enrichment analysis indicated that 15

transcription factors were enriched within the common upregulated

and downregulated gene sets (Tables S3-up-regulate, S3-Down-

regulated), respectively, with their regulatory interactions depicted

in Supplementary Figures S1A, B.
3.1.2 Hub genes selection
Scale-free network topology analysis for each disease revealed

that the correlation coefficients were all greater than 0.8 (AA = 0.83,

MDS = 0.85, AML = 0.84), validating the power values chosen for

constructing the scale-free network (AA: Figures 2A, B, MDS:

Figures 2F, G, AML: Figures 2K, L). Then we yielded the
Frontiers in Immunology 06
WGCNA module results for each disease (AA: Figure 2C, MDS:

Figure 2H, AML: Figure 2M). By correlating these modules with

clinical traits (AA: Figure 2D, MDS: Figure 2I, AML: Figure 2N) and

conducting gene importance analysis (AA: Figure 2E, MDS:

Figure 2J, AML: Figure 2O), we identified the dominant modules

for each disease (turquoise for AA, blue for MDS, and blue

for AML).

3.1.3 Identification and validation of common
hub genes

Intersecting the upregulated and downregulated genes from the

keyWGCNAmodules with the DEGs for each disease, we identified

10 common upregulated genes (ENO1, MORF4L2, RHEB, POLG,

DCAF13, MAP2K7, PDIA3, FNBP4, RPS24, and TSPAN3)

(Figure 3A), and 9 common downregulated genes (ENO1,

MORF4L2, RHEB, POLG, DCAF13, MAP2K7, PDIA3, RPS24,

and TSPAN3) (Figure 3B). Further Lasso regression analysis of

these genes (AA: Figures 3C, D, MDS: Figures 3E, F, AML:

Figures 3G, H) narrowed the scope to POLG and MAP2K7,

which were downregulated across all diseases (Figure 3I). These

genes were further validated using boxplots (AA: Figures 3J, K,

MDS: Figures 3L, M, AML: Figures 3N, O) and ROC curves (AA:

Figures 3P, Q, MDS: Figures 3R, S, AML: Figures 3T, U),

confirming their reliability.

3.1.4 Expression of common hub genes in normal
tissues and GSEA analysis of synergy genes

The common hub genes were found to be highly expressed in

most normal tissues (POLG: Figure 3V for males, Figure 3W for

females; MAP2K7: Figure 3X for males, Figure 3Y for females).

GSEA analysis of the synergy genes revealed that only POLG was

successfully enriched, activating the APOPTOSIS pathway and

inhibiting the HEME METABOLISM and E2F TARGETS

pathways (Figure 3Z). These findings suggested that POLG is

associated with cell apoptosis and heme metabolism, which aligns

with the disease characteristics.

3.1.5 Immune infiltration
The immune-related KEGG pathway enrichment revealed

distinct immune cell types enriched across the three diseases (AA:

Figures 4A, B, MDS: Figures 4C, D, AML: Figures 4E, F),

highlighting the immunological heterogeneity. ssGSEA immune

infiltration analysis (AA: Figure 4G, MDS: Figure 4H, AML:

Figure 4I) showed significant differences in immune cell content

and composition between normal and diseased samples, suggesting

immune alterations. Correlation heatmaps (AA: Figure 4J, MDS:

Figure 4K, AML: Figure 4L) further illustrated the connections

between immune cells. Immune cell correlation heatmaps (AA:

Figure 4M, MDS: Figure 4N, AML: Figure 4O) indicated that POLG

and MAP2K7 play increasingly important roles throughout the

progression from AA to MDS and AML, with the associated

immune cell numbers and intensit ies becoming more

pronounced. The violin plots showed that most immune cells

exhibited significant differences between the control and the

experimental group (AA: Figure 4P, MDS: Figure 4Q, AML:
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FIGURE 1

Transcriptomics preliminary analysis. (A, C, E) Heatmaps illustrating the DEGs in disease samples and normal samples. The abscissa represents
different samples. Blue represents the normal group and red represents the disease group (A, AA; C, MDS; E, AML). The ordinate represents genes.
High expression is red and low expression is deep blue. (B, D, F) Volcano plots of DEGs in disease vs normal samples. Red, green, and black points
indicate genes that are upregulated, downregulated, or have no significant difference in the disease group compared with the normal group (B, AA;
D, MDS; F, AML). (G, H) Venn diagrams displaying the commonly upregulated and downregulated gene sets. Red represents the AA group, blue
represents the MDS group, and green represents the AML group. (I-K, O-Q, U-W, a-c, f-h) GO enrichment analyses. (L-N, R-T, X-Z, d-e, i-j) KEGG
enrichment analyses. For AA, I-K; L-N, MDS, O-Q; R-T, and AML, U-W; X-Z, the gene sets upregulated in all three diseases are: a-c, d-e, and the
gene sets downregulated in all three diseases are: f-h, i-j. For each type, results are presented as bar charts, bubble charts, and circle plots. In bar
charts, redder means more significant difference and bluer means less. Bar length shows the number of enriched genes. In bubble charts, the same
color - significance rule applies. The size of the bubbles represents the number of enriched genes. The outermost circle represents the GO IDs, and
the next inner circle represents the number of enriched genes. The following inner circle represents the number of differentially expressed genes,
and the innermost circle represents gene proportions. The color represents the second circle from outside to inside. The redder the color, the more
significant the differential gene enrichment is.
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Figure 4R), indicating that all three diseases had immune differences

compared to normal cells.

3.1.6 Single-cell sequencing and cell
communication analysis

Single-cell sequencing analysis revealed that the t-SNE

clustering of the normal group identified 11 clusters, which were

distributed across 6 cell types, including Monocytes, T-cell, NK-cell,

B-cell , granulocyte‐macrophage progenitor(GMP), and

Megakaryocyte - Erythrocyte Progenitor(MEP) (Figure 5A). The

AML group identified 10 clusters, which were distributed across 7

cell types, including Common Myeloid Progenitor(CMP), GMP, T-

cell, NK-cell, B-cell, Monocyte, and Erythroblast (Figure 5D). The

main cellular compositions of the normal group (Figures 5B, C) and

the AML group (Figures 5E, F) differed. Common hub genes were

expressed to some extent in cells of all clusters, but the numbers

were relatively low (Figure 5G). In the normal group, POLG was

highly expressed and occupied a relatively large proportion in GMP,

while it was lowly expressed and occupied a relatively large

proportion in MEP. MAP2K7 was highly expressed and occupied

a relatively large proportion in MEP, while it was lowly expressed

but occupied a relatively large proportion in GMP (Figure 5H).

POLG was lowly expressed and occupied a relatively large

proportion in Erythroblast, while it was highly expressed and

occupied a relatively large proportion in GMP. MAP2K7 was

lowly expressed and occupied a relatively large proportion in
Frontiers in Immunology 08
Erythroblast, while it was highly expressed and occupied a

relatively large proportion in both GMP and NK-cell.

Cell communication analysis revealed intercellular

communication relationships (Supplementary Table S3-CON,S3-

AML), interaction counts (CON: Figure 6A, AML: Figure 6B),

interaction strength (CON: Figure 6C, AML: Figure 6D), and the

communication of individual cells with other cell types (CON:

Figure 6G, AML: Figure 6H). Monocyte, MEP, and GMP were

ranked highest in the normal group. In AML, CMP, GMP, B-cell,

and Monocyte showed the highest rankings. Both the normal and

AML groups demonstrated that most cellular communication

occurred via two primary receptor-ligand pairs: MIF − (CD74

+CXCR4) and MIF − (CD74+CD44) (CON: Figure 6E, AML:

Figure 6F). Visualization of the MIF pathways for both groups

indicated that all analyzed cells had the ability to send signals. GMP

and Monocyte acted as ligand cells, sending signals to other cells. B-

cell, Monocyte, and GMP served as receptor cells, receiving the

majority of signals (CON: Figure 6I, AML: Figure 6J), and also

played the role of intermediary and bridge (CON: Figure 6K, AML:

Figure 6L). MIF − (CD74+CXCR4) and MIF − (CD74+CD44)

receptor-l igand pairs contributed significantly to the

communication network in both groups (CON: Figure 6M, AML:

Figure 6N). The expression levels of genes involved in cell

communication were consistent with the observed interactions

(CON: Figure 6O, AML: Figure 6P) . Moreover , ce l l

communication utilizing MIF − (CD74+CXCR4) and MIF −
FIGURE 2

Selection of hub genes. (A, B, F, G, K, L) Scale-free network topology plots. AA, A-B; MDS, F-G; AML, K-L. (C, H, M) Merged weighted gene co-
expression networks, AA, C; MDS, H; AML, M. (D, I, N) Heatmaps illustrating the correlation between modules and clinical traits. Red represents a
positive correlation and blue represents a negative correlation. AA, D; MDS, I; AML, N. (E, J, O) Gene importance plots. The abscissa represents
module names, and the ordinate represents gene importance. AA, E; MDS, J; AML, O.
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(CD74+CD44) as receptor-ligand pairs was clearly depicted (CON:

Figures 6Q, S, U; AML: Figures 6R, T, V).
3.2 MR analysis

(1) We conducted a bulk MR analysis on 728 immune cells,

identifying 19 positive immune cells for AA (Supplementary Table

S3-AA positive immune cells), 14 for MDS (Supplementary Table

S3-MDS positive immune cells), and 27 for AML (Supplementary
Frontiers in Immunology 09
Table S3-AML positive immune cells). Additionally, we analyzed 90

inflammatory factors, identifying 3 positive inflammatory factors

for AA (Supplementary Table S3-AA positive inflammatory factor),

4 for MDS (Supplementary Table S3-MDS positive inflammatory

factor), and 2 for AML (Supplementary Table S3-AML positive

inflammatory factor). (2) Using the identified positive immune cells

as exposures and positive inflammatory factors as outcomes, a bulk

MR analysis revealed 4 correspondences in AA (Supplementary

Table S3-AA immune-inflammatory), 2 in MDS (Supplementary

Table S3-MDS immune-inflammatory), and 2 in AML
FIGURE 3

Screening and validation of common hub genes, their expression across different tissues, and GSEA analysis of synergistic genes. (A, B) Venn
diagrams showing the intersection of upregulated and downregulated genes from key modules in WGCNA with upregulated and downregulated
genes in each disease. (A) represents the upregulated gene set, and (B) represents the downregulated gene set. Red represents the AA group, blue
represents the MDS group, green represents the AML group, and yellow represents the gene set in the WGCNA key module. (C-D, E, F, G, H) Lasso
regression cross-validation plots for the three diseases, AA, C-D; MDS, E-F; AML, G-H. The abscissa represents Log(l) values, and the ordinate
represents cross-validation errors. (I) Venn diagram showing the intersection of genes after Lasso validation. Red represents the AA group, blue
represents the MDS group, and green represents the AML group. (J-O) Box plots of differential expression for common hub genes. AA, J-K; MDS, L-
M; AML, N-O. (P-Q, R-S, T-U) ROC validation curves. AA: P-Q, MDS: R-S; AML, T-U. The abscissa represents the false positive rate (1 - specificity),
and the ordinate represents the true positive rate (sensitivity). (V-Y) Expression of common hub genes across normal tissues in the body. POLG,
males (V) and females (W). MAP2K7, males (X) and females (Y). (Z) GSEA analysis of immune-related synergistic genes for common hub genes,
where only POLG was enriched.
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FIGURE 4

Immune infiltration analysis. (A-F) Immune-related GSEA enrichment analyses. In AA, (A) represents the normal group, and (B) represents the AA
group. In MDS, (C) represents the normal group, and (D) represents the MDS group. In AML, (E) represents the normal group, and (F) represents the
AML group. (G-I) ssGSEA immune infiltration analysis heatmaps. AA, G; MDS, H; and AML, (I) The abscissa represents different samples. Blue
represents the normal group (Con) and red represents the disease group (Treat) The ordinate represents different immune cell types.
(J-L) Correlation heatmaps between ssGSEA immune cells. AA, J; MDS, K; and AML, L. The redder the color, the higher the positive correlation
between the two, and the bluer the color, the higher the negative correlation. (M-O) ssGSEA gene-immune cell correlation heatmaps. AA, M; MDS,
N; and AML, O. The abscissa represents gene names, and the ordinate represents immune cell types. The redder the color, the higher the positive
correlation between the gene and immune cell type, and the bluer the color, the higher the negative correlation. (P-R) Violin plots of ssGSEA
immune cells. AA, P; MDS, Q; and AML, R. The abscissa represents immune cell types, and the ordinate represents the percentage of immune cells.
Blue represents the normal group, red represents the disease groups, and p indicates the p-value of the difference between the two groups.
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(Supplementary Table S3-AML immune-inflammatory). When

inflammatory factors were used as exposures and immune cells as

outcomes , 2 correspondences were ident ified in AA

(Supplementary Table S3-AA inflammatory-immune), 4 in MDS

(Supplementary Table S3-MDS inflammatory-immune), and 6 in

AML (Supplementary Table S3-AML inflammatory-immune). (3)

Further analysis using double-positive immune cells as exposures

and the three diseases as outcomes revealed 2 correspondences in

AA (Supplementary Table S3-AA Double positive immune), 4 in
Frontiers in Immunology 11
MDS (Supplementary Table S3-MDS Double positive immune),

and 6 in AML (Supplementary Table S3-AML Double positive

immune). Similarly, using double-positive inflammatory factors as

exposures, we found 4 correspondences in AA (Supplementary

Table S3-AA Double positive inf), 2 in MDS (Supplementary Table

S3-MDS Double positive inf), and 2 in AML (Supplementary Table

S3-AML Double positive inf). (4) Ultimately, based on the previous

steps, 8 pathways were identified where triple-positive immune cells

act through triple-positive inflammatory factors to influence the
FIGURE 5

Single-cell sequencing analysis. (A, D) t-SNE clustering plots after dimension reduction by PCA. A, the normal group; D, the AML group. Different
colors represent different clustering types. (B-C, E-F) Distribution of common hub genes in cells from the normal and AML groups. In the normal
group, POLG is shown in B, and MAP2K7 in (C) In the AML group, POLG is shown in E, and MAP2K7 in (F) The redder the color, the higher the
expression level, and the bluer the color, the lower the expression level. (G, H) Bubble plots for common hub genes. G, the normal group; H, the
AML group. The abscissa represents different gene types, and the ordinate represents different immune cell types. The bubble size represents the
proportion of gene expression, with bluer bubbles indicating higher expression levels.
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FIGURE 6

Cell communication analysis. (A-B, C-D, G-H, Q-R) Intercellular communication relationship diagrams. Number of interactions: A, normal group; B,
AML group. Interaction strength: C, normal group; D, AML group. Communication of each cell with other cells: G, normal group; H, AML group. Cell
communication includes MIF − (CD74+CXCR4) and MIF − (CD74+CD44) as receptor-ligand pairs: Q, normal group; R, AML group. Nodes represent
cell types, lines represent cell interactions. Line thickness indicates the number of communication types (thicker lines mean more types). Line color
represents the ligand cell color. (E-F) Bubble plots of receptor-ligand pair. E, normal group; F, AML group. The abscissa represents interacting cells,
and the ordinate represents receptor-ligand pairs. (I-J) Cell communication heatmaps. I, normal group; J, AML group. Both the abscissa and
ordinate represent cell types. The cells in ordinate act as ligand cells sending signals to other cells, while the cells in abscissa act as receptor cells
receiving signals. The redder the color, the stronger the interaction between cells. (K-L) Types of cell interactions. K, normal group; L, AML group.
The abscissa represents cell types, and the ordinate represents interaction types. (M-N) Contribution degree of receptor-ligand pairs. M, normal
group; N, AML group. The ordinate represents receptor-ligand pair types, and the abscissa represents the contribution degree, with longer length
representing higher contribution levels. (O-P) Expression level of interacting genes in pathways. O, normal group; P, AML group. The abscissa
represents cell types, and the ordinate represents gene names. (S-V) Chord diagrams of receptor-ligand pairs interaction. Normal group, S and U;
AML group, T and V. Nodes represent cell types, and the lines represent interactions between cells. The thickness of the lines indicates the number
of communication types, with thicker lines representing more types. The line color represents the ligand cell color.
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diseases (Table 1). Meanwhile, 12 pathways were identified where

triple-positive inflammatory factors influence the diseases via triple-

positive immune cells (Table 2). The mediating MR analysis

confirmed the reliability of results.

All heterogeneity tests are detailed in Supplementary Table S4-

Heterogeneity imm-inf-dise and Supplementary Table S4-

Heterogeneity inf-imm-dise, while results of pleiotropy tests are

presented in Supplementary Table S4-Pleiotropy imm-inf-dise and

S4-Pleiotropy inf-imm-dise. SNP data for all exposures are available

in Supplementary Table S4-SNPS of imm-inf-dise and

Supplementary Table S4-SNPS of inf-imm-dise, as well as

Supplementary Table S4-SNPS imm-inf-dise (relationship) and

Supplementary Table S4-SNPS inf-imm-dise (relationship).

Results from five MR calculation methods are presented in

Supplementary Table S4-OR of imm-inf-dise and Supplementary

Table S4-OR of inf-imm-dise, as well as Supplementary Table S4-

OR imm-inf-dise(relationship) and Supplementary Table S4-OR

inf-imm-dise(relationship), and individual SNP analysis results are

in Table S-singlesnpOR of imm-inf-dise and Supplementary Table

S4-singlesnpOR inf-imm-dise, as well as Supplementary Table S4-

siOR imm-inf-dise(relationship) and Supplementary Table S4-siOR

inf-imm-dise(relationship). Metrics for each pathway, including

beta_all, beta1, beta2, beta_dir, Z-values, and 95% CI, are listed in

Supplementary Table S4-effect of imm-inf-dise and Supplementary

Table S4-effect of inf-imm-dise. Forest plots, funnel plots, scatter

plots, and leave-one-out forest plots from the four-step screening

process of the 20 immunological pathways are shown in

Supplementary Figure S6, corresponding to Tables 1, 2.
3.3 Experimental validation

3.3.1 Expression of common hub genes in normal
and AML groups

Both POLG andMAP2K7 exhibited low expression in AA, MDS,

and AML, with significant inter-group differences observed among
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the diseases (Table 3, Supplementary Table S5-Verification,

Figures 7A-C), which was consistent with bioinformatic predictions.

3.3.2 Plasmid transfection
Plasmid transfection was successfully performed, with cells from

each disease group exhibiting high expression of the common hub

genes following transfection (Table 4, Supplementary Table S5-

Transfection, Figures 7D-F). This indicated successful transfection

and that the designed plasmids effectively induced high expression of

POLG and MAP2K7 in cells from each disease group, leading to a

reduction in MIF expression levels, with a negative correlation

between the two (Table 5, Figure 7G).

3.3.3 Impact of overexpressed common hub
genes

Compared to normal cells, PCNA was downregulated in AA but

upregulated in MDS and AML. Bcl-2 showed no significant change

in AA, was downregulated in MDS, and slightly upregulated in

AML. MMP-2 was downregulated in AA but upregulated in both

MDS and AML. These findings reflected the differences across the

disease cells.

Following the induction of common hub genes, only MDS

showed significant differences in Bcl-2 expression, while no

statistically significant changes were observed in the other disease

groups. When considering the overall expression levels of the three

genes, the common hub genes had minimal overall impact on the

three diseases. They did not affect the proliferation or migration of

cells, and the only notable impact was on apoptosis regulation in

MDS, with no effect on apoptosis in AML and AA (Supplementary

Table S5-Changes, Supplementary Table S5–LSD-t of Changes

Figures 7H-J).

3.3.4 ELISA analysis of inflammatory factors
expression

Following inducing high expression of common hub genes,

levels of characteristic inflammatory factors and MIF showed a
TABLE 1 Immune cell→inflammatory factor→disease.

Immune cell Inflammatory factor Disease Figures

FSC-A on Natural Killer T Leukemia inhibitory factor (LIF) AA S6(A)

HLA DR on CD14+ CD16- monocyte Leukemia inhibitory factor receptor (LIFR) AA S6(B)

HLA DR on CD14+ monocyte Leukemia inhibitory factor receptor (LIFR) AA S6(C)

CD39 on CD39+ secreting CD4 regulatory T cell Tumor necrosis factor ligand superfamily member 12 (TWEAK) AA S6(D)

CCR7 on naive CD8+ T cell Hepatocyte growth factor levels(HGF) MDS S6(E)

CD28 on CD28+ CD45RA+ CD8+ T cell SIR2-like protein 2 (SIRT2) MDS S6(F)

CD8 on Terminally Differentiated CD8+ T cell Natural killer cell receptor 2B4(2B4) AML S6(G)

Naive CD4-CD8- T cell Absolute Count Thymic stromal lymphopoietin(TSLP) AML S6(H)
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trend of reduction across all diseases, suggesting a negative

correlation between common hub genes and both MIF and

inflammatory factors expression (Supplementary Table S6,

Figures 7K-Q).

3.3.5 MTT assay for cell proliferation
The proliferation rate in AA cells was lower than that of normal

cells, while MDS and AML cells exhibited higher proliferation rates.

Upon induction of high expression of common hub genes, no

significant impact on the proliferation of various cells was observed

(Table 6, Figure 7R, the raw data was provided in Supplementary

Table S7).
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4 Discussion

AA, MDS, and AML all exhibit pronounced immune

dysregulation (1), with intricate interconnections in their

transformation and progression (50). Therefore, exploring shared

pathogenic genes and associated immune mechanisms is crucial for

diagnosis and treatment. In this study, we used bioinformatics to

identify the DEGs of each disease. Enrichment analyses revealed

that these diseases had strong associations with viral infections,

inflammation, endocrine, and metabolism. We had enriched

transcription factors from the common upregulated and

downregulated gene sets, suggesting that these common
TABLE 2 inflammatory factor→immune cell→disease.

Inflammatory factor Immune cell Disease figures

Leukemia inhibitory factor (LIF) FSC-A on Natural Killer T AA S6(I)

Tumor necrosis factor ligand superfamily member 12 (TWEAK) CD16 on CD14- CD16+ monocyte AA S6(J)

C-C motif chemokine 19 (CCL19) CD27 on Plasma Blast-Plasma Cell MDS S6(K)

SIR2-like protein 2 (SIRT2) CD25 on CD39+ CD4+ T cell MDS S6(L)

C-C motif chemokine 19 (CCL19) CD19 on B cell MDS S6(M)

Interleukin-20 (IL-20) CD8 on CD28- CD8+ T cell MDS S6(N)

Thymic stromal lymphopoietin (TSLP) CD27 on CD24+ CD27+ B cell AML S6(O)

Thymic stromal lymphopoietin (TSLP) IgD on IgD+ CD38+ B cell AML S6(P)

Thymic stromal lymphopoietin (TSLP) CD33 on CD33dim HLA DR+ CD11b+ AML S6(Q)

Thymic stromal lymphopoietin (TSLP) CD33 on CD66b++ myeloid cell AML S6(R)

Thymic stromal lymphopoietin (TSLP) CD25 on CD39+ CD4+ T cell AML S6(S)

Thymic stromal lymphopoietin (TSLP) CD11b on basophil AML S6(T)
TABLE 3 Expression of MIF and hub genes in normal group and AML group.

Diseases Gene Normal Control t P

AA Cohort1 POLG 1.001 ± 0.040 0.022 ± 0.002 42.419 0.000

MAP2K7 1.003 ± 0.103 0.046 ± 0.004 16.020 0.000

MIF 1.010 ± 0.180 2.952 ± 0.992 -3.337 0.029

Cohort2 POLG 1.006 ± 0.141 0.119 ± 0.009 10.883 0.000

MAP2K7 1.000 ± 0.008 0.094 ± 0.015 90.186 0.000

MIF 1.019 ± 0.251 7.239 ± 2.276 -4.706 0.009

MDS Cohort1 POLG 1.001 ± 0.048 0.036 ± 0.003 34.669 0.000

MAP2K7 1.006 ± 0.138 0.047 ± 0.004 12.033 0.000

MIF 1.002 ± 0.083 6.394 ± 0.538 -17.156 0.000

AML Cohort1 POLG 1.029 ± 0.305 0.005 ± 0.001 5.815 0.004

MAP2K7 1.032 ± 0.331 0.042 ± 0.018 5.178 0.007

MIF 1.004 ± 0.113 8.755 ± 0.755 -17.586 0.000
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transcription factors continuously play an important role in the

transcriptional regulation of the three diseases. Ultimately, we

identified the common hub genes across three diseases as the

downregulated POLG and MAP2K7. GSEA analysis of POLG-

related synergistic genes revealed a positive correlation with

apoptosis and a negative correlation with heme metabolism and

the E2F transcription factor. This suggested anomalies in apoptosis,

erythropoiesis, and transcription regulation within these diseases.

Using single-cell sequencing and cell communication analysis, we

found that the hub genes modulate the immune response primarily

via MIF-mediated signaling. Through MR, we screened and

confirmed eight immune regulatory pathways, in which immune

cells influence these diseases via inflammatory factors, and 12

pathways, in which inflammatory factors act through immune

cells, creating a detailed immune regulatory network. Our in vitro

experiments corroborated the reliability of POLG and MAP2K7 as

common hub genes. They exhibited a negative correlation with MIF
Frontiers in Immunology 15
and inflammatory factors, without regulatory effects on cell

proliferation and migration. Therefore, we speculate that they

only function in delaying the progression of the disease.

The POLG, mitochondrial DNA polymerase g gene, is integral
for maintaining mitochondrial function (51, 52). The protein

encoded by POLG is involved in mitochondrial DNA replication

and repair (53). Given that mitochondria are the “powerhouses” of

cells, mitochondrial DNA stability is vital for cellular energy

production. Studies have reported that instabilities in

mitochondrial-related genes can lead to erythroid dysplasia (54),

megaloblastic anemia, and increased risk of impaired

lymphopoiesis (55), features that align closely with the

characteristics of AA, MDS, and AML. Furthermore, reduced

POLG function has been found to be linked to heightened

inflammatory responses following viral infections (56), providing

direct evidence of its immunoregulatory capability and aligning

with our experimental results. The MAP2K7, mitogen-activated
FIGURE 7

Experimental validation of hub genes. (A-C) Validation of hub gene expression. AA, A; MDS, B; AML, C. (D-F) Validation of plasmid transfection. AA, D;
MDS, E; AML, F. (G) Comparison of MIF expression levels before and after plasmid transfection across all three diseases. (H-J) Effects of upregulated
common hub genes on the expression of PCNA, Bcl-2, and MMP-2. AA, H; MDS, I; AML, J. (K-Q) Expression levels of inflammatory factors, including
MIF (K), LIF (L), HGF (M), IL-20 (N), TWEAK (O), TSLP (P), and CCL19 (Q). (R) Comparison of cell proliferation across different groups for each disease.
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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protein kinase kinase-7 gene, encodes the protein that is involved in

the MAPK signaling pathway, which plays a crucial role in cell

growth, differentiation, apoptosis, and responses to external stimuli

(57). Studies have demonstrated that MAP2K7 can regulate tumor

cell proliferation, invasion, and metastasis (58, 59), with activation

of related pathways exhibiting anti-leukemia effects (60). Research

on MAP2K7 in the context of AA and MDS is sparse, rendering our

investigation particularly meaningful. Additionally, some studies

have shown that KLF4 inhibits MAP2K7, and its deletion can

activate MAP2K7 in T-cell acute lymphoblastic leukemia (ALL)

(61, 62). In our study, KLF4 did not show significant differences in

AA but was upregulated in MDS and AML, consistent with the

known negative correlation between KLF4 and MAP2K7 (61, 62).

MAP2K7 has also been reported to enhance antiviral capabilities

and plays a crucial role in immune regulation (63, 64).

The enrichment analysis underscored the critical roles of viral

infection, inflammation, endocrine, and metabolism in disease

progression. Both viral and inflammatory factors ultimately drive

abnormal immune activation, aligning with previous studies (6, 20,

25, 28). While endocrine and metabolism are thought to be

associated with AML (65), their connection to AA and MDS

remains largely unexplored. Immunocyte infiltration analysis

revealed that AA, MDS, and AML exhibit distinct patterns of

immune cell infiltration compared to normal cells. As disease

progresses, the association between the common hub genes and

immune cells intensifies, suggesting a positive correlation, and

underscoring their critical roles in immune regulation.

In the normal group, single-cell clustering occurred in six cell

types, including Monocyte, T-cell, NK-cell, B-cell, GMP, and MEP.

In AML, clustering was observed in seven cell types, including
Frontiers in Immunology 16
CMP, GMP, T-cell, NK-cell, B-cell, Monocyte, and Erythroblast.

This is consistent with prior studies (66), which identified 11 main

cell types in AML, including T-cell, NK-cell, CMP, Myeloid, GMP,

MEP, Promono, HSC, B-cell, and erythroid cell, confirming the

importance of immune cells. Furthermore, a single-cell study on AA

identified the following main cell types: a mixed population of

hematopoietic stem cell and multipotent progenitor cell (HSC/

MPP), lymphoid primed multipotent progenitor cell (LMPP),

megakaryocyte‐erythroid progenitor (MEP), multipotent

lymphoid progenitor (MLP), and eosinophil-basophil-mast cell

progenitor (EBM) (36), supporting the significance of immune

cells as well. Similarly, a single-cell study on MDS revealed that

NK-cell, T-cell, B-cells, GMP, megakaryocyte-erythrocyte

progenitor (MEP), erythroid progenitor (Eryp), and plasmacytoid

dendritic cell (pDC) were the predominant cell types (35), affirming

the essential role of immune cells. Integrating our findings with

previous studies, we established a comprehensive single-cell analysis

across the three diseases, noting both similarities and differences in

immune cell compositions, which was highly similar to our immune

infiltration results.

However, due to the lack of single - cell samples for AA and

MDS, we were unable to complete this part of the analysis.

Although we incorporated others’ single - cell analyses of AA and

MDS into our research to construct a complete system, this

undoubtedly makes the overall results subject to the quality of

others’ research. As a result, the robustness of the single - cell

analysis in this paper is compromised, which is a shortcoming of

this study.

Cell communication analysis identified Monocyte, MEP, and

GMP as the primary signaling cells in healthy controls, while in

AML, CMP, GMP, B-cell, and Monocyte dominated. This

highlights the shared involvement of immune cells in cellular

communication, with MIF−(CD74+CXCR4) and MIF−(CD74

+CD44) emerging as major receptor-ligand pairs. MIF has been

confirmed as an essential factor in the pathogenesis of AML (67),

and it has been shown to have close contact with MDS (68).

However, there is limited research on the relationship between

MIF and AA. Considering the shared hub genes and their

relationships, we hypothesized that MIF and AA are closely
TABLE 4 Expression of hub genes after plasmid induction.

Diseases Gene Normal Experimental t P

AA POLG 1.001 ± 0.046 10.843 ± 0.964 -17.67 0

MAP2K7 1.001 ± 0.050 15.239 ± 0.906 -27.173 0

MIF 1.009 ± 0.170 1.442 ± 0.188 -2.959 0.042

MDS POLG 1.000 ± 0.052 11.389 ± 0.789 -22.756 0

MAP2K7 1.003 ± 0.099 7.826 ± 0.457 -25.273 0

MIF 1.003 ± 0.101 2.521 ± 0.854 -3.057 0.038

AML POLG 1.022 ± 0.251 6.524 ± 0.462 -18.125 0

MAP2K7 1.005 ± 0.125 7.198 ± 0.309 -32.181 0

MIF 1.001 ± 0.055 3.514 ± 0.593 -7.309 0.002
TABLE 5 Comparison of MIF expression before and after
plasmid induction.

Disease Before After t P

AA 2.952 ± 0.992 1.442 ± 0.188 2.59 0.061

MDS 6.394 ± 0.538 2.521 ± 0.854 6.646 0.003

AML 8.755 ± 0.755 3.514 ± 0.593 4 0.001
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related. MIF, a crucial cytokine, is widely expressed across various

cell types, including immune cells like macrophages, T-cells, and B-

cells, as well as non-immune cells such as epithelial and endothelial

cells (69). MIF participates in the activation of macrophages and

other immune cells, and initiates and amplifies the inflammatory

response by inhibiting macrophage migration (70). It also promotes

tumor cell growth, angiogenesis, and metastasis (71, 72). Our results

confirmed that the common hub genes trigger subsequent immune

regulatory networks through MIF-mediated signaling, exerting

different influences on the three diseases.
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Based on the previous functional analysis of POLG and

MAP2K7 as well as the regulatory analysis of MIF, it can be

inferred that the abnormally low expression of POLG first leads

to impaired mitochondrial function (51, 52). This, in turn, affects

many cellular functions, including an enhanced inflammatory

response of cells after viral infection (55). The abnormally low

expression of MAP2K7 impacts the body’s immune function and

weakens the body’s antiviral ability (63, 64). The abnormally low

expression of these two genes ultimately affects the normal function

of MIF, causing a disorder in its functions of inhibiting macrophage
TABLE 6 Cell OD statistics.

Disease Group Cohort1 Cohort2

Mean 1 Mean 2 S1 S2 P Mean 1 Mean 2 S1 S2 P

AA Normal vs. Control 0.512 0.408 0.006 0.003 0.000 0.505 0.412 0.007 0.013 0.000

Normal vs. Experimenta 0.512 0.408 0.006 0.004 0.000 0.505 0.446 0.007 0.009 0.000

Control vs. Experimenta 0.408 0.408 0.003 0.004 0.930 0.412 0.446 0.013 0.009 0.005

MDS Normal vs. Control 0.514 0.652 0.002 0.007 0.000 0.527 0.639 0.005 0.010 0.000

Normal vs. Experimenta 0.514 0.642 0.002 0.005 0.000 0.527 0.629 0.005 0.011 0.000

Control vs. Experimenta 0.652 0.642 0.007 0.005 0.043 0.639 0.629 0.010 0.011 0.265

AML Normal vs. Control 0.559 0.724 0.005 0.003 0.000 0.544 0.744 0.005 0.011 0.000

Normal vs. Experimenta 0.559 0.721 0.005 0.004 0.000 0.544 0.724 0.005 0.011 0.000

Control vs. Experimenta 0.724 0.721 0.003 0.004 0.298 0.744 0.724 0.011 0.011 0.041
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FIGURE 8

Schematic Diagrams of the Regulatory Mechanisms of AA, MDS, and AML.
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migration and initiating and amplifying the inflammatory response

(70). This may contribute to the progression of the disease.

The above analyses underscored the critical role of the immune

in disease transformation and suggested that MIF could trigger

complex immune regulatory networks. The networks, comprising

inflammatory factors and immune cells, are interdependent, adding

complexity to immune regulation (73, 74). To refine our findings,

we collected 728 immune cell types and 90 inflammatory factors,

conducting bulk MR analyses to map their interactions. Ultimately,

we identified 20 distinct pathways, establishing a comprehensive

immune regulatory network for the three diseases. By analyzing

inflammatory factors, we linked the common hub genes and MIF

with these 20 pathways, observing that the types and densities of

immune cells associated with the hub genes varied across disease

stages (AA: Figure 4M, MDS: Figure 4N, AML: Figure 4O). The

regulatory strength was positively correlated with disease

progression, as MIF was modulated differently by the hub genes

at various disease stages, and it drove divergent immune networks.

These regulatory pathways likely extend beyond the 20 we

identified, and further in vitro experiments are necessary to

elucidate their precise impacts on cellular function across

different disease contexts.

Through our experiments, we first confirmed that POLG and

MAP2K7 were expressed at lower levels in cells from all three diseases

compared to normal cells. RT-qPCR results indicated that these hub

genes did not influence cell proliferation or migration in AA,MDS, or

AML. Consistent with the MTT assay results, POLG and MAP2K7

only affected anti-apoptotic properties in MDS cells, with no impact

on apoptosis in AML or AA cells. We speculate that the reason for the

decreased influence of hub genes on cell functions might be the

differences between the model-building environment and the in-vivo

environment. For instance, the model-building environment lacks the

immune organs present in the body, which significantly affects the

quantity and renewability of immune cells. Additionally, as the

immune cells in the model-building environment become

exhausted, their immune regulatory ability continuously declines

until it is completely depleted. Eventually, the off-target effects of

regulation gradually emerge. Furthermore, the expression of these

common hub genes was inversely correlated with MIF expression.

ELISA analysis demonstrated a negative correlation between these

hub genes andMIF as well as with several inflammatory factors. Prior

studies have shown a positive association between MIF and LIF (75,

76), TNF (77, 78), HGF (79, 80), IL-20 (81), and TSLP (82, 83), trends

consistent with our observations.

Despite these findings, limitations remain. Direct validation of

immune cells involved in the identified 20 immune regulatory

pathways remains incomplete. Meanwhile, in the bioinformatics

section, due to the small number of samples in the AA analysis,

there is a significant imbalance in the quantity between MDS and

AML samples. This may lead to a certain degree of bias in the

experimental results, which might amplify the impact effect of hub

genes in AA. Although we have compensated for this deficiency to
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some extent during the experimental stage, this still remains an

issue that requires attention.

Since POLG and MAP2K7 did not directly modulate genes such

as PCNA, Bcl-2, or MMP-2 to exert cellular regulatory effects, they

could not reverse or induce functional changes in already altered

cells. Our study suggested that POLG and MAP2K7 may mitigate

the immune-driven progression of these diseases to some extent.

Their normal expression appeared to play a crucial role in

maintaining cells in a normal state and preventing pathological

transformation. However, these genes cannot affect the function of

cells that have already undergone malignant transformation, as they

lack the ability to reverse cell state and induce apoptosis or

functional alterations at various disease stages.

Our research also has important value for clinical diagnosis and

treatment. Since hub genes play a crucial role in maintaining the

normal functions of cells, for patients with low expression of these

two hub genes discovered clinically, it is suggested that attention

should be paid to screening for these three diseases. And it is

expected that more detailed studies will be carried out in the future

to determine whether there is a risk of the disease continuing to

evolve. At the same time, through more clinical cohort studies in the

future, it is highly likely that clinical physicians will be able to delay

or inhibit the progression of diseases by means of inducing high

expression of hub genes. This undoubtedly brings new hope to

patients in the early stages of the disease.
5 Conclusion

POLG and MAP2K7 play a significant role throughout the

progression from AA to MDS and ultimately to AML. By

modulating immune regulatory pathways through MIF-mediated

signaling, these genes subsequently modulate multiple downstream

immune regulatory mechanisms, thereby influencing disease

transformation and progression (Figure 8).
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