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1 Introduction

The microbiome in the reproductive tract influences both women’s and their offspring’s

health (1–4). A highly diverse gut microbiota is considered healthy (5). However, the

vaginal microbiota of a healthy reproductive-aged woman is often dominated by only one

or two species of Lactobacillus, such as L. crispatus, L. gasseri, L. iners, and L. jensenii (6).

Interestingly, this property is observed only in humans and not in other primates (7–9).

Although some hypotheses have been proposed, the mechanism by which Lactobacillus

dominates the human vaginal microbiota remains unknown (7, 10, 11).

Various treatments have been used to modify the vaginal microbiota to a Lactobacillus-

dominant state against dysbiotic conditions. Probiotic treatment of the vaginal microbiota

is promising (12). However, the indigenous vaginal microbiota frequently surpasses the

colonization of the probiotic L. crispatus strain (CTV-05 strain) from the vaginal source

(13). After 24 weeks, approximately 50% of patients who received this probiotic did not

retain CTV-05 (12). Consequently, understanding the mechanism to regulate the vaginal

microbiota by the host is crucial for developing novel therapies, including probiotics, to

address conditions related to vaginal dysbiosis.

Immunoglobulins play important roles in regulating homeostasis and microbiota at

mucosal sites. In the intestinal tract, immunoglobulin A (IgA) selectively attaches to

microbes that have a close relationship with the host mucosa (14). IgA appears to serve a

dual and context-sensitive function, acting to exclude pathogens while facilitating the

colonization of beneficial commensals (14). Immunoglobulin G (IgG) plays a crucial role in

promoting mucosal homeostasis in addition to regulating both non-invasive and invasive

mucosal bacteria (15). In contrast to the gastrointestinal tract and other mucosal tissues, the

antibodies found in the vagina are primarily IgG instead of IgA (15). In vagina, IgA, IgG,

and IgM participate in immune defense (16). Although the function of vaginal IgG remains

partially understood, it has been noted to capture viruses and protect the host against viral

infections (17).

Recent advances in IgA-seq have revealed that the prevalence of IgA-coated vaginal

bacteria is elevated in L. crispatus-dominant microbiota compared to other microbiota

compositions (18). Another study also reported that the levels of microbial IgA and IgG

coating were lowest in individuals with diverse microbiota, particularly among women

from ethnic minority groups (19). Accumulating evidence suggests that IgA-producing

cells in the vagina originate from the intestine (20, 21). Furthermore, although IgG levels in

cervicovaginal fluid were higher than those of IgA, it was IgA that predominantly coated

the bacteria (22). Therefore, similar to the gastrointestinal tract, I hypothesize that IgA may
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regulate the composition of the vaginal microbiota in addition to its

role in pathogen clearance. In this article, I discuss the possible

regulation of the vaginal microbiota by the gut microbiota via IgA.

Here, it is hypothesized that IgA induction for Lactobacillus occurs

in the small intestine. Subsequently, Lactobacillus-reactive memory/

effector cells migrate from the intestine to the vagina and produce

Lactobacillus-specific IgA, increasing the number of IgA-coated

Lactobacillus. Finally, these IgA-coated Lactobacillus strains

promote stable vaginal colonization, highlighting IgA’s role in the

gut-vagina axis (Figure 1).
1.1 Colonization of bacteria and IgA

Bacterial colonization in host organs is regulated by both direct

and indirect mechanisms. Direct mechanisms include spatial

nutrients or space competition, active antagonism, and metabolite

inhibition (23). The direct mechanisms in the vagina are beyond the

scope of this study and have been discussed elsewhere (11). Indirect

mechanisms include mucus barrier function, oxygen limitation, and

microbiota-mediated immune responses (23). In the gut, some

bacterial symbionts stimulate the synthesis of polyreactive low-

affinity IgA antibodies that may exhibit cross-reactivity with

antigens from other bacterial species, which can affect the

composition of the microbiota. Indeed, a significant percentage of

commensal gut bacteria are coated with IgA antibodies (23).

Recently, IgA-seq has revealed that some microbes in the vagina

are also coated with IgA and IgG (18, 22, 24). IgA and IgG are

present in the cervicovaginal secretions bound to L. crispatus, L.

iners, Gardnerella vaginalis, and Prevotella bivia (24). Interestingly,

in a L. crispatus-dominant microbiota, the number of IgA-coated

vaginal bacteria was found to be increased compared to other

microbiota compositions (18). Therefore, IgA may regulate the

vaginal microbiota, although whether it is polyreactive or species-

specific remains unclear.
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1.2 IgA induction for Lactobacillus

Next, where is IgA produced and how does it bind to

Lactobacillus? In humans, IgA is classified into two subclasses,

IgA1 and IgA2. The levels of IgA1 and IgA2 in the female genital

tract secretions are approximately equal (25). These observed equal

ratios of IgA1 and IgA2, coupled with the predominance of

polymeric IgA in cervical secretions, indicates that IgA is

synthesized locally in the mucosa (25). Notably, hysterectomy

decreased immunoglobulin levels in the vagina, indicating that

immunoglobulins generated locally and transferred from the

bloodstream by uterine tissues, to some extent, contribute to

humoral immunity in the vagina (26). While B cells represent a

small cell population across all female reproductive tract tissues,

plasma cells that produce IgA and IgG are primarily located in the

cervix and, to a lesser degree, in the vagina (27). In vivo, initial

infection with herpes simplex virus 2 (HSV2) fails to produce

plasma cells within the lamina propria of the female reproductive

tract. In contrast, upon secondary challenge with HSV2, circulating

memory B cells that migrate into the female reproductive tract act

as a source of rapid and substantial virus-specific IgG2b, IgG2c, and

IgA secretion into the lumen of this tract (28). CD4 tissue-resident

memory T cells generate interferon-g, which results in the

expression of chemokines like CXCL9 and CXCL10. Circulating

memory B cells are attracted to the vaginal mucosa via a CXCR3-

dependent mechanism, where they generate virus-specific IgG2b,

IgG2c, and IgA, which are subsequently released into the lumen

(28). However, these reactions have been observed under

pathogenic conditions induced by HSV2. As vaginal Lactobacillus

species are not pathogens, the mechanism of IgA induction for

them under steady vaginal conditions remains obscure.

Another possible site for IgA induction for Lactobacillus is the

gastrointestinal tract, which is the basis for the present hypothesis.

Recent studies indicate that the primary origin of IgA targeting is

the small intestine (14). Human gut-associated lymphoid tissue
FIGURE 1

Hypothetical Schematic of colonization of the vagina by Lactobacillus. 1, 2: Lactobacillus-reactive and Integrin aEb7+ memory/effector cells migrate
from the small intestine to the vagina and produce Lactobacillus-specific IgA. 3: IgA-coated Lactobacillus may directly migrate from the gut to the
vagina. 4: IgA-coated Lactobacillus promotes its stable colonization in the vagina.
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comprises multi-follicular Peyer’s patches (PP). Human PP consists

of numerous individual follicles that extend throughout the entire

length of the small intestine. Their density is increased in the

terminal ileum, culminating in the formation of a lymphoid ring

at the ileocecal junction (29). The PP serves as a location for

adaptive immune priming and encompasses various specialized

microanatomical niches that facilitate the effective initiation and

propagation of immune responses (29). In humans, the core small

intestinal microbiota includes Streptococcus, Veillonella,

Fusobacterium, Prevotella, and Haemophilus (30). Notably,

Lactobacillus is one of the segment-specific microbes found in the

ileum (30). In mice, Lactobacillus is one of the dominant bacterial

genus in the small intestine (31, 32). Therefore, IgA induction for

Lactobacillus may occur mainly in the PP of the ileum in humans.
1.3 Migration (homing) of Lactobacillus-
reactive immune cells

How do Lactobacillus-reactive immune cells migrate from the

ileum to the female reproductive tract? Accumulating evidence

from previous studies on oral ly administered human

papillomavirus (HPV) vaccines based on genetically modified

lactic acid bacteria provides us insights. In vivo, HPV16 L1-

specific vaginal IgA was detected after oral administration of L.

lactis transformed with two types of HPV16 L1-encoding plasmids

(33). L. lactis with HPV16 L2-encoding plasmids also induces

HPV16 L1-specific vaginal IgA in mice (34). In humans, oral

administration of recombinant L. lactis expressing the HPV 16 E7

oncogene also induces the vaginal secretion of HPV 16 E7-specific

IgA (20). a4b7 integrin -mediated homing to the intestine has

already been established (35, 36), and a similar mechanism has been

suggested for the vagina (21). These studies have indicated that the

migration (homing) of Lactobacillus-reactive memory/effector cells

occurs from the gut to the vagina (gut-vagina axis), and it is not

surprising that antibodies recognizing the usual components of

Lactobacillus (polyreactive or species-specific) are produced. To the

best of my knowledge, no studies have reported that the same

Lactobacillus strains are shared between the intestine and vagina.

Instead, phylogenetic studies of L. crispatus and L. gasseri in the gut

and vagina suggest that different strains, adapted to their respective

environments, may be established in the two organs, respectively

(37, 38). Therefore, inducing Lactobacillus-specific rather than

strain-specific antibodies would be important.

Overall, IgA induction for Lactobacillus can occur in the small

intestine (especially in the ileum). Then Lactobacillus-reactive and

integrin aEb7+ memory/effector cells migrate from the intestine to

the vagina and produce Lactobacillus-specific IgA, resulting in the

increased number of IgA-coated Lactobacillus in the vagina.

Another possibility to increase the number of IgA-coated

Lactobacillus in the vagina is through direct migration from the

gut. IgA-coated L. jensenii has been confirmed in fecal samples from

healthy women (39). Additionally, probiotic Lactobacillus strains

administered orally were confirmed in the vagina (40–43).

Therefore, these observations suggest that Lactobacillus already
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coated with IgA in the gastrointestinal tract may also migrate

directly to the vagina.

Finally, these IgA coatings may promote stable colonization of

Lactobacillus in the vagina (Figure 1). In vitro study suggested that

IgA can enhance the mucosal binding of Lactobacillus in the gut

(14). Therefore, IgA-coated Lactobacillus adhering to vaginal mucus

may facilitate their vaginal colonization; however, further studies

are needed to determine the effects of differences in the composition

of mucus between the intestinal tract and vagina. Notably, a lower

quantity of IgA attachment per bacterium was observed when

women with L. crispatus-dominant microbiota exhibited a higher

level of IgA coating on vaginal bacteria than those with other

microbiota compositions (18). Another investigation revealed a

notable preference for IgA coating of taxa linked to vaginal

dysbioses (bacterial vaginosis), such as Sneathia and Prevotella

species (22). Hence, an unknown mechanism that distinguishes

the degree of IgA coating may balance pathogen clearance and host-

microbial symbiosis in the vagina. Interestingly, Lactobacillus

obtained from undernourished diet-fed mice demonstrated a

significantly reduced capacity to bind IgA, indicating that

Lactobacillus may have adapted mechanisms for evading IgA (14).

Therefore, the nutritional environment may also regulate the IgA

coating of Lactobacillus in the vagina.
2 Discussion

Mutualistic symbiosis has developed as a result of millions of

years of coevolution between the host and microorganisms, wherein

the microbiota supports host metabolic processes and the host gives

bacteria nourishment and a preferable environment (23). The

dominance of the human vagina by Lactobacillus can also be

regarded as a result of its coevolution with humans (11), which

contribute to women’s health (1–3). Nonetheless, the process by

which Lactobacillus establishes dominance in the vaginal

microbiota is still not fully understood.

Notably, among Lactobacillus species, only L. iners is regarded

as an undesirable bacteria because it is associated with recurrent

bacterial vaginosis (dysbiosis of the vaginal microbiota) (44). The

significance of L. iners during the coevolution between humans and

Lactobacillus remains unknown. However, the metabolic capacity

and small genome size of L. iners compared to other vaginal

Lactobacillus species indicate the potential for targeting metabolic

differences (such as cysteine and oleic acid) to either inhibit L. iners

or even enhance other species of Lactobacillus (45, 46). These

metabolic differences may provide clues to coevolution.

In addition to the present hypothesis involving IgA, another

mechanism of the gut-vagina axis is the estrobolome (47) which was

not the focus of the present study. Briefly, some bacteria in the

gastrointestinal tract can deconjugate estrogens that were

previously conjugated in the liver. Subsequently, the reabsorption

of deconjugated estrogen into the systemic circulation occurs.

Circulating estrogen affects the distal epithelium of the vagina by

modifying the physiological characteristics of vaginal epithelial

cells, including glycogen and mucus production. Elevated
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glycogen levels promote the dominance of Lactobacillus in the

vaginal environment because glycogen acts as a crucial energy

source for vaginal Lactobacillus (48–50).

In conclusion, IgA induction for Lactobacillus in the small

intestine may promote colonization of this bacterium in the

vagina via IgA regulation. If the present hypothesis is valid, prior

or simultaneous oral administration of probiotics could enhance the

colonization of the same bacteria administered vaginally. A further

understanding of the relationship between the female reproductive

tract and other organs is required to establish effective treatments.
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