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Post-stroke depression:
exploring gut microbiota-
mediated barrier dysfunction
through immune regulation
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Post-stroke depression (PSD) is one of the most common and devastating

neuropsychiatric complications in stroke patients, affecting more than one-third of

survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or

undertreated in clinical practice, and effective preventive measures and therapeutic

interventions remain limited. Although the exact mechanisms of PSD are not fully

understood, emerging evidence suggests that the gut microbiota plays a key role in

regulating gut-brain communication. This has sparked great interest in the relationship

between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of

cerebral ischemia. In addition to the gutmicrobiota, another important factor is the gut

barrier, which acts as a frontline sensor distinguishing between beneficial and harmful

microbes, regulating inflammatory responses and immunomodulation. Based on this,

this paper proposes a newapproach, themicrobiota-immune-barrier axis, which is not

only closely related to the pathophysiology of IS but may also play a critical role in the

occurrence and progression of PSD. This review aims to systematically analyze how

the gut microbiota affects the integrity and function of the barrier after IS through

inflammatory responses and immunomodulation, leading to the production or

exacerbation of depressive symptoms in the context of cerebral ischemia. In

addition, we will explore existing technologies that can assess the MGBA and

potential therapeutic strategies for PSD, with the hope of providing new insights for

future research and clinical interventions.
KEYWORDS

post-stroke depression, ischemic stroke, gut microbiota, immune regulation, barrier
integrity and function, microbiota-gut-brain axis, inflammatory response, microbiota-
immune-barrier axis
1 Introduction

Ischemic stroke (IS) is a prevalent central nervous system (CNS) disorder, ranking as

the second leading cause of death and the third leading cause of disability worldwide (1).

According to the statistics from 2013, there are approximately 25.7 million stroke survivors

worldwide, with 71% being patients with IS (2). By 2020, the data showed that IS accounted
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for about 87% of all stroke cases (3), and the etiology involves a

thrombotic or embolic event that leads to impaired blood flow to a

region of the brain (4). Post-stroke depression (PSD) is the most

common neuropsychiatric comorbidity, affecting more than one-

third of IS survivors (5). Patients experiencing PSD often endure

cognitive impairment, reduced quality of life, suicidal tendencies,

and an increased risk of mortality (6). Despite substantial evidence

indicating that PSD is one of the most severe complications

following IS, it is frequently overlooked or inadequately treated.

PSD is considered to be a consequence of multiple interactions

among biological, psychosocial, and multifactorial factors (7).

Cerebrovascular diseases may serve as an initiating or

exacerbating factor for depression (8, 9). While the exact

pathogenesis of PSD is still not fully understood, its complexity

should not be underestimated. According to the gut-brain axis

(GBA) theory, alterations in the microbiota are closely linked to

changes in brain structure, function, and behavior, and are

associated with the pathogenesis of neuropsychiatric disorders

(10). In recent years, research has increasingly recognized the gut

microbiota as an important modulator of brain development,

physiology, and host behavior. The gastrointestinal tract is a

major organ for immune response, rich in immune cells, and

accounts for over 70% of overall immune system activity (11).

The Microbiota alters the intestinal barrier by interacting with

immune cells (12), and in certain cases, influences the host by

crossing the Blood-Brain Barrier(BBB) through the release of

cytokines and metabolites, playing a crucial role in modulating

stress-related behaviors, such as depression (13). Therefore, it is

essential to explore the impact of the microbiota-gut-brain axis

(MGBA) on PSD.
Abbreviations: PSD, Post-Stroke Depression; IS, Ischemic Stroke; MGBA,

Microbiota-Gut-Brain Axis; CNS, Central Nervous System; GBA, Gut-Brain

Axis; BBB, Blood-Brain Barrier; IEC, Intestinal Epithelial Cells; sIgA, Secretory

Immunoglobulin A; IEB, Intestinal Epithelial Barrier; TJs, Tight Junctions; ZOs,

Zonula Occludens; DCs, Dendritic Cells; M cells, Microfold Cells; PPs, Peyer’s

Patches; LP, Lamina Propria; EECs, Enteroendocrine Cells; AMPs, Antimicrobial

Peptides; ISCs, Intestinal Stem Cells; IVB, Intestinal Vascular Barrier; EGCs,

Enteric Glial Cells; PV-1, Plasmalemma Vesicle-Associated Protein-1; Tfh, T

Follicular Helper Cells; P-gp, P-glycoprotein; SCFAs, Short-Chain Fatty Acids;

TNF-a, Tumor Necrosis Factor-alpha; PRRs, Pattern Recognition Receptors;

PAMPs, Pathogen-Associated Molecular Patterns; DAMPs, Damage-Associated

Molecular Patterns; IELs, Intraepithelial Lymphocytes; TGF-b, Transforming

Growth Factor-beta; IL, Interleukin; ILCs, Innate Lymphoid Cells; IFN-g,

Interferon-gamma; TSLP, Thymic Stromal Lymphopoietin; Neuts, Neutrophils;

MMP, Matrix Metalloproteinase; Macs, Macrophages; RA, Retinoic Acid; Th, T

Helper; Tregs, Regulatory T Cells; GALT, Gut-Associated Lymphoid Tissues;

Trp, Tryptophan; Am, Akkermansia muciniphila; LPS, Lipopolysaccharide;

MCAO, Middle Cerebral Artery Occlusion; NIHSS, National Institutes of

Health Stroke Scale; RS, Rankin Scale; TEER, Trans-Epithelial Electrical

Resistance; HPA, Hypothalamic-Pituitary-Adrenal Axis; EC, Enterochromaffin;

5-HT, Serotonin; GABA, g-Aminobutyric Acid; HAMD, Hamilton Depression

Scale; CRP, C-Reactive Protein; FMT, Fecal Microbiota Transplantation; VNS,

Vagus Nerve Stimulation; ta-VNS, Non-Invasive Transcutaneous Auricular

Vagus Nerve Stimulation; Gas, Gastrodin.
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A meta-analysis revealed significant changes in the microbiota

composition at the genus, family, and phylum levels in PSD patients

compared to healthy individuals (14). Recent studies on animals have

demonstrated that adjusting the microbiota can enhance neurological

function and alleviate depressive symptoms in PSD rats,

simultaneously reinforcing the integrity of the BBB (15). To fully

grasp the interactions between the host and its symbiotic partners, it

is essential to consider cellular barriers. Increasing evidence indicates

that various cellular barriers within the MGBA act as novel conduits

linking the microbiota to the brain (16). Traditionally, barriers were

viewed as rigid and impenetrable, but it is now acknowledged that

cellular barriers are dynamic and meticulously regulated

communication interfaces. Consequently, this review will initially

explore the interactions among the microbiota, intestinal barrier, and

BBB within the MGBA, focusing on immune regulation and

inflammatory responses. Next, we will delve into the potential

mechanisms by which the microbiota-immune-barrier axis, this

MGBA “high-speed pathway,” influences PSD following IS. Finally,

to more effectively apply theory to clinical practice, we have

thoroughly summarized various detection techniques for the

MGBA and potential treatment methods for PSD.
2 The intestinal barrier: its structure
and function

The gut and brain barriers are fundamentally composed of

epithelial or endothelial layers that, under physiological conditions,

exhibit varying degrees of permeability. This characteristic is pivotal

to their barrier function (17). Nevertheless, it is important to note

that this barrier function is not static but rather undergoes dynamic

changes. Under physiological circumstances, the primary role of the

intestinal barrier is to delineate the body from the external

environment, specifically the contents within the gastrointestinal

lumen, while simultaneously facilitating the absorption of nutrients.

On one hand, the intestinal mucosa acts as a formidable defense,

preventing microorganisms from invading the host (18). On the

other hand, it also permits symbiotic relationships with certain

microorganisms, fostering a harmonious coexistence (19, 20).

The initial line of defense within the gastrointestinal tract is

provided by a specialized coating on the exterior of the intestinal

epithelium—the mucus layer. This layer is predominantly made up of

mucins, notably Muc2, a glycoprotein featuring a network-like

structure (21, 22). The mucus layer is divided into an inner and

outer layer. It serves as a barrier, preventing large particles and

microorganisms from making direct contact with the epithelium, a

critical function in minimizing the exposure of intestinal epithelial

cells (IEC) to potentially harmful agents (23, 24). Furthermore, the

mucus layer is abundant in immunoglobulin A (IgA), secreted by

plasma cells (25, 26). IgA facilitates the release of secretory IgA (sIgA)

onto the intestinal surface through a complex mechanism known as

transcytosis (27, 28). which neutralizes pathogens and aids in

sustaining the equilibrium of the symbiotic microbiota (27, 29). It

is important to note that the mucus barrier not only serves as a source

of nutrients for the microbiota but also offers an ecological niche for

their colonization.
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The second line of defense is the intestinal epithelial barrier

(IEB), which comprises a single layer of columnar epithelial cells

(30). This barrier is dependent on cell-cell junctions, where

neighboring intestinal cells are linked via junctional complexes,

primarily made up of tight junctions (TJs) and adherens junctions,

as well as desmosomes (31, 32). TJs are primarily composed of

transmembrane proteins, such as claudins and occludins (33), and

intracellular proteins, including zonula occludens(ZOs) (34). These

structures restrict the diffusion of microorganisms and solutes

through the paracellular pathway and dynamically modulate

intestinal permeability, which is crucial for preserving the

integrity of the epithelial barrier. Additionally, the intestinal

epithelium houses several specialized cell types:Goblet cells secrete

mucins to sustain the mucus barrier and transport soluble intestinal

antigens to dendritic cells (DCs) (35, 36). Microfold cells (M cells),

predominantly situated above Peyer’s patches (PPs) in the small

intestine (37), facilitate a close antigen-sampling mechanism with

DCs (38). Enteroendocrine cells (EECs) secrete various hormones

and signaling molecules, acting as a communication bridge between

the central and enteric nervous systems (39). Paneth cells produce

antimicrobial peptides (AMPs), which regulate both symbiotic and

pathogenic bacteria, aiding in the limitation of bacterial resistance

and the maintenance of microbial equilibrium (40, 41). Intestinal

stem cells (ISCs), located at the base of the crypts, proliferate and

differentiate, migrating upwards to replenish various types of IEC

(42). IEC can detect microbial stimuli and respond by bolstering

their barrier function and coordinating appropriate immune

responses, shifting from tolerance to pathogen-specific immunity

(43). Consequently, IEC play a pivotal role in the development and

homeostasis of mucosal immune cells. In concert with the mucus

layer, the IEB controls the ingress of harmful “external”

microorganisms into deeper tissues and their dissemination into

the circulation.

The third line of defense is the intestinal vascular barrier (IVB),

which is comprised of endothelial cells, pericytes, and enteric glial

cells (EGCs). These endothelial cells create TJs analogous to those

found in epithelial cells, and the IVB serves to shield the body from

the passage of harmful molecules through both the IEB and other

vascular barriers (44, 45). In contrast to epithelial barriers, intestinal

endothelial cells possess a porous structure characterized by small

pores delineated by the pore membrane, which enables selective

permeability. The creation of these pores is contingent upon a specific

endothelial membrane glycoprotein known as plasmalemma vesicle-

associated protein-1 (PV-1), which is encoded by the PLVAP gene.

PV-1 plays a pivotal role in maintaining endothelial homeostasis and

regulating permeability (44, 46).

The gut-associated lymphoid tissues(GALT) is the largest

collection of lymphoid tissues in the body, consisting of both

organized lymphoid tissues, such as mesenteric lymph nodes and

Peyer’s patches (PPs), and more diffusely scattered lymphocytes in

the intestinal lamina propria (LP) and epithelium, including large

numbers of IgA plasma blasts (47). GALT contains immune cells

that coordinate the host’s local and systemic defense against

intestinal insults. The LP is a thin layer of loose, non-cellular

connective tissue beneath the epithelial layer, rich in immune

cells and nerve endings. PPs are dome-shaped structures along
Frontiers in Immunology 03
the antimesenteric border of the small intestine, featuring lymphoid

follicles surrounded by antigen-presenting cells and lymphocytes

(predominantly IgA-producing plasma cells). The follicle-

associated epithelium of PPs has a thin mucus layer and M cells

that facilitate the transport of luminal antigens to the LP (48, 49). T

follicular helper cells (Tfh) assist B cells in differentiating into

plasma cells, which subsequently produce and secrete sIgA, a

classical method (50, 51). These immune cells, including DCs,

macrophages(Macs), T cells, and B cells, which are widely

distributed in the LP, along with specialized IEC, rapidly respond

to the invasion of foreign substances and work together to

neutralize inflammation.

In summary, the mucus layer, IEB, and IVB collectively

constitute an intestinal barrier. This barrier possesses chemical,

mechanical, and immune properties that interact synergistically to

maintain intestinal homeostasis (Figure 1).
3 Gut microbiota, immune cells, and
the integrity and function of
the barrier

The gut microbiota consists of various microorganisms,

including bacteria, viruses, fungi, and archaea, which coexist

symbiotically within the human digestive tract and form a critical

part of the gut barrier (52, 53). The microbiota educates the

immune system to balance tolerance and defense, thereby

maintaining gut homeostasis (54), and affecting distant organs

such as the brain (55). In this section, we will delve into the

interactions within the Gut Microbiota-Immune Cells-IEC-BBB

pathway, as well as the direct and indirect effects of the Gut

Microbiota on the barrier.
3.1 Gut microbiota-IEC

The importance of interactions between the microbiota and IEC

in maintaining the structure and function of the gut barrier has

been extensively studied. Specific microbes, such as Clostridia and

Bacillus species, have been shown to effectively induce P-

glycoprotein(P-gp) expression in murine IEC, helping to mitigate

excessive inflammation and thus maintain gut homeostasis. A

positive correlation has also been observed between microbial

metabolites, short-chain fatty acids (SCFAs), and P-gp expression

(56). Additionally, the microbiota regulates the development and

maintenance of EGCs, which are a key component of the IVB (57).

EGCs, which are similar to astrocytes in the brain, release soluble

factors like S-nitrosoglutathione to regulate the integrity of TJs and

support barrier function (58). Studies have shown that capillary

network formation is stalled in adult germ-free mice but can resume

and develop fully within 10 days of colonization with a complete

microbiota or Bacteroides (59). Therefore, the microbiota may also

influence the IVB directly or through interactions with EGCs.

Experiments involving the oral administration of Lactobacillus

casei and Lactobacillus paracasei have shown that these probiotics
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can increase Paneth cell numbers and enhance the secretion of

AMPs, thus bolstering the antimicrobial activity of the intestinal

barrier (60). Furthermore, Common SCFAs, including acetate,

propionate, and butyrate, serve as energy sources and influence

epithelial and immune host cell functions (61, 62). Acetate

produced by protective bifidobacteria enhances intestinal defense

mediated by epithelial cells, thereby protecting the host against

lethal infection (63), and in vitro studies have shown that

bifidobacterial strains use acetate to enhance TJs integrity,

preventing Tumor Necrosis Factor-alpha(TNF-a)-induced
epithelial barrier disruption (64). Acetate also facilitates the

production of butyrate by cross-feeding other bacteria (65).
3.2 Interactions between IEC and
immune cells

IEC expresses a range of pattern recognition receptors (PRRs),

which are a diverse and well-characterized class of receptors. These

include Toll-like receptors, NOD-like receptors, and RIG-I-like
Frontiers in Immunology 04
receptors, all of which are integral to innate immunity (66, 67).

These receptors have the capacity to recognize pathogen-associated

molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs) (68). While IEC primarily engage in innate

immunity, they also play crucial roles in the initiation and

modulation of adaptive immune responses. Through the

production of cytokines and chemokines, IEC interact with

immune cells within the LP and deeper lymphoid tissues. This

interaction is indispensable for maintaining immune homeostasis,

ensuring a balanced and effective immune response against

potential threats.

3.2.1 IEC and IELs
The intestinal epithelial tissue is inhabited by a distinct category

of resident immune cells, known as intraepithelial lymphocytes

(IELs), which are primarily T lymphocytes. IELs are intimately

l inked with the intest inal barr ier . Ini t ia l ly , the gut

microenvironment is abundant in transforming growth factor-

beta (TGF-b), which augments the expression of CD103 (aEb7
integrin) on the surface of IELs. CD103 serves as a pivotal marker
FIGURE 1

Intestinal barrier and its function. The mucus layer, primarily composed of mucin, is divided into an inner and outer layer and effectively blocks the
entry of large particles and microorganisms. The IEB consists of a single layer of columnar IEC, which include various specialized cell types such as
goblet cells that secrete mucin, EECs that secrete hormones, Paneth cells that secrete AMPs, and ISCs responsible for regeneration. Adjacent
intestinal cells are connected through junctional complexes, including TJs that regulate intestinal permeability. The IVB is composed of endothelial
cells, pericytes, and EGCs, which modulate the permeability of the vascular barrier and protect the intestine from harmful molecules. The formation
of pores in endothelial cells is regulated by PV-1. GALT includes the LP and PPs, both of which are rich in immune cells, with M cells responsible for
transporting antigens and bacteria to DCs. Tfh cells assist B cells in producing and releasing sIgA. IEC interact with DCs, Macs, T cells, and B cells to
form a multi-layered defense system that maintains intestinal homeostasis. (IEB, Intestinal Epithelial Barrier; IEC, Intestinal Epithelial Cells; EECs,
Enteroendocrine Cells; AMPs, Antimicrobial Peptides; ISCs, Intestinal Stem Cells; TJs, Tight junctions; IVB, Intestinal Vascular Barrier; EGCs, Enteric
glial cells; PV-1, Plasmalemma Vesicle-Associated Protein-1; GALT, Gut-Associated Lymphoid Tissue; LP, Lamina Propria; PPs, Peyer’s Patches; M
cells, Microfold Cells; DCs, Dendritic Cells; Tfh, T Follicular Helper Cells; sIgA, Secretory Immunoglobulin A; Macs, Macrophages.).
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for IEL adhesion to E-cadherin, an epithelial cell adhesion molecule,

and facilitates the enduring residence of IELs within the epithelial

tissue (69, 70). This mechanism facilitates the rapid acquisition of

critical signals by IELs from the epithelial tissue and surrounding

environment, thereby promoting their homing, maturation, and

functional activation. Secondly, interleukin(IL)-15 secreted by IEC

fosters the proliferation and survival of IELs and modulates their

cytotoxic capabilities. The sustenance of IELs is contingent upon

signals emanating fromMyD88 and Toll-like receptor 2 within IEC,

which are essential for IL-15 production (71). Moreover, chemokine

CCL25, produced by IEC, lures CCR9-positive IELs to migrate

towards the intestinal epithelium (72). CD8ab+ IEL located in the

epithelial layer of the small intestine have been confirmed to secrete

a-defensins, which may serve as an important supplement to the a-
defensins produced by Paneth cells. The synergistic effect of

CD8ab+ IEL and Paneth cells can effectively prevent bacterial

invasion (73). IELs oversee and preserve the epithelial barrier,

engaging in innate immune responses against pathogens. Owing

to the absence of genetic tools targeting specific IELs

subpopulations, the exact characteristics and mechanisms of IEL

functions are not yet fully elucidated.

3.2.2 IEC and ILCs
Innate lymphoid cells (ILCs) are a type of innate immune cells

that play a crucial role in regulating the barrier function of various

tissues, including the gastrointestinal tract (74). The cytokines

secreted by IEC encourage the proliferation and activation of

ILCs, encompassing natural killer cells as well as the ILC1, ILC2,

and ILC3 subsets. Specifically, ILC1 responds to co-stimulatory

signals from IEC, which are mediated by the microbiota, and

produces interferon-gamma (IFN-g) (75), In contrast, ILC2

secretes IL-13 upon infection, targeting crypt ISCs to promote the

differentiation of goblet cells (76). Both ILC1 and ILC2 augment

goblet cell mucus secretion, thereby aiding in the preservation of

intestinal barrier integrity. The activation of ILC2 is contingent

upon cytokines derived from epithelial cells, such as IL-25, IL-33,

and thymic stromal lymphopoietin (TSLP) (77, 78). ILC3 generates

IL-22 (79), which stimulates IEC to produce AMPs, playing a vital

role in sustaining epithelial barrier function (80). Additionally, IL-

17, produced by ILC3, also contributes to maintaining barrier

integrity during intestinal inflammation (81).

3.2.3 IEC and neutrophils
IEC actively contribute to the recruitment of Neutrophils

(Neuts) by secreting chemokines. These chemokines, which

encompass CXCL7 (82) and CCL20 (83, 84), aid in the migration

and infiltration of neuts. Furthermore, matrix metalloproteinase

(MMP)-3, produced by IEC, amplifies the bioactivity of CXCL7

(82). During inflammatory episodes, for instance, IL-6, IL-8, and

IL-33 derived from IEC play a crucial role in the recruitment and

migration of neuts (85–88). Notably, IEC recruit not only neuts but

also support their functions by secreting the aforementioned

cytokines. Studies have revealed that IL-6 and its soluble receptor

sIL-6Ra can regulate the transition of neuts to monocyte infiltration

at inflammatory sites by modulating chemokines. In the context of
Frontiers in Immunology 05
acute inflammation, IL-6 promotes the resolution of neuts, aiding in

inflammation resolution; whereas in chronic inflammation, IL-6

increases monocyte infiltration, contributing to disease progression

(89). IL-8 not only acts as a direct chemoattractant for neutrophils

but also activates neutrophils to release secondary chemokines

stored within their granules (90). Furthermore, IL-33 can also

induce functional polarization of neuts (91). In summary, IEC

play a critical role in regulating neuts recruitment, trans-epithelial

migration, cell death, and clearance (92).

As the most abundant type of white blood cells, neuts, like other

immune cells, regulate the development and function of IEC. Under

physiological conditions, neutrophil-derived IL-22 has been shown to

enhance the production of AMPs by IEC, contributing to barrier defense

(93). Research has confirmed that neuts also enhance epithelial

protection by inducing the production of amphiregulin in IEC

through the secretion of TGF-b (94). Under pathological conditions,

neutrophil-derived prosecretory factors are closely associated with goblet

cell depletion, a histological hallmark of intestinal inflammation (95). It is

well-established that the uncontrolled accumulation of overactivated

neuts leads to crypt architectural distortion and crypt abscess

formation, accompanied by excessive enzymatic reactions, the

production of pro-inflammatory cytokines such as TNF-a and IL-1b,
and the release of non-cytokine inflammatory mediators such as a-
defensins and calprotectin (96, 97). which may be closely linked to the

pathogenesis of inflammatory bowel disease.

3.2.4 IEC and DCs/Macs
IEC detect microbial signals and secrete cytokines, including IL-

33, TGF-b, and TSLP, which modulate the development of DCs and

Macs (98–100). Within the small intestine, IEC generate TGF-b and
retinoic acid (RA), facilitating the migration of CD103+ DCs to

epithelial cells and expanding the functional repertoire of gut DCs

(101). CD103+ DCs reciprocally affect the differentiation of Foxp3+

Tregs by secreting TGF-b and RA (102, 103). Macs can alternate

between pro-inflammatory (M1) and anti-inflammatory (M2)

states in response to various stimuli (104, 105). M1 macs typically

secrete high levels of pro-inflammatory cytokines, such as TNF-a,
IL-6, and IL-12. In contrast, M2 macs produce anti-inflammatory

cytokines, such as IL-10, which directly or indirectly affect the

function of intestinal epithelial cells (106), Additionally, IL-10 helps

to promote the expression of Foxp3+ Tregs (107).

3.2.5 IEC and T cells
Effector T cells are typically the dominant lymphocytes in the

gut, responsible for mediating a range of host immune defenses and

preserving homeostasis. Within the LP, the two most prevalent

types are T helper (Th) 17 cells and regulatory T cells (Tregs). These

subtypes exhibit heterogeneity. Generally, Th17 cells foster

inflammatory immune responses, whereas Tregs suppress

excessive or unnecessary immune activation and commonly

exhibit anti-inflammatory properties. The functional antagonism

between these two subsets is crucial for maintaining immune

homeostasis in the LP (108). Th17 cells secrete IL-17, which is

pivotal in regulating the integrity of intestinal epithelial and the

intestinal mucosal barrier. It influences the cellular distribution of
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the TJs occludin in IEC (109–111). Furthermore, IL-22 produced by

Th17 cells can promote epithelial proliferation and mucosal repair

(112). It is important to note that Tfh cells secrete IL-21 which

promotes the differentiation of B cells into plasma cells that produce

IgA and secrete sIgA (113, 114), thereby fortifying the protection of

the epithelial barrier (Figure 2).

The gut microbiota-IEC, immune cells-IEC, as well as gut

microbiota-immune cells, and the IEC-barrier function, are all key

factors affecting barrier function. In short, the stability of the gut barrier

depends not only on the self-regulation of IEC but also on the

continuous interaction between IEC, immune cells, and the microbiota.
Frontiers in Immunology 06
3.3 Gut microbiota-immune cells-IEC-BBB

As previously mentioned, the microbial community plays a

crucial role through continuous interactions with a range of IEC,

shaping the structure of the intestinal barrier and regulating

paracellular permeability, which is essential for nutrient

absorption and the reinforcement of the mucus layer. This section

will explore how the microbiota indirectly modulates immune cells,

thereby influencing the structure and function of the barrier, while

emphasizing the indispensable role of the coordinated activity of

intestinal immune cells.
FIGURE 2

Interactions between IEC and immune cells. IEC promote neuts migration and infiltration by secreting CXCL7, CCL20, and MMP-3, with MMP-3
enhancing CXCL7 activity. During inflammation, IL-6, IL-8, and IL-33 produced by IEC regulate Neuts recruitment and function. Neuts enhance
epithelial barrier protection by secreting IL-22 to promote the production of AMPs by IEC and by inducing the generation of AREG in IEC through
TGF-b. IELs depend on TGF-b secreted by IEC to induce CD103 binding to E-cadherin, facilitating long-term residency. IL-15, derived from IEC,
stimulates the proliferation, survival, and cytotoxicity of IELs; the maintenance of IELs relies on IEC MyD88/TLR2 signaling for the production of IL-
15. Additionally, chemokine CCL25, produced by IEC, attracts CCR9-positive IELs to migrate towards the intestinal epithelium. IELs can also work
synergistically with Paneth cells to release AMPs.ILC1 responds to signals from IEC to produce IFN-g; ILC2 secretes IL-13 during infection, promoting
crypt stem cell differentiation into goblet cells, both enhancing mucus secretion. ILC2 activation depends on IL-25, IL-33, and TSLP derived from
IEC. ILC3-produced IL-22 stimulates IEC to secrete AMPs, while IL-17 maintains barrier function during inflammation. IEC detect microbial signals
and secrete IL-33, TGF-b, and TSLP to regulate DCs and Macs. TGF-b and RA promote CD103+ DC migration to epithelial cells; CD103+ DCs
reciprocally influence Foxp3+ Tregs differentiation by secreting TGF-b and RA. M1 macs secrete high levels of pro-inflammatory cytokines, such as
TNF-a, IL-6, and IL-12. M2 macs produce anti-inflammatory cytokines, such as IL-10, which directly or indirectly affect the function of IEC.
Additionally, IL-10 aids in promoting the expression of Foxp3+ Tregs. Th17 cells secrete IL-17 and IL-22, which are vital for maintaining the integrity
of the intestinal epithelium. Tfh cells secrete IL-21, which promotes the differentiation of B cells into plasma cells that produce IgA and secrete sIgA.
(IEC, Intestinal Epithelial Cells; MMP, Matrix Metalloproteinase; IL, Interleukin; AMPs, Antimicrobial Peptides; Neuts, Neutrophils; AREG, Amphiregulin;
TGF-b, Transforming Growth Factor Beta; IELs, Intraepithelial Lymphocytes; ILC, Innate Lymphoid Cell; IFN-g, Interferon-gamma; TSLP, Thymic
Stromal Lymphopoietin; DCs, Dendritic Cells; Macs, Macrophages; RA, Retinoic Acid; Th17,T helper 17 cells; Tregs, Regulatory T cells; TNF-a, Tumor
Necrosis Factor-alpha; sIgA, Secretory Immunoglobulin A.).
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3.3.1 Gut microbiota-immune cells-IEC
The gut microbiota plays a crucial role in the maturation of the

gut mucosal immune system. A review has shown that probiotics

not only modulate the expression of mucins and TJs but also

influence IEC apoptosis and proliferation, as well as directly or

indirectly regulating immune and anti-inflammatory functions.

Through these mechanisms, probiotics dynamically maintain the

integrity of the intestinal barrier (115). Studies on germ-free mice

have shown that they have smaller PPs, immature GALT, reduced

intestinal lymphocytes, and lower IgA production (116, 117).

However, these damages can be restored by re-establishing the

gut microbiota (118). The microbiota’s influence extends beyond

the barrier, as microbial metabolites also play critical roles in

driving anti-inflammatory and barrier-protective functions, as

well as impacting IEC differentiation and gene expression. For

instance, butyrate, a metabolite produced by commensal

microbes, induces the differentiation of colonic Tregs cells and

promotes epithelial integrity (119, 120). The composition of the gut

microbiota, especially the composition of Clostridium species, may

affect the number and function of Tregs and promote the formation

of mucosal tolerance (121). Akkermansia muciniphila (Am), known

as the “intestinal sentinel,” may promote the production of mucin

by goblet cells and repair intestinal barrier function (122).

Immunologically, Am not only interacts with TLR4 to modify the

RoR-T + regulatory T cell immunological response (123), but also

activates Macs via the TLR2/NLRP3 signaling pathway both in vitro

and vivo (124).

In summary, the intestinal barrier is a complex multi-layered

structure that includes the microbial barrier. Within this structure,

specific microbes act as probiotics; they not only directly affect the

barrier but also maintain the balance of mucosal immunity through

interactions with immune cells. and disruptions in microbial

composition can lead to barrier dysfunction and abnormal

substance release along the GBA.

3.3.2 IVB-BBB
The outermost layer of the brain, the meningeal barrier, is located

beneath the inner surface of the skull, consisting of the dura mater,

arachnoid mater, and pia mater, which encase the brain and

cerebrospinal fluid. This layer allows for immune cell transport.

Deeper within the brain, there are two critical barriers: BBB and

the blood-cerebrospinal fluid barrier, the latter located within the

choroid plexus of the brain ventricles (125). The BBB is a highly

selective, semipermeable barrier composed of endothelial cells,

astrocytic end-feet, and pericytes embedded in the blood vessel

basement membrane (126). IVB and the BBB have several

similarities, including the increased expression of PV-1 during the

injury process and its regulation by the Wnt/b-catenin signaling

pathway (127, 128). Furthermore, Wnt/b-catenin signaling in the

intestinal endothelium regulates and maintains BBB characteristics

during both embryonic and postnatal development: b-catenin
enhances endothelial-specific stability to maintain barrier

homeostasis, and its inactivation significantly downregulates

claudin-3, upregulates vesicle-associated proteins, and leads to BBB

disruption (127). A pivotal study revealed that during inflammation,
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IVB disruption in mice induces choroid plexus vascular barrier

closure, restricting access of large molecules (129). Another study

suggested that transplantation of EGCs into damaged spinal cords

can accelerate the repair of the vasculature and BBB at the injury site

(130). These findings suggest that the IVB and BBB are

physiologically interconnected and pathologically interrelated.

3.3.3 Gut microbiota-BBB
The human microbiota consists of trillions of microorganisms,

including over 1,000 bacterial species and approximately 3 million

identified genes, a number 150 times larger than the human genome

(131). The primary constituents of the microbiota are the

Firmicutes, Bacteroidetes and Actinobacteria (132), When the

composition of the microbiota changes, its associated functions

may also change or even be compromised (133). The microbiota

also plays a vital role in BBB regulation (134). Additionally, these

microorganisms have the ability to convert dietary components,

such as macromolecules, micronutrients, fibers, and polyphenols,

into various metabolites, including SCFAs, trimethylamine, amino

acid derivatives, and vitamins. These microbial-derived metabolites

play essential metabolic and signaling roles in regulating the host’s

internal environment, particularly in terms of their impact on the

integrity of the BBB and brain function (13). These studies suggest

that the microbiota is essential in regulating the intestinal and brain

barriers under physiological conditions. Research indicates that a

lack of microbiota is associated with increased BBB permeability

and decreased expression of TJs occludin and claudin-5.

Transferring fecal matter from pathogen-free mice or treating

germ-free mice with SCFAs-producing bacteria can reduce BBB

permeability (135). In addition to crossing the BBB and affecting the

maturation of microglia, SCFAs also appear to impact neuronal

function (136). therefore, SCFAs play a vital role in brain

development and CNS homeostasis. An imbalance in the gut

microbiota can lead to weakened intestinal barrier function,

allowing endotoxins produced by Gram-negative bacteria, such as

Lipopolysaccharide(LPS), and harmful substances from

opportunistic pathogens to penetrate into the circulatory system.

In the case of cerebral ischemia, damage to the BBB enables LPS to

enter brain tissue. TLR4 plays a key role in the inflammatory

response triggered by LPS, leading to neuroinflammation induced

by LPS in microglia/macs, which can further exacerbate ischemic

brain injury (137, 138). Furthermore, The gut microbiota plays an

important role in Th17 cell differentiation, an important class of

CD4+helper T cells, and their infiltration into the brain (139, 140).

In summary, the microbiota impacts BBB integrity through

several mechanisms: (1) interactions with a compromised intestinal

barrier and immune cells, (2) induction of inflammatory cytokine

release by microbial products like LPS, (3) direct regulation of TJs

expression by SCFAs or through glial cell modulation

neuroinflammation, and (4) stimulation of T cell differentiation

and brain infiltration. Therefore, the microbiota and their

metabolites have a profound impact on the regulation of barrier

function and integrity through their interactions with immune cells.

Dysbiosis of the microbiota may lead to barrier dysfunction and

abnormal substance release along the GBA, providing a new
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perspective and understanding for our comprehension of the onset

and development of brain diseases.
4 IS: gut microbiota, immune cells,
and the integrity and function of
the barrier

The interaction between IS and the gut microbiota reveals the

critical role of the GBA in the pathophysiology of stroke. Based on

the close connection between the gut microbiota, immune cells, and

integrity and function of barrier function, this section will explore

the close relationship between IS and this pathway.
4.1 IS-microbiota interactions

Previous studies have confirmed that changes in the gut

microbiota can have profound effects on brain. For instance, a

systematic review indicated that aging and inflammation might

contribute to variations in microbial composition and predispose

individuals to IS. The regulation of the Firmicutes/Bacteroidetes

ratio could be a potential target for treating IS (141). Another study

offers a proof-of-concept demonstrating that the gut microbiome

itself is cerebroprotective in experimental stroke (142). However,

whether changes in brain function also directly affect the

microbiome? The following evidence on the impact of IS on the

microbiome may provide an answer. The microbiota of IS patients

exhibits significant dysbiosis, characterized by notable alterations in

the proportion of Firmicutes and Bacteroidetes, along with a

substantial increase in the abundance of opportunistic pathogens,

such as Enterobacter and Desulfovibrio species (143).

Simultaneously, Research has demonstrated the significant impact

of brain injury on the composition of the microbiota; these effects

include a reduction in the diversity of microbiota species and

intestinal bacterial overgrowth, with a preferential expansion of

the Bacteroidetes phylum. This phenomenon is closely linked to

intestinal barrier dysfunction and decreased gut motility, which,

when addressed, can lead to improved stroke outcomes (144).

Beyond microbiota dysbiosis, there are also prominent changes in

its metabolites. Research indicates a decrease in the abundance of

SCFAs-producing bacteria, with SCFAs negatively correlated with

the severity and prognosis of IS (145, 146). Another metabolite,

Tryptophan (Trp), has an index—the ratio of Trp to its competing

amino acids in circulation—that is inversely associated with the risk

of ischemic stroke (147).

Houlden and colleagues demonstrated that, compared to the sham

surgery group, Middle Cerebral Artery Occlusion(MCAO) mice

exhibited alterations in the composition of the cecal microbiota,

including a significant reduction in Prevotellaceae and an increase in

Peptococcaceae, which correlated with the extent of brain injury and

influenced the number of cecal goblet cells and mucin production

(148). Beyond preclinical studies, a growing number of clinical

investigations are now focusing on changes in the gut microbiota
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following IS and their association with stroke outcomes. Compared to

healthy controls, stroke patients showed a significant increase in

Aerococcaceae(f), ZB2(c), TM7-1(c), and Flavobacterium, while

Mucispirillum, rc4-4, Akkermansia, Clostridiales(o), Lactobacillus, and

Stenotrophomonas were significantly reduced. In terms of functional

prognosis afterIS, Anaerococcus, Blautia, Dialister, Aerococcaceae(f),

Propionibacterium, Microbacteriaceae(f), and Rothia were enriched in

the group with good prognosis, whereas Ruminococcaceae(f) and

Prevotella were enriched in the group with poor prognosis (149). Yin

et al. reported that, compared to asymptomatic individuals, patients

with stroke and transient ischemic attack exhibited higher a-diversity
(Shannon index) in their microbiota, indicating an increased presence

of opportunistic pathogens such as Enterobacter, Megasphaera,

Oscillibacter, and Desulfovibrio, while symbiotic or beneficial genera

like Bacteroides, Prevotella, and Faecalibacterium were relatively less

abundant. Furthermore, patients with severe stroke (National Institutes

of Health Stroke Scale[NIHSS] score>4) had higher a-diversity indices,
more abundant Proteobacteria, and fewer Bacteroides compared to

those with mild stroke (NIHSS score ≤ 4). This microbiota dysbiosis

was correlated with disease severity (150). A clinical study on stroke risk

stratification revealed that, compared to the low-risk group, the high-

risk group exhibited a significantly higher abundance of opportunistic

pathogens (e.g., Enterobacteriaceae and Veillonellaceae) and lactic acid-

producing bacteria (e.g., Bifidobacterium and Lactobacillus), while

butyrate-producing bacteria (e.g., Lachnospiraceae and

Ruminococcaceae) were relatively reduced. This suggests that an

increase in opportunistic pathogens may be associated with an

elevated risk of stroke (151). A new study reveals the intricate

interplay between stroke and gut microbiota imbalance. The findings

suggest that IS can rapidly lead to gut ischemia and trigger an excessive

production of nitrates through free radical reactions, resulting in gut

microbiota imbalance. Specifically, the overexpansion and enrichment

of Enterobacteriaceae exacerbate the condition of cerebral infarction by

intensifying systemic inflammatory responses (152). A prospective

cohort study revealed no significant differences in a-diversity indices

between patients with mild stroke (NIHSS ≤ 3) and non-mild stroke

(NIHSS > 4-34). However, significant differences in microbial

community composition were observed. Patients with mild stroke

exhibited a significant enrichment of Roseburia, while those with

non-mild stroke showed an enrichment of Erysipelotrichaceae

incertae sedis. Further analysis demonstrated that the relative

abundance of Roseburia was significantly correlated with changes in

NIHSS scores and short- and long-term functional outcomes,

suggesting a potential protective role in stroke development and

prognosis. In contrast, the abundance of Erysipelotrichaceae incertae

sedis was positively associated with stroke severity (153). In patients

with acute IS, gut microbiota comparisons between those with favorable

outcomes (modified Rankin Scale [RS] score 0-2) and poor outcomes

(modified RS score 3-6) at 3 months post-stroke revealed that the poor

outcome group was characterized by significantly reduced a-diversity,
an increased abundance of pathogenic bacteria (e.g., Enterococcaceae

and Enterococcus), and a decreased abundance of SCFAs-producing

bacteria(e.g., Bacteroidaceae, Ruminococcaceae, and Faecalibacterium)

(154). Another study found that, compared to healthy individuals,
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stroke patients exhibited similar gut microbial a-diversity and overall

structure. Nevertheless, significant dysbiosis was observed, primarily

characterized by an increased abundance of SCFAs-producing bacteria,

such as Odoribacter, Akkermansia, Ruminococcaceae_UCG_005, and

Victivallis. Additionally, Christensenellaceae_R-7_group and

norank_f_Ruminococcaceae were positively correlated with NIHSS1M

and RS scores, whereas Enterobacter showed negative correlations with

both (155) (Table 1).

Although different studies have shown variations in specific

microbial changes and a-diversity, the overall trend reveals a strong
link between post-stroke gut microbiota dysbiosis and disease

severity as well as prognosis. Future research should further
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conduct large-scale, multicenter studies to validate the complex

interactions between gut microbiota and IS, establish causality

within specific contexts, elucidate the mechanisms of the GBA,

and explore gut microbiota-based intervention strategies, thereby

providing new perspectives for the prevention and treatment of IS.
4.2 IS-intestinal immune changes

It is well-established that stroke can induce neuroinflammatory

responses, a process involving the activation of microglia in the

brain (156) and the infiltration of leukocytes (157). The
TABLE 1 Changes in gut microbiota following ischemic stroke and their impact on outcomes.

Grouping Specimen
sources

Result Conclusion Reference

Sham surgery group
vs. MCAO group

Cecal tissue MCAO group:
↓Prevotellaceae, ↑Peptococcaceae

Changes correlated with the severity of brain
injury and affected the number of goblet cells
and mucin production in the cecum.

Houlden A, et al.,
2016 (148)

Healthy controls vs.
IS group

Blood sample IS group:
↑Aerococcaceae(f), ZB2(c), TM7-1(c),
Flavobacterium; ↓Mucispirillum, rc4-4,
Akkermansia, Clostridiales(o),
Lactobacillus, Stenotrophomonas

Altered microbiota composition may influence IS
functional outcomes.

Chang Y, et al.,
2021 (149)

Good prognosis
group vs. Poor
prognosis group

Blood sample Good prognosis group:
↑Anaerococcus, Blautia, Dialister, Aerococcaceae
(f), Propionibacterium, Microbacteriaceae(f),
Rothia;
Poor prognosis group: ↑Ruminococcaceae
(f), Prevotella

Microbiota composition is associated with
IS prognosis.

Chang Y, et al.,
2021 (149)

Asymptomatic group
vs. Stroke and
TIA group

Fecal sample Stroke and TIA group:
↑a-diversity, ↑Enterobacter, Megasphaera,
Oscillibacter, Desulfovibrio; ↓Bacteroides,
Prevotella, Faecalibacterium

Increased presence of opportunistic pathogens in
the patient group.

Yin J, et al.,
2015 (150)

Mild stroke (NIHSS
≤ 4) vs. Severe stroke
(NIHSS > 4)

Fecal sample Severe stroke group:
↑a-diversity, ↑Proteobacteria, ↓Bacteroides

Microbiota dysbiosis is correlated with the
severity of IS.

Yin J, et al.,
2015 (150)

Low-risk group vs.
High-risk group

Fecal sample High-risk group:
↑opportunistic pathogens (e.g.,
Enterobacteriaceae, Veillonellaceae), ↑lactic acid-
producing bacteria (e.g., Bifidobacterium,
Lactobacillus); ↓butyrate-producing bacteria (e.g.,
Lachnospiraceae, Ruminococcaceae)

Increased abundance of opportunistic pathogens
may be associated with a higher risk of stroke.

Zeng X, et al.,
2019 (151)

Mild stroke (NIHSS
≤ 3) vs. Non-mild
stroke (NIHSS >
4–34)

Fecal sample No significant difference in a-diversity; Mild
stroke group: ↑Roseburia; Non-mild stroke
group: ↑Erysipelotrichaceae incertae sedis

Roseburia abundance is significantly correlated
with NIHSS scores and functional outcomes,
suggesting a protective role in stroke
development and prognosis. Erysipelotrichaceae
incertae sedis abundance is positively associated
with stroke severity

Gu M, et al.,
2021 (153)

Good outcome
group (mRS 0–2) vs.
Poor outcome group
(mRS 3–6) at
3 months

Fecal sample Poor outcome group: ↓a-diversity, ↑pathogenic
bacteria (e.g., Enterococcaceae, Enterococcus);
↓SCFA-producing bacteria (e.g., Bacteroidaceae,
Ruminococcaceae, Faecalibacterium)

Associated with IS outcomes. Sun H, et al.,
2021 (154)

Healthy controls vs.
Stroke group

Fecal sample No significant difference in a-diversity; Stroke
group:
↑SCFAs-producing bacteria (e.g., Odoribacter,
Akkermansia,
Ruminococcaceae_UCG_005, Victivallis)

Christensenellaceae_R-7_group and
norank_f_Ruminococcaceae showed positive
correlations with NIHSS1M and Rankin Scale
scores, whereas Enterobacter showed negative
correlations with both.

Li N, et al.,
2019 (155)
The ↑ symbol indicates an increase or growth, whereas the ↓ symbol signifies a decrease or reduction.
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gastrointestinal immune system, a critical immune organ harboring

a vast number of immune cells, serves as a significant source of

immune cells recruited to ischemic brain tissue (158). Benakis et al.

demonstrated that gut microbiota dysbiosis influences the

outcomes of IS by suppressing the migration of effector T cells

from the gut to the leptomeninges (159). Preclinical studies show

that long-term invasion and activation of T cells within the brain

have been observed in an experimental model of IS (160). Clinical

studies have also found that activated T cells survive in the

peripheral blood of IS patients and secrete pro-inflammatory

cytokines (161). Further studies have shown that changes in Th1,

Th2, and Th17 cells occur within 7 days after an IS. In particular,

Th17 cells are associated with the exacerbation of cognitive

impairment, recurrence of stroke, and increased mortality in IS

patients (162). Recent research has also discovered that stroke

triggers extensive lymphocyte apoptosis in intestinal mucosal

tissues, particularly B cells and T cells in PPs, leading to a

reduction in systemic immunoglobulin levels. Notably, this

lymphocyte apoptosis is mediated by neuts extracellular traps

released by activated neuts following tissue injury (163).

Additionally, lower antibody concentrations in stroke patients

may increase susceptibility to bacterial infections (164).

Importantly, over 70% of the bacteria detected in infected

patients belong to human gut commensals, suggesting that

bacterial translocation may occur due to leakage of the intestinal

mucosal barrier (165). In summary, impaired intestinal immune

function following stroke is both a phenomenon and a critical factor

contributing to infections and adverse outcomes.
4.3 IS-gastrointestinal
barrier complications

In addition to neurological impairments, stroke can also trigger a

variety of non-neurological complications, such as gastrointestinal

dysfunction, including severe intestinal obstruction, alterations in gut

microbiota, and intestinal inflammation. The overactivation of

immune cells following stroke is a key factor contributing to

intestinal inflammation, which increases intestinal barrier

permeability, allowing the translocation of resident microbiota and

potential dissemination to systemic organs, thereby predisposing to

sepsis (166). Stanley et al. demonstrated that, compared to the sham

surgery group, stroke mice exhibited reduced expression of ZO-1,

indicating impaired gastrointestinal barrier function and increased

intestinal permeability (165). In a mouse model of MCAO, after

excluding surgical stress as a potential factor for infection, all mice

developed spontaneous bacterial infections within three days.

Moreover, over 95% of the cultured bacteria were identified as

Escherichia coli (167). Another study detected LPS in ischemic

brain tissue following stroke (168). A recent meta-analysis by Liu

et al. revealed that stroke patients receiving enteral nutrition,

including probiotics, had better prognoses and reduced rates of

bacterial infections (169). Similarly, another meta-analysis involving

26 randomized controlled trials of probiotic treatment in stroke

patients showed that early enteral nutrition combined with

probiotics effectively modulated gut microbiota and intestinal
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mucosal barrier function, enhanced immune responses, and

reduced the incidence of infectious complications and

gastrointestinal motility disorders (170).

The gut microbiota plays a critical role in the bidirectional

communication between the gut and the brain via the GBA,

influencing the regulation of key immune cells (171). SCFAs

through interaction with free fatty acid receptors, inhibit histone

deacetylases and can cross the BBB, affecting microglial function

and reducing neuroinflammation, thereby playing a key role in the

GBA (172, 173). Studies have shown that SCFAs can reduce

neuroinflammation by inhibiting the translocation of LPS to brain

tissue, but SCFAs are significantly reduced after IS (174), which

adversely affects the regulation of microglia-mediated inflammatory

responses. SCFAs not only promote recovery after IS but also

protect the intestinal barrier, thereby improving disease prognosis

(175). Research has found that fecal transplantation of SCFAs-

producing bacteria or SCFAs supplementation can enhance

intestinal mucosal integrity and promote the migration of Tregs

from the gut to the ischemic brain region (176), reduce

neuroinflammation (177), prevent BBB breakdown, and promote

neural repair (178). At the same time, SCFAs have also shown

effects in improving depression (179). Additionally, Trp metabolites

may also influence the occurrence and severity of cerebrovascular

diseases. Studies have shown that after IS, levels of Trp and other

amino acids are reduced, and a decrease in plasma Trp levels, along

with an increase in the kynurenine-to-tryptophan ratio, is

associated with depression (180, 181).

In summary, the interaction between IS and gut microbiota

profoundly affects stroke pathophysiology and outcomes through

the GBA. Dysbiosis of the microbiota, impaired intestinal barrier

function, and abnormal immune responses collectively exacerbate

stroke-related damage and increase the risk of complications.

Notably, the IS-gut microbiota-immune cells-barrier pathway

may also influence the development of PSD.
5 Examples of techniques used for the
microbiota-gut-brain axis

With the deepening of research on the MGBA, a variety of

advanced technologies have been widely applied to unravel the

complex interactions between the gut and the brain. Below are

examples of commonly used techniques and their applications (1):

Single-cell RNA sequencing: This technology enables the analysis of

gene expression at single-cell resolution, revealing the specific roles

of different cell types (182) (e.g., IEC, immune cells, and Glial cells)

in the MGBA, Its strength lies in providing high-resolution, cell-

type-specific information, which uncovers cellular heterogeneity

within the MGBA (183–185). (2) Spatial Transcriptomics: By

integrating gene expression data with spatial location information,

this technique precisely maps gene expression patterns on tissue

sections (186). Its advantage is the ability to reveal spatial

distribution of gene expression, aiding in the elucidation of

region-specific mechanisms in the MGBA. (3) Multi-omics

Integration: This approach combines data from genomics,

transcriptomics, proteomics, and metabolomics (187), offering a
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comprehensive understanding of the intricate interactions within

the MGBA. For example, through multi-omics analysis, researchers

can explore the interplay among microbial communities, host gene

expression, and metabolites, thereby revealing how microbiota

dysbiosis impacts brain mood function (188). Its core strength

lies in providing a holistic systems biology perspective, facilitating

the discovery of multi-level regulatory mechanisms in the MGBA.

(4) Optogenetics: This technique utilizes light-sensitive proteins to

precisely control the activity of specific neurons, enabling the study

of neural circuit functions (189, 190). For instance, by employing

these techniques, we can explore the relationship between the gut

microbiome and mental illnesses such as schizophrenia (191). Its

advantage is the high spatiotemporal resolution in modulating

neural activity, shedding light on neural mechanisms within the

MGBA. (5) Microbiota Transplantation: By transferring donor

microbiota to recipients (e.g., germ-free mice or model mice), this

method studies the impact of microbiota on host physiology and

pathology, such as the treatment of IS and depression (192, 193). Its

strength lies in directly validating the causal role of microbiota,

providing a foundation for clinical interventions. (6) In Vivo Live

Imaging: Utilizing fluorescent labeling and microscopy techniques

(194, 195), this technology enables real-time observation of

dynamic processes in the gut and brain. Its advantage is the

ability to reveal spatiotemporal dynamics within the MGBA. (7)

Organoid Models: These models use stem cells to cultivate

organoids that mimic the structure of the gut and brain, allowing

the study of their functions and interactions (196, 197).The strength

of this technology is its ability to provide highly physiologically

relevant experimental models, reducing ethical and technical

limitations associated with animal experiments. (8) Neuroimaging

Combined with Microbiome Analysis: Techniques such as

Structural MRI, Functional Neuroimaging, Magnetic Resonance

Spectroscopy, and Brain Iron Deposition Imaging, when

integrated with microbiome analysis, could investigate the

relationship between microbiota and brain microstructure,

intrinsic neural activity, functional connectivity, as well as

cognitive and emotional functions (198). Its advantage lies in

offering non-invasive brain function assessment, combined with

microbiome data to elucidate MGBA mechanisms.

The aforementioned technologies represent scientifically robust

and practical approaches in current MGBA research. By integrating

these techniques, researchers can explore the complex interactions

between microbiota and the brain in greater depth, providing strong

support for mechanistic studies and therapeutic strategies for

diseases such as IS and PSD. The judicious application of these

technologies not only advances fundamental research but also offers

critical theoretical foundations for clinical translation.
6 The link between IS and PSD:
microbiota-immune-barrier axis

PSD is the most prevalent neuropsychological disorder among

stroke patients, characterized by persistent low mood and diminished

interest (199). It is commonly used to describe depressive symptoms

following IS, given the predominance of IS in related literature. As
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early as 2002, Whyte EM andMulsant BH highlighted in their review

that post-stroke depression is not caused by a single biological or

psychological factor but rather results from the interplay of multiple

factors, aligning with the biopsychosocial model of mental disorders

(6). Importantly, a bidirectional relationship exists between

depression and stroke: stroke increases the risk of PSD, while

depression is an independent risk factor for stroke and stroke-

related mortality. In stroke literature, the most consistent finding is

that PSD is associated with the severity of stroke and the degree of

physical and cognitive impairment (200, 201). Furthermore, studies

have shown that the use of antidepressants in PSD patients can

improve cognitive function (202), reduce disability (203), and

increase survival rates (204).

Presently, discussions on the pathogenic mechanisms and

therapeutic targets of major depressive disorder primarily focus on

the imbalance of the monoamine neurotransmitter system—which

includes serotonin (5-HT), norepinephrine, and dopamine—and the

dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis (205).

Relatively speaking, PSD is usually triggered by ischemic brain injury,

often affecting the frontostriatal and limbic system circuits (206–208),

and is accompanied by post-stroke neuroinflammation and

impairment of neuroplasticity (209, 210), indicating the presence of

structural brain damage. Notably, in studies of IS, Major depressive

disorder, or PSD, gut microbial factors are gradually becoming a focal

point of research. Studies have found that Major depressive disorder

is closely related to changes in the baseline gut microbiota (211),

which can regulate Trp metabolism through the GBA and trigger

systemic inflammation, serving as significant pathogenic factors

(212). PSD may be related to stroke-induced gut microbiota

dysbiosis (213), increased gut permeability, and microbial-derived

pro-inflammatory metabolites (such as LPS) exacerbating central

nervous inflammation (144, 152, 214, 215).

PSD is widely regarded as the result of combined neurobiological

dysfunction caused by ischemia and psychosocial distress. However,

existing evidence suggests that neurobiological factors (rather than

psychological responses to disability) are the primary contributors to

PSD (5). In recent years, the gut microbiota has garnered significant

attention as a key regulator of the GBA, and its importance in gut-

brain communication has expanded the GBA to the MGBA (216).

The significance of this axis has become increasingly prominent in

research on psychiatry, neurodevelopment, and neurodegenerative

diseases. The microbiota and its metabolites communicate with the

brain through multiple pathways within the MGBA, thereby

influencing brain function and behavior. Based on the analysis in

Section 4 of this article, it is evident that IS and the gut microbiota,

immune cells, and barrier integrity and functionality exhibit

bidirectional interactions. Next, we will further explore how the

microbiota-immune-barrier axis affects the occurrence and

development of PSD.
6.1 IS-MGBA -PSD

The MGBA forms a bidirectional communication network

between the microbiota and the host (217). Research has

primarily focused on several aspects: neuroanatomical pathways,
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neuroendocrine pathways of the HPA axis, immune pathways,

microbiota metabolic pathways, the intestinal mucosal barrier and

BBB (218),. The role of the microbiota in this axis is critical, as

various environmental factors and physiological states of the host

can influence the composition of the microbiota. When this balance

is disrupted, it may lead to microbiota dysbiosis, subsequently

affecting the signaling function of the MGBA and adversely

impacts the host’s immune, metabolic, and nervous systems

(219). It is important to note that these pathways interact and

influence each other.

Extensive literature exists on how the microbiota regulates host

emotions through MGBA, primarily focusing on the nervous system

and neurotransmitters. The brain communicates directly with the gut

via parasympathetic and sympathetic fibers and indirectly through the

stimulation of the enteric nervous system (220). In this process,

enterochromaffin (EC) cells play an significant role. They transmit

signals to the brain via the vagus nerve (221, 222). Studies have found

that 5-HT synthesized and secreted by EC cells is closely related to the

interaction with the microbiota, and in patients with PSD, 5-HT levels

are significantly reduced (223). Additionally, g-aminobutyric acid

(GABA), as the major inhibitory neurotransmitter, plays a pivotal

role in IS and depression (224). Relevant studies indicate that species

such as Bacteroides, Parabacteroides and Escherichia can effectively

produce GABA, and the relative abundance of Bacteroides in feces is

negatively correlated with depression (225). Simultaneously,

Bifidobacterium adolescentis can produce GABA to modulate the

GBA response, and has an intriguing association with depression

(226). Furthermore, Bacillus members have been demonstrated to

boost dopamine production, whereas a rise in Bifidobacterium

modifies dopamine metabolic abnormalities, improving mood after a

stroke (215). The relationship between the microbiota and the HPA

axis has also garnered attention. Research reveals that dysbiosis of the

gut microbiota can trigger excessive activation of the HPA axis,

negatively affecting the development of the prefrontal-limbic circuit.

In adult experiments, the use of probiotics can normalize HPA axis

activity and alleviate depressive symptoms (227).

As mentioned above, the microbiota has a significant impact on

central and peripheral immune responses and plays a crucial role in

maintaining the integrity of the BBB. Under pathological conditions,

dysbiosis of the microbiota can further affect the physiology,

behavior, and cognitive functions of the brain through the MGBA,

playing a key role in PSD (214, 228). The development and function

of the gut immune system largely depend on the microbiota (229),

which may potentially play a role in regulating emotions and

behavior (222). In the third and fourth parts, we discussed the

physiological role of the microbiota, IEC, and immune cells in

jointly regulating barrier function, as well as the interaction of this

pathway with IS. Next, we will further explore how the microbiota,

through immune regulation on the MGBA, affects barrier function

post-IS and further influences the host’s emotional state (Figure 3).
6.2 PSD and the microbiota

A meta-analysis revealed that, compared to healthy individuals,

patients with PSD exhibit significant differences in species diversity
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and microbial community structure at multiple taxonomic levels,

including phylum, family, and genus (14). Another study suggested

that the gut microbiota may play a role in the pathogenesis of PSD

(230). Furthermore, alterations in the composition of the gut

microbiota are closely associated with the severity of PSD (231).

Significant changes in the microbiota composition have been

observed in PSD patients. Within the phylum Firmicutes, there is a

reduction in Bifidobacterium and an increase in Enterococcus and

Escherichia coli (214), the latter being recognized as an important

opportunistic pathogen in the gut (232). Studies have also

demonstrated distinct differences in microbiota composition and

inflammatory markers between individuals with and without

depressive symptoms. Compared to the non-PSD group, the PSD

group exhibited higher levels of Enterococcus faecalis and

Escherichia coli, along with elevated inflammatory factors,

including IL-1, IL-2, IL-6, and hs-CRP(C-reactive Protein).

Concurrently, the PSD group showed lower levels of

Bifidobacterium. Notably, the levels of Enterococcus faecalis and

Escherichia coli were positively correlated with these inflammatory

cytokines, whereas Bifidobacterium levels were negatively correlated

(214). Another comparative study identified similar microbiota

differences between the two groups. Specifically, PSD patients had

significantly higher levels of Streptococcus, Akkermansia, and

Barnesiella, but lower levels of Escherichia-Shigella, Butyricicoccus,

and Holdemanella compared to non-PSD patients. Correlation

analysis further indicated that the abundance of Akkermansia,

Barnesiella, and Pyramidobacter was positively associated with

Hamilton Depression Scale (HAMD) scores, while the abundance

of Holdemanella was negatively correlated with HAMD

scores (213).

Interventions targeting the microbiota in PSD have been widely

reported. As beneficial bacteria, Bifidobacterium species inhibit the

proliferation of pathogenic bacteria and modulate the microbiota,

demonstrating potential antidepressant effects (233). Additionally,

Lactobacillus rhamnosus has been shown to reduce depression-

related behaviors, highlighting the role of the microbiota in

emotional regulation (234) (Table 2).
6.3 PSD and immune regulation

During the early stages of ischemic injury, DAMPs and

cytokines expressed at the injury site can enter systemic

circulation through the disrupted BBB. This process can trigger

immune responses in primary and secondary lymphoid organs,

leading to systemic inflammatory response syndrome (235). Among

these, the rapid activation of immune cells plays a key role in BBB

disruption following IS (236).

Neuroinflammation is known to be associated with CNS

disorders, including PSD (237). Inflammatory mediators

produced by immune cells play a pivotal role in shaping

neuropsychiatric outcomes following stroke. The inflammatory

basis of PSD is closely linked to immune cells and molecular

factors, with cytokines serving as critical signaling proteins that

facilitate intercellular communication. These cytokines are

primarily produced by immune cells such as monocytes, macrs,
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and lymphocytes (238). In the context of PSD, significant elevations

in pro-inflammatory cytokines, including IL-1, IL-6, and TNF-a,
have been documented (238). Clinical studies have shown that

serum levels of TNF-a and IL-1b are elevated in PSD patients
Frontiers in Immunology 13
compared to non-PSD patients (239). These cytokines can directly

affect key brain regions involved in mood regulation, potentially

contributing to the development of depressive symptoms. IL-6,

synthesized by various cells including neurons, astrocytes,
TABLE 2 The relationship between PSD and gut microbiota.

Grouping Result Conclusion Reference

Healthy individuals group vs.
PSD group

PSD group:
Significant differences in species diversity and
microbiota structure were observed at multiple
taxonomic levels (phylum, family, genus)

The microbiota is closely associated with the
occurrence and severity of PSD.

Luo F, et al., 2022 (14);
Jiang W, et al., 2021 (230);
Ye X, et al., 2021 (231)

Non-PSD group vs.
PSD group

PSD group: group:
↑Levels of Enterococcus faecalis and Escherichia coli,
inflammatory factors (including IL-1, IL-2, IL-6,
and hs-CRP).
↓Bifidobacterium.

Levels of Enterococcus faecalis and Escherichia coli
were positively correlated with these inflammatory
cytokines, while Bifidobacterium levels showed a
negative correlation.

Kang Y, et al., 2021 (214)

Non-PSD group vs.
PSD group

PSD group: group:
↑Streptococcus, Akkermansia, and Barnesiella.
↓Escherichia-Shigella, Butyricicoccus,
and Holdemanella.

The abundance of Akkermansia, Barnesiella, and
Pyramidobacter was positively correlated with
Hamilton Depression Scale scores, while
Holdemanella abundance showed a
negative correlation.

Yao S, et al., 2023 (213)

Control group vs.
Lactobacillus rhamnosus
treatment group

Modulation of microbiota composition. Reduced depression-related behaviors. Bravo JA, et al., 2011 (234)

Control group vs.
Bifidobacterium
treatment group

Inhibition of pathogenic bacteria proliferation and
modulation of microbiota.

Demonstrated potential antidepressant effects. Tian P, et al., 2020 (233)
The ↑ symbol indicates an increase or growth, whereas the ↓ symbol signifies a decrease or reduction.
FIGURE 3

MGBA—Major pathways through which the microbiota regulates host mood. The MGBA represents a bidirectional communication network that
interconnects the microbiota with the host. The brain exerts top-down control over the composition and diversity of the microbiota, whereas the
microbiota, in turn, exerts bottom-up influence on the brain’s emotional state. (MGBA, Microbiota-Gut-Brain Axis; EC, enterochromaffin; 5-HT,
serotonin; HPA, hypothalamic-pituitary-adrenal; LPS, lipopolysaccharide; Trp, Tryptophan; SCFAs, short-chain fatty acids; BBB, blood-brain barrier.).
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microglia, and endothelial cells, plays a crucial role in the

inflammatory response associated with PSD (238, 240). Studies

have further emphasized this correlation, demonstrating that higher

serum IL-6 levels are independently associated with the occurrence

of PSD (241).

Within the immune system, chemokines are responsible for

coordinating the migration of cells to specific regions requiring an

immune response (238). Particularly, chemokines such as CCL2,

CCL7, CCL8, CCL12, and CCL13 have been shown to drive pro-

inflammatory cells towards inflamed or injured CNS tissues,

playing a significant role in the neuroinflammatory processes

associated with PSD (242, 243). Reports indicate that CCL2/

CCR2 signaling may be associated with depression (244). Under

ischemic conditions, microglia rapidly accumulate at the injury site.

They also contribute to tissue repair and remodeling by clearing

debris and secreting anti-inflammatory cytokines and growth

factors. Conversely, when immune regulation is imbalanced, they

exacerbate tissue damage by releasing inflammatory cytokines and

neurotoxic substances, highlighting their dual role in the brain’s

response to injury (245). Astrocyte activation is a critical response

in IS and plays a significant role in the neuroinflammatory

environment (246). Following stroke, activated microglia secrete a

combination of IL-1a, TNF-a, and C1q, driving astrocytes toward a
neurotoxic phenotype, thereby increasing the complexity of the

neuroinflammatory response (247). New research indicates that

depression is associated with specific networks of the brain’s

functional connectome, namely certain brain networks (248, 249).

A clinical study revealed that PSD is related to increased functional

connectivity strength in specific areas of the default mode network,

including the contralateral angular gyrus, posterior cingulate cortex,

and hippocampus (250). Further research reveals that most

microglia in the PSD hippocampus exhibit both pro-

inflammatory and anti-inflammatory states, with a significant

negative correlation between IL-1 and PSD (251). It is evident

that studying the impact of immune modulation on specific brain

circuits in PSD is a field full of potential.

Imbalanced immune regulation may play a key role in the

pathophysiology of PSD (252), suggesting that maintaining the

homeostasis of immune cells and their mediated cytokines and

chemokines in the brain’s inflammatory response is of great

significance for the prevention and treatment of PSD.
6.4 PSD: barrier integrity and function

Following a stroke, the microvasculature within the affected

region exhibits significant inflammatory features, primarily

characterized by endothelial dysfunction (253), impaired BBB

(254), and the recruitment and infiltration of leukocytes (157).

Barrier function impairment can lead to neurological diseases by

passive means through the vascular leakage of blood-borne

molecules into the CNS, and by active means through guiding

inflammatory cells to migrate into the CNS. Both of these

mechanisms may be directly related to changes in the molecular

composition, function, and dynamics of TJs proteins (255, 256).

The invasion of peripheral leukocytes can exacerbate neuronal
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damage (257, 258). Studies have demonstrated that the protective

effects observed in PSD rats are linked to improvements in BBB

permeability (259). Moreover, research on depression in mice has

revealed that peripheral inflammatory factors can cross the BBB and

induce depressive behaviors by modulating BBB integrity,

suggesting that the BBB may play a critical role in ameliorating

depression in PSD mice (260). Furthermore, in PSD rats,

modulation of the gut microbiota has been shown to enhance

BBB integrity, improve neurological function, and alleviate

depressive symptoms (15). In summary, the destruction of BBB is

not only an important pathological process of IS, but also a key

factor that may trigger PSD.
6.5 IS utilizes the microbiota-immune-
barrier axis to influence the occurrence
and development of PSD

After a stroke, ecological imbalance, dysregulation of intestinal

immune function, and damage to the intestinal barrier become

common phenomena (261). Dysbiosis of the gut microbiota not

only leads to damage of the intestinal epithelium, reduced mucus

secretion, and decreased expression of TJs, thereby increasing

intestinal permeability, but also affects neural function and IS

outcomes (262–264). Under these conditions, there may be a

penetration of ectopic intestinal bacteria and pro-inflammatory

cells into brain tissue through a compromised blood-brain barrier

(175). It has been confirmed that inflammatory cytokines and other

bacterial toxins, such as LPS, penetrate the damaged IEB and enter

the circulation (265, 266). Furthermore, studies have found that

immune cells, such as Neuts, DCs, Macs, and T cells, infiltrate the

brain at different times (267–269). Existing evidence suggests that

numerous pro-inflammatory cytokines play a critical role in the

development of PSD (270). Under normal physiological conditions,

T cells assist B cells in differentiating into plasma cells, which

produce IgA to clear toxins and pathogens (271). However, in the

MCAO model, early stress leads to significant translocation of gut

bacteria and reduced IgA levels (272). Studies have shown that after

IS, the host immune system is severely suppressed, and the number

of B cells in the small intestine decreases. This may adversely affect

the homeostasis of the intestinal and systemic immune systems,

impair antimicrobial defenses, and lead to gastrointestinal

complications (273). The effects of B cells crossing the damaged

BBB and entering brain tissue depend on the subset, timing, and

microenvironment (274). It is noteworthy that Th17 cells derived

from the small intestine are considered to play a key role in the

pathogenesis of depression. They affect the condition by promoting

neuroinflammation in the CNS, activating microglia and astrocytes,

and inducing neurotoxicity, which is closely related to the onset of

depression (275–277). Another important type of T cell, Tregs,

secrete anti-inflammatory cytokines to suppress the activity of pro-

inflammatory cytokines, promote neurogenesis, and regulate the

polarization of microglia and macs after IS (278). Furthermore, the

development of depression is a dynamic, multi-stage process

involving changes in the response of Tregs to different

inflammatory microenvironments (279).
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Following IS, the release of DAMPs and cytokines triggers the

activation of microglia and astrocytes. Microglia, as the resident

immune cells of the CNS, are the first to detect and respond to

injury. Within the first 24 hours post-IS, anti-inflammatory M2

microglia dominate (280). During the initial phase of injury,

microglia release anti-inflammatory factors to aid in neuronal

repair. However, if the injury persists, microglia shift to a pro-

inflammatory state, secreting factors that not only exacerbate

inflammation but also further damage neurons (238). Ischemic

neurons induce the polarization of M1 microglia, which secrete

pro-inflammatory mediators, disrupt the BBB, and amplify harmful

inflammation (281). In the CNS, astrocytes are the most abundant

glial cells and can also be activated into two distinct states post-IS: A1

(pro-inflammatory) and A2 (anti-inflammatory) (282). The cascade

of pro-inflammatory mediators and reactive substances released by

activated M1 microglia impairs astrocyte function, reduces

neurotrophic support, and hinders hippocampal neurogenesis,

which is critical for brain repair and cognitive function (283).

Studies suggest that the pathological mechanisms of PSD may be

linked to reduced miR34b-3p levels in hippocampal neurons and

enhanced microglial activation (284). Inflammatory mediators can

disrupt extracellular glutamate balance by impairing the glutamate

clearance capacity of microglia and astrocytes. This imbalance leads

to overactivation of NMDA receptors, excitotoxicity, apoptosis,

reduced neuroplasticity, and ultimately neuronal loss, potentially

contributing to the development of PSD (285, 286).

In summary, following IS, microbiota dysbiosis exacerbates

intestinal barrier dysfunction, leading to the excessive release of local

inflammatory cytokines (287). This activates immune regulation and

intensifies the inflammatory response, affecting the homeostasis of both

the intestinal and brain barriers. In the context of ischemia, the

disruption of the microbiota-immune-barrier axis in the MGBA

further promotes the development and progression of PSD (Figure 4).
7 Potential therapeutic strategies for
PSD—modulating the gut microbiota

The intricate nature of PSD pathophysiology renders biological

prevention and treatment approaches particularly challenging. Presently,

treatment strategies for PSD predominantly encompass pharmacological

therapy, neurostimulation, and psychological interventions. Although

selective 5-HT reuptake inhibitors have demonstrated clinical

significance, their efficacy is still debated, and they come with risks, such

as the potential for bleeding (5). The prolonged use of antidepressants, the

risk of dependency, and a range of side effects have steered interest towards

alternative treatments. Therapies based on microbiota, which have the

potential to simultaneously address the underlying condition and alleviate

depressive symptoms, may emerge as a central focus in future

research endeavors.
7.1 Probiotics and prebiotics

Probiotics are a class of safe microorganisms that can bring

numerous benefits to the host when given to human subjects in
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adequate doses and at the right time (288). Reportedly, Probiotics

enhance barrier function by increasing mucus production, AMPs,

and sIgA levels, promoting competitive adherence against

pathogens, and improving the TJs integrity of IEC (289).

Preclinical studies reveal that Lactobacillus rhamnosus and

Bifidobacterium breve show potential in improving neurological

dys funct ion caused by MCAO in rats by inhibi t ing

neuroinflammation and modulating the GBA (290). Clinical

research indicates that consuming probiotics can help enhance

patients’ emotional well-being, particularly alleviating symptoms

of depression and anxiety that manifest within three months

following a stroke (291). Another clinical study has found that

tablets containing a combination of live Bifidobacterium,

Lactobacillus, Enterococcus, and Bacillus cereus can promote

neurological recovery and alleviate depression in stroke patients.

These effects may be attributed to the regulation of NF-kB, IL-1b,
and TNF-a levels (292). Another meta-analysis showed that the

combined use of probiotics with enteral nutrition significantly

reduced the levels of TNF-a, IL-6, and IL-10, and statistically

s ignificant ly decreased the inc idence of pulmonary ,

gastrointestinal, and urinary tract infections, mortality, and the

occurrence of intestinal dysbiosis (293).

Prebiotics show great potential in altering the gut microbiota,

with different prebiotics promoting the growth of different native

gut bacteria (294). Research has found that lactulose can improve

neurological function after stroke by inhibiting harmful bacteria,

correcting metabolic disorders, repairing damaged intestinal

barriers, and suppressing inflammatory responses in mice after

stroke (295). Furthermore, a fiber-rich barley variety known as

BARLEYmax has been shown to increase butyrate levels in the

gastrointestinal tract, thereby promoting the proliferation of

beneficial bacteria (296). Similarly, dietary fiber inulin has been

observed to reshape the microbiota in mice, enhancing intestinal

barrier integrity through the upregulation of TJs protein expression

and increasing SCFAs in feces. This nutritional intervention

strategy may prevent depression symptoms by leveraging the

microb io ta-gut -SCFAs ax i s (297) . In summary , the

supplementation of probiotics or prebiotics can regulate the

microbiota, thereby affecting the stability of the intestinal barrier

and ultimately influencing brain function, offering a novel approach

for the treatment of PSD.
7.2 Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) involves the transfer of

fecal matter from a healthy donor into the gastrointestinal tract of a

patient to treat specific diseases (298). The advantages of FMT have

been acknowledged since the fourth century, during the Eastern Jin

Dynasty in China. Research has demonstrated that FMT can

prevent ischemic injury by reducing the expression of IL-17, IFN-

g, and other pro-inflammatory cytokines (299). Transplanting fecal

bacteria rich in SCFAs and supplementing with butyric acid have

been found to be effective treatments for IS (300). Another study

indicates that FMT improves depressive-like behavior, corrects gut

microbiota imbalance, and alleviates intestinal tract inflammation,
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intestinal mucosa disruption, and neuroinflammation in rats

induced by chronic unpredictable mild stress (301) .

Consequently, FMT may represent a potential therapeutic

approach for PSD. Further investigation into the mechanisms

underlying FMT, including refining donor screening processes,

optimizing fecal preparation techniques, and exploring alternative

administration routes, may enhance its efficacy and safety.
7.3 Vagus nerve stimulation

Vagus nerve stimulation (VNS) is an approved method for

treating epilepsy and is currently being researched for application in

the treatment of other diseases, including depression, anxiety

disorders, and Alzheimer’s disease (302). Previous research has

reported that VNS can prevent intestinal permeability induced by

traumatic brain injury. Additionally, VNS enhances enteric glial

activity, potentially mediating the CNS’s regulation of intestinal

permeability (303). Recent animal research has revealed that VNS

ameliorates microbiota imbalance and mitigates BBB damage in

rats with MCAO via the MGBA (304). Clinical studies reveal that

VNS therapy can alleviate the damage to the BBB and colonic
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barrier after cerebral ischemia/reperfusion by modulating immune

cells, and mitigate systemic inflammatory responses (305). In recent

years, non-invasive transcutaneous auricular VNS (ta-VNS) has

garnered interest, indicating that ta-VNS triggers anti-

inflammatory pathways, restores MGBA homeostasis, and

modulates psychiatric disorders (306). Additional studies have

observed that ta-VNS increases the abundance of lactobacilli and

bifidobacteria (307). Double-blind, randomized controlled trials

have shown that the synergistic approach of combining ta-VNS

with conventional treatment demonstrates remarkable efficacy and

tolerability in managing PSD (308). In summary, ta-VNS represents

a safe and efficacious novel therapeutic approach.
7.4 Traditional Chinese medicine (herbal
medicine, acupuncture)

The traditional Chinese herbal extract Gastrodin (Gas), derived

from the herb Tianma, has been studied extensively. Research

indicates that Gas enhances intestinal barrier function by

increasing the expression of TJs proteins and mucins.

Additionally, it significantly reduces the secretion of pro-
FIGURE 4

IS utilizes the microbiota-immune-barrier axis to influence the occurrence and development of PSD. Following IS, microbiota dysbiosis exacerbates
intestinal epithelial barrier (IEB, IVB) dysfunction, resulting in the translocation of harmful substances across the intestinal barrier and the excessive
release of local inflammatory cytokines. This process triggers immune regulation in the LP, involving both innate immune cells (such as Neuts, IELs,
ILCs, DCs, and Macs) and adaptive immune cells (including Th17 and Tregs within the T cell population). The subsequent release of DAMPs and
cytokines further amplifies the inflammatory response, leading to the activation of microglia and astrocytes, the secretion of pro-inflammatory
mediators, disruption of the BBB, and the development of PSD. (IS, Ischemic Stroke; IEB, Intestinal Epithelial Barrier; IVB, Intestinal Vascular Barrier;
Neuts, Neutrophils; IELs, Intraepithelial Lymphocytes; ILCs, Innate Lymphoid Cell; DCs, Dendritic Cells; Macs, Macrophages; Th17, T helper 17 cells;
Tregs, Regulatory T cells; PSD, Post-Stroke Depression).
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inflammatory cytokines in mice (309). Further studies have

demonstrated its efficacy in alleviating behavioral deficits

associated with depression and suggest its potential in the

prevention and treatment of PSD (310). Moreover, Gas influences

the gut microbiota and has been shown to improve depressive-like

behaviors in mice (311). A bibliometric analysis reveals that from

2014 to 2023, numerous researchers have persistently investigated

the role of acupuncture in PSD (312), corroborating its positive

impact on depression (313). Acupuncture can address PSD through

various mechanisms, including the protection of the intestinal

mucosal barrier, immune regulation, and inflammation control,

with the modulation of the gut microbiota being a common

underlying theme (314). The study also found that acupuncture

can alleviate depressive-like behavior in PSD by regulating the gut

microbiota and inhibiting the overactivation of inflammatory

mediators (315). Acupuncture can also effectively promote the

rehabilitation process of PSD patients by maintaining the

dynamic balance of gut microbiota, thus proving that

acupuncture, as a non-pharmaceutical treatment, has significant

potential in alleviating depressive symptoms (314). Moreover,

acupuncture, whether administered as a standalone therapy or in

conjunction with other treatments such as music therapy and

repetitive transcranial magnetic stimulation, has been evidenced

to effectively alleviate depressive symptoms (316–318). Despite the

promising outlook for acupuncture in the treatment of PSD, further

exploration is warranted to fully understand its potential

mechanisms and clinical efficacy.

In the treatment of PSD, non-pharmacological interventions

such as acupuncture and ta-VNS have garnered significant

attention. However, their widespread application faces challenges,

including unclear mechanisms and insufficient clinical evidence.

Moving forward, through multidisciplinary collaboration and

technological innovation, these therapies hold promise as integral

components of PSD treatment, offering safer and more effective

options for patients.
8 Conclusion

IS remains one of the significant global health challenges, with

one of its complications-PSD-urgently requiring more attention.

Currently, the exact pathogenesis of PSD, particularly its interaction

mechanism with gut microbiota, is not fully understood. This

review delves into how post-stroke gut microbiota dysbiosis leads

to barrier dysfunction through complex immune regulation and

inflammatory responses, and proposes the concept of a microbiota-

immune-barrier axis based on the MGBA. The article elaborates on

the connection between this pathway and IS as well as PSD, aiming

to provide new insights and perspectives on the potential

pathogenesis of PSD to promote the development of clinical

prevention and treatment strategies for PSD. Although We have

organized and summarized the potential pathogenesis of PSD,

considering the heterogeneity of microbiota, immune cells, and
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patients, as well as the dynamic changes in the stages of PSD, it is

currently impossible to establish a single definitive causal

relationship. This is precisely the challenge that future research

needs to further address.
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38. Lelouard H, Fallet M, de Bovis B, Méresse S, Gorvel JP. Peyer’s patch dendritic
cells sample antigens by extending dendrites throughM cell-specific transcellular pores.
Gastroenterology. (2012) 142:592–601.e3. doi: 10.1053/j.gastro.2011.11.039

39. Latorre R, Sternini C, De Giorgio R, Greenwood-Van-Meerveld B.
Enteroendocrine cells: a review of their role in brain-gut communication.
Neurogastroenterol motility. (2016) 28:620–30. doi: 10.1111/nmo.12754

40. Jones DE, Bevins CL. Paneth cells of the human small intestine express an
antimicrobial peptide gene. J Biol Chem. (1992) 267:23216–25. doi: 10.1016/S0021-
9258(18)50079-X

41. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance
of intestinal homeostasis. Nat Rev Microbiol. (2011) 9:356–68. doi: 10.1038/
nrmicro2546

42. Umar S. Intestinal stem cells. Curr Gastroenterol Rep. (2010) 12:340–8.
doi: 10.1007/s11894-010-0130-3

43. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function
and immune homeostasis. Nat Rev Immunol. (2014) 14:141–53. doi: 10.1038/nri3608

44. Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, et al. A gut-
vascular barrier controls the systemic dissemination of bacteria. Sci (New York NY).
(2015) 350:830–4. doi: 10.1126/science.aad0135
frontiersin.org

https://doi.org/10.1177/17474930211065917
https://doi.org/10.1159/000441085
https://doi.org/10.1161/cir.0000000000000757
https://doi.org/10.1016/j.neuron.2010.07.002
https://doi.org/10.1016/j.pharmthera.2017.11.005
https://doi.org/10.1016/j.pharmthera.2017.11.005
https://doi.org/10.1016/s0006-3223(02)01424-5
https://doi.org/10.1016/s0006-3223(02)01424-5
https://doi.org/10.3389/fmolb.2022.865788
https://doi.org/10.1186/s12916-016-0720-5
https://doi.org/10.2147/jir.S141033
https://doi.org/10.2147/jir.S141033
https://doi.org/10.1016/j.neuron.2021.09.036
https://doi.org/10.1111/j.1365-2249.2008.03713.x
https://doi.org/10.1111/j.1365-2249.2008.03713.x
https://doi.org/10.1146/annurev-immunol-070119-115104
https://doi.org/10.1080/19490976.2019.1638722
https://doi.org/10.1016/j.heliyon.2022.e12605
https://doi.org/10.1016/j.heliyon.2022.e12605
https://doi.org/10.12122/j.issn.1673-4254.2024.02.24
https://doi.org/10.12122/j.issn.1673-4254.2024.02.24
https://doi.org/10.1080/19490976.2024.2387800
https://doi.org/10.1038/s41575-023-00890-0
https://doi.org/10.1136/gutjnl-2020-322260
https://doi.org/10.1038/s41579-018-0036-x
https://doi.org/10.1093/femsre/fuz013
https://doi.org/10.1016/j.jmb.2014.04.027
https://doi.org/10.1016/j.jmb.2014.04.027
https://doi.org/10.1007/s00281-024-01026-5
https://doi.org/10.1073/pnas.0803124105
https://doi.org/10.1073/pnas.0803124105
https://doi.org/10.1038/nrgastro.2013.35
https://doi.org/10.1038/nrgastro.2013.35
https://doi.org/10.1146/annurev-immunol-031210-101317
https://doi.org/10.1146/annurev-immunol-031210-101317
https://doi.org/10.3389/fimmu.2013.00185
https://doi.org/10.1038/nrmicro2384
https://doi.org/10.1111/imr.12189
https://doi.org/10.1084/jem.190.7.915
https://doi.org/10.1038/nrgastro.2016.169
https://doi.org/10.1083/jcb.17.2.375
https://doi.org/10.1111/j.1749-6632.2012.06613.x
https://doi.org/10.1111/j.1749-6632.2012.06613.x
https://doi.org/10.1016/s0079-6107(02)00037-8
https://doi.org/10.1016/j.cell.2019.10.011
https://doi.org/10.2147/jir.S318327
https://doi.org/10.1038/nature10863
https://doi.org/10.1016/S0016-5085(74)80102-2
https://doi.org/10.1053/j.gastro.2011.11.039
https://doi.org/10.1111/nmo.12754
https://doi.org/10.1016/S0021-9258(18)50079-X
https://doi.org/10.1016/S0021-9258(18)50079-X
https://doi.org/10.1038/nrmicro2546
https://doi.org/10.1038/nrmicro2546
https://doi.org/10.1007/s11894-010-0130-3
https://doi.org/10.1038/nri3608
https://doi.org/10.1126/science.aad0135
https://doi.org/10.3389/fimmu.2025.1547365
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2025.1547365
45. Brescia P, Rescigno M. The gut vascular barrier: a new player in the gut-liver-
brain axis. Trends Mol Med. (2021) 27:844–55. doi: 10.1016/j.molmed.2021.06.007

46. Stan RV, Tse D, Deharvengt SJ, Smits NC, Xu Y, Luciano MR, et al. The
diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood
composition. Dev Cell. (2012) 23:1203–18. doi: 10.1016/j.devcel.2012.11.003

47. Forchielli ML, Walker WA. The role of gut-associated lymphoid tissues and
mucosal defence. Br J Nutr. (2005) 93 Suppl 1:S41–8. doi: 10.1079/bjn20041356

48. Honarpisheh P, Bryan RM, McCullough LD. Aging microbiota-gut-brain axis in
stroke risk and outcome. Circ Res . (2022) 130:1112–44. doi: 10.1161/
circresaha.122.319983

49. Acheson DW, Luccioli SJBP, Gastroenterology RC. Mucosal immune responses.
Best Practice & Research Clinical Gastroenterology. (2004) 18:387–404. doi: 10.1016/
j.bpg.2003.11.002

50. Deenick EK, Ma CS. The regulation and role of T follicular helper cells in
immunity. Immunology. (2011) 134:361–7. doi: 10.1111/j.1365-2567.2011.03487.x

51. Seikrit C, Pabst O. The immune landscape of IgA induction in the gut. Semin
immunopathology. (2021) 43:627–37. doi: 10.1007/s00281-021-00879-4

52. Sommer F, Bäckhed F. The gut microbiota–masters of host development and
physiology. Nat Rev Microbiol. (2013) 11:227–38. doi: 10.1038/nrmicro2974

53. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease.
New Engl J Med. (2016) 375:2369–79. doi: 10.1056/NEJMra1600266

54. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation.
Cell. (2014) 157:121–41. doi: 10.1016/j.cell.2014.03.011
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