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Malignant tumour represents a significant global public health concern. The

advent of immunotherapy has brought about a revolutionary shift in the

landscape of tumour treatment, offering a ray of hope to patients across the

globe. Immunotherapy strategies have demonstrated considerable promise in

clinical trials. However, the immunosuppressive environment within the tumour

microenvironment has constituted a significant obstacle to the advancement of

immunotherapies. It is therefore imperative to develop more efficacious and

personalised approaches. The utilisation of non-invasive ultrasound-assisted

immunotherapy represents a promising strategy. Ultrasound has the capacity

to induce an immune response and stimulate other drugs to achieve a specific

response, thereby reducing the toxic side effects of treatment and enhancing the

outcome of immunotherapy. This paper presents a systematic introduction to

the various mechanisms related to ultrasound and reviews the recent

advancements of ultrasound-assisted tumour immunotherapy, including

ultrasonic ablation, combined application with contrast agents, and

sonodynamic therapy.
KEYWORDS
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1 Introduction

In the 21st century, malignant tumour represents a significant threat to human health

(1). The high morbidity and mortality associated with malignant tumour have attracted

sustained attention and investment in basic and clinical research. Currently, surgical,

radiotherapeutic and chemotherapeutic interventions are the three principal modalities for

the treatment of neoplastic disease, with the capacity to exert a significant inhibitory effect

on tumour growth (2–5). However, these conventional treatments have limited outcomes,

especially after tumour metastasis. It is therefore of particular importance to seek improved

methods of treating tumours.
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The rapid development of molecular biology has led to the

discovery that the tumour microenvironment plays a pivotal role in

the initiation and progression of tumours (6). The treatment of

tumours is increasingly taking the entire microenvironment into

account, with immunotherapy representing a significant treatment

method for the immune system of the microenvironment (7).

Tumour cells within the microenvironment demonstrate deficiencies

in antigen presentation mechanisms, enhanced negative regulatory

pathways and the recruitment of immunosuppressive cells to evade

immune surveillance (8, 9). This results in the inhibition of effector

functions of immune cells and the termination of anti-tumour immune

responses. It is for this reason that tumour immunotherapy has

emerged as a means of activating or enhancing the body’s own

immune response in order to achieve tumour killing without

affecting normal cells (10). Moreover, in cases of intractable tumour

metastasis, immunotherapy has been shown to have a positive

therapeutic effect on distal tumours, thus offering a novel approach

to the treatment of tumour (11). However, due to the intricate nature of

the tumour microenvironment, variations in immune cell infiltration

and tumour heterogeneity, it has been observed that patients exhibit

disparate responses to immunotherapy, which introduces ambiguity

regarding the efficacy of immunotherapy (12).

In order to enhance the therapeutic efficacy and mitigate the

adverse effects, researchers have concentrated their efforts on the

integration of immunotherapy with alternative therapeutic modalities

(13). The combination of physical therapy, chemotherapy, gene

therapy and immunotherapy has demonstrated synergistic effects

and complementary advantages, thereby improving treatment

outcomes (14, 15). In particular, physiotherapy and chemotherapy

have been demonstrated to possess the capacity to diminish tumour

volume, stimulate tumour immunogenicity, facilitate the release

of inflammatory cytokines, antigens, and recruit immune effector
Frontiers in Immunology 02
cells (16, 17). Recently, ultrasound therapy as one of the common

physiotherapies are paid attention because ultrasound treatment has

been observed to possess potential immune-activating properties in

the context of these ultrasound studies, thereby conferring additional

benefits to ultrasound-assisted tumour immunotherapy (18–24). The

application of ultrasound has been demonstrated to enhance the

immunogenicity of tumours through a combination of thermal,

cavitation and mechanical effects within biological tissues. This

process facilitates the permeation of antigens through the

infiltration barrier, effectively converting “cold” (low infiltration)

tumours into “hot” (high infiltration) tumours, thereby potentiating

the efficacy of immunotherapy (25). Furthermore, the great

penetration of ultrasound wave can be exploited to achieve precise

delivery of immune agents to sufficient depths, thereby enhancing

drug accumulation at targeted sites and ensuring efficient

immunotherapy (26). A comprehensive description of ultrasound-

induced antitumour immunity can be found in Figure 1. Tumour

immunotherapy is a complex process involving antigen presentation,

the migration of immune cells, and the activation of effector cells

(27, 28). As an externally controllable stimulus source, ultrasound can

act as a multiple immune linker in tissues through thermal and

mechanical effects to render patients sensitive to immunotherapy.

Firstly, ultrasound can facilitate the process of immunotherapy

within the body. For example, sonication can destroy the

compression blood vessels of tumour, relieve the activity restriction

of immune cells, and increase the infiltration of immune cells in the

tumour site (29). Secondly, ultrasound treatment can also induce

immunogenic cell death (ICD) or necrosis in tumours through two

distinct mechanisms: mechanical ablation or the obstruction of

tumour blood supply. Consequently, the release of tumour-

associated antigens and damage-associated molecular patterns is

facilitated, thereby enhancing the antigen presentation process.
FIGURE 1

The immunosuppressive and immunoactive tumour microenvironments are regulated by the ultrasound. TAM, tumour-associated macrophages;
MDSC, myeloid-derived suppressor cell; Treg, regulatory T cell; NK cell, natural killer cell.
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Furthermore, the study demonstrated that ultrasonic cavitation can

induce dendritic cells (DCs) maturation, thereby enhancing the

antigen presentation process. In summary, ultrasound shows great

potential in boosting immunotherapy (30). Accordingly, this review

will provide a comprehensive overview of the mechanisms of

ultrasound-assisted tumour immunotherapy and the recent

advancements in this field.
2 Mechanism of ultrasound-assisted
immunotherapy for malignant tumour

Frequencies above 20 kHz, designated as ultrasound, exceed the

range of human hearing and are extensively employed in clinical

settings (31). The most prevalent application of ultrasound is in

ultrasound diagnosis. Some medical diagnoses can be completed

with or without the use of a contrast agent, and it can also be

employed as an auxiliary means of treatment, such as in the case of

bone and joint and tumour treatment (32–37). In recent years, there

has been a notable advancement in the field of anti-tumour

immunotherapy. Ultrasound, as a controllable mechanical wave,

has also made significant advancements in the field of ultrasound-

assisted tumour immunotherapy (38). It is well-known that the

efficacy of cancer immunotherapy is constrained by factors such as

immunosuppressive cell invasion and/or upregulation of immune

checkpoint expression, cancer cell heterogeneity, and lack of

antigen presentation (39). Consequently, administration of

immune agents against tumours with monotherapy may yield

poor patient benefits (40). However, ultrasound has been shown

to effectively regulate the microenvironment of tumour

immunosuppression, transform “cold” tumours into “hot”

tumours, and enhance the efficacy of immunotherapy therapy

(41). The role of ultrasound in this process can be mainly

classified into two categories: thermal effect and mechanical (non-

thermal) effect. As illustrated in Table 1, the thermal effect and

mechanical (non-thermal) effect are all outlined therein.
2.1 Thermal effect

The thermal effect is the result of the absorption of ultrasonic

sound energy into heat by living organisms (42). High-intensity
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ultrasound (e.g., >10 W/cm2) can induce thermal and mechanical

stresses in biological tissues (43). Through the modulation of

excitation amplitude, pulse duration, and frequency, the thermal

stress can elevate tissue temperature more than 55°C. It is widely

accepted that temperatures in excess of 55°C induce coagulative

necrosis, resulting in immediate cell death (44). Furthermore,

maintaining the thermal effect of ultrasound at a temperature that

does not cause tumour necrosis, such as 43°C, can increase

infiltration of immune cells and immune activation. and mild

hyperthermia in this region can induce a reduction in interstitial

fluid pressure and an increase in cell membrane fluidity and the

production of heat shock proteins (HSP) (45–48). These proteins

have been shown to mediate a range of immune responses in

peripheral tumour models (49). By exposing antigenic peptides to

macrophages and DCs, HSP triggers an inflammatory response,

resulting in the release of inflammatory cytokines and co-

stimulatory molecules, thereby inducing a tumour immune

response (50).
2.2 Mechanical (non-thermal) effects

In addition to thermal effects, any effect that produces biological

effects without causing significant warming (1°C above physiological

temperature) is collectively referred to as a mechanical (non-thermal)

effect. This non-thermal effect is generally believed to be associated

with the cavitation effect (31). It is evident that in addition to the

cavitation effect, non-cavitation effects such as radiation pressure,

radiation torque and sound flow are also associated with mechanical

effects. Consequently, the mechanical (non-thermal) effects

engendered in disparate application scenarios (e.g. ultrasonic

parameter settings) vary. The ensuing mechanisms of action are

delineated as follows: mechanical ablation and contrast media-

assisted cavitation.

2.2.1 Mechanical ablation
In comparison with thermal ablation, mechanical ablation has

been demonstrated to offer enhanced precision in the execution of

regional ablation. Moreover, studies have indicated that this

method can further stimulate the immune response, a

phenomenon that may be attributed to the absence of

degenerative antigen proteins in situ at the sonication lesion. Two
TABLE 1 Differences between different mechanisms of ultrasound.

Mechanism Primary Driver Outcome Key Immunological Effect Example Application

Thermal effect Heat Tumour tissue necrosis
or tumour cell apoptosis

ICD, antigen release Ultrasonic thermal ablation

Mechanical
(non-

thermal) effects

Mechanically destroy
tissue without causing

coagulative
thermal damage

Mechanically disrupt
cells into a homogenate
of subcellular debris

Generate more natural conformations compared to those
exposed to heat, which are efficient antigens for DCs
activation and subsequent cytotoxic T lymphocyte

Histotripsy,
Boiling histotripsy

Cavitation effect Strong mechanical
stress, shockwaves
and microjets

ICD, release of inflammatory factors Sonodynamic therapy
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methods of non-thermomechanical tissue ablation using high

pressure, pulsed focused ultrasound are histotripsy and boiling

sectioning (51).

Histotripsy represents a non-invasive ultrasonic ablation

technique that employs cavitation to mechanically disintegrate

tissue into acellular fragments. The technique utilizes high-

pressure (>15 MPa) ultrasound pulses with extremely low duty

cycles (<5%), delivering ultra-short (microsecond to millisecond

duration) acoustic bursts to induce controlled cavitation at the focal

zone. These precisely generated microbubbles undergo rapid cyclic

expansion and violent collapse, producing mechanical stresses that

liquefy target tissue into demarcated lesions through extracellular

matrix disruption (52). The application of varying parameters,

including pulse intensity, duty cycle, and pulse number, can result

in the generation of disparate mechanical effects within the tissue

(53). The mechanical effects of ultrasound can be broadly

categorised as follows: 1) The generation of steam bubbles in the

target tissue, which then vibrate and rupture, resulting in

mechanical separation and damage to the tissue (54); 2) The

tissue is subjected to mechanical destruction, resulting in cell

homogenate, following the generation of steam bubbles (55). In

comparison to fibrous scar tissue formed as a result of thermal

effects, the generation of tissue emulsification through histotripsy is

a more conducive approach to immune system activation (56, 57).

Boiling histotripsy (BH) is an alternative histotripsy regime. In

comparison to histotripsy, BH utilises lower peak pressures and

longer pulses, thereby significantly addressing the size, focusing

gain and frequency requirements of the high-intensity focused

ultrasound (HIFU) source in histotripsy’s application (58). In

highly aggressive melanoma models that exhibit a paucity of T

lymphocyte (T cell) infiltration, the implementation of a sparse scan

protocol (1 mm spacing between sonications) has been shown to

induce B cells, macrophages, monocytes, granulocytes, and both

conventional DCs subsets (i.e. cDC1s and cDC2s) (59). These cells

have been observed to acquire antigen in a markedly enhanced

manner. The proportion of antigen-positive immune cells in

tumour lymph nodes increased almost threefold 24 hours after

treatment. Furthermore, BH treatment has been demonstrated to

induce ICD, thereby instigating anti-tumour immunity.

Consequently, the employment of BH is anticipated to address

the challenge posed by the low immunogenicity of tumours

in immunotherapy.

2.2.2 Contrast agent-assisted cavitation
The term ‘cavitation effect’ is used to describe the process by

which minute bubbles (referred to as a ‘cavitation core’) within a

liquid are subject to vibration, growth and the gathering of acoustic

field energy under the influence of sound waves. Once the energy

reaches a specific threshold, the cavitation bubbles undergo a

sudden collapse and closure (60). Given that bubbles with a

radius of less than 1 mm are readily dissolved, the cavitation

effect is typically assisted by contrast agent such as microbubbles.

The use of contrast agent has been demonstrated to result in the

damage of endothelial cells through the generation of microflows,

microjets and free radicals by ultrasonic cavitation. The use of
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contrast agent-assisted cavitation at the tumour site has been

demonstrated to cause microvascular rupture and tumour cell

apoptosis. Furthermore, this process has been shown to hinder

tumour angiogenesis, enhance the effect of immunotherapy and

regulate the tumour immunosuppressive microenvironment (61,

62). In addition to the immune activation effect brought about by

ultrasound itself, ultrasound can also be used as a stimulus for drug

delivery to synergistically activate immunity (63–66). In tumour

tissues, vasculature is not fully developed so that enhanced the

permeability and retention effect (EPR effect) exists, which

facilitates drug delivery to the tumour site. However, it has been

found in clinical trials that patients do not benefit much from EPR

effect because of the high pressure inside the tumour tissues. Passive

drug delivery often cannot achieve effective delivery to the tumour

site. Ultrasound can improve the delivery efficiency of drugs mainly

through thermal and non-thermal effects. Some studies have shown

that the assistance of ultrasound can disrupt the order of membrane

molecules to improve the delivery efficiency of macromolecules

such as immunomodulators (67). In addition, ultrasound can open

the blood-brain barrier or vascular tumour barrier and increase the

expression of immune-related molecules such as proinflammatory

cytokines at the tumour site in addition to facilitating the delivery of

macromolecular drugs to the brain tumour site (68, 69).
3 Application of ultrasound-assisted
immunotherapy for malignant tumour

The immune system plays a significant role in the pathogenesis and

progression of tumours (70). The correct identification and destruction

of tumour cells that have undergone mutation from normal cells by the

immune system is referred to as immune surveillance (71). This

process necessitates the involvement of antigen-presenting cells,

which are responsible for capturing tumour-associated antigens,

secreting cytokines and chemokines, activating T cells, and ultimately

eradicating tumour cells through T cells. Concurrently, the toxic

reaction generated by T cells will also result in the production of

novel antigens, thereby initiating the subsequent phase of the immune

cycle response (72). However, tumour tissue can evade the immune

system through a variety of mechanisms, including the elimination of

functional DCs and the inhibition of their key functions, thereby

creating an immunosuppressive tumour microenvironment (8). In

the late 1890s, William B. Coley proposed tumour immunotherapy

based on the prevailing immunosuppressive conditions within the

tumour microenvironment (73). This approach utilises the body’s

immune system to specifically identify and destroy tumours. The

benefits of this therapeutic approach are that it causes minimal

damage to surrounding tissues and can induce immune memory,

thereby enabling the body to maintain its anti-tumour defences (74).

The current methods for achieving tumour immunity can be broadly

classified into three categories: immune checkpoint inhibitor, tumour

vaccines and adoptive cell transfer (75). As an adjuvant therapy, it has

been demonstrated that patients with advanced tumours derive benefit

from these therapies (76). Nevertheless, the effectiveness of

immunotherapy is constrained by the existence of numerous
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immune evasion pathways. Consequently, there is a pressing need for

the development of a reliable method to enhance immune function, in

order to address the shortcomings of current immunotherapy. As a

non-invasive physical technology, ultrasound has reinvigorated tumour

immunotherapy with its safety and efficacy. Ultrasound has the

potential to regulate tumour immune processes in a multitude of

ways (77). For instance, tumour fragments released in situ following

HIFU treatment can be conceptualised as antigens for the immune

system, which can be employed as an in-situ vaccine to stimulate a

systemic immune response. A number of clinical studies have also

demonstrated that patients after HIFU treatment exhibit enhanced

immune responses (78–81). Nevertheless, the capacity of ultrasound-

activated immunity to diminish tumour cells and diminish substantial

tumour masses is constrained, and the commencement of immunity

necessitates an interval of time. Consequently, the combination of

alternative methods for rapid tumour destruction and the utilisation

of the memory effect of immunity for tumour treatment not only

reduces the required therapeutic dose but also minimises the

potential for adverse effects, which is of clinical significance. At the

present time, ultrasound-assisted tumour immunotherapy is a rapidly

developing field of research. The next will introduce the latest

developments in the use of ultrasonic ablation to enhance tumour

immunotherapy, ultrasound combined with contrast agents for

tumour immunotherapy, and the use of sonodynamic therapy (SDT)

to achieve tumour immunotherapy.
3.1 Ultrasonic ablation

Ultrasonic ablation is a method of utilising the thermal or

mechanical effects of ultrasound to induce apoptosis and necrosis

of tumour cells, thereby reducing tumour volume and achieving

tumour treatment. It represents a significant avenue for patients

to pursue localised treatment (82). It has been demonstrated

that ultrasonic ablation can induce the upregulation of potent

innate immunity tools, namely HSP, which increase tumour

immunogenicity (83). Furthermore, it has been demonstrated that

cell debris and tumour-associated antigens released by ultrasonic

ablation can be recognised by the immune system, thereby activating

immunity (84). However, the majority of current ultrasonic ablation

applications were based on the thermal effects. Additionally, recent

studies have employed short bursts (lasting from microseconds to

milliseconds) at high pressures (>15 MPa) and with a low duty cycle

(<5%), a method known as histotripsy (85). This technique utilises

high-pressure ultrasonic pulses tomechanically separate and emulsify

tissue into a liquid, decellularised, homogeneous substance. The

liquefied tissue homogenate is fully absorbed by the body, resulting

in minimal residual fibrous tissue. Furthermore, the mechanical

ablation demonstrated greater DCs activation than thermal

ablation, suggesting that the histotripsy technique may represent a

promising approach for tumour ablation in conjunction with

immunotherapy (86, 87). The destructive capacity of ultrasound in

the context of tumour destruction is contingent upon the presence of

high acoustic pressure. However, it should be noted that ultrasound

attenuates during the sound beam penetration of thick tissue, and the
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acoustic window of ultrasound is affected by gas-bearing organs or

bone in the tissue. In order to address the issue of attenuation when

ultrasound penetrates substantial tissue, Tang’s group proposed the

utilisation of ultrasound needles as a solution (88). They utilised

modified ultrasound to target tumours for thermal ablation and

mechanical destruction, and combined this technique with anti-

PD-L1 antibody immunotherapy in a mouse tumour model. The

application of minimally invasive ultrasound needles not only

inhibited tumour growth through mechanical ablation, but also

increased the infiltration of CD8+ T cells in the tumour, alleviated

the immunosuppressed tumour microenvironment, induced the

systemic anti-tumour immune response, and enhanced the

therapeutic effect of anti-PD-1. The study posited that the

minimally invasive use of ultrasound may offer novel approaches

for the treatment of deep tumours.

It is noteworthy that tumours treated with mechanical ablation, as

opposed to thermal ablation, can be conceptualised as an immediate

antigen generating pool at the tumour site for utilisation by the

immune system (89, 90). The combination therapy using mechanical

ablation and immune checkpoint suppression has seen significant

development. Abe’s team found that mechanical ablation followed by

multiple anti-PD-L1 treatments could effectively activate the systemic

anti-tumour immune response and inhibited the growth of distal

tumours (91). Pepple’s study also detected strong immune-enhancing

responses in mouse melanoma and hepatocellular carcinoma models

after administration of anti-CTLA-4, followed by mechanical ablation

the next day, and two subsequent anti-CTLA-4 treatments (92).

Furthermore, the temporal parameters of antibody immunotherapy

in combination with recombination therapy exhibit variation, a factor

that may be associated with the divergent tumour immunogenicity and

immune microenvironmental characteristics observed (93, 94).
3.2 Combined with ultrasound-targeted
contrast agents

Microbubbles represent the oldest developed ultrasound-

responsive delivery materials as well as extensively as ultrasound

contrast agents (95). In the bloodstream, the microbubbles undergo

a series of oscillations, including steady expansion and contraction,

growth, and finally violent collapse, which is also known as inertial

cavitation (96). It is currently believed that the main mechanisms of

ultrasound-targeted microbubble destruction-mediated tumour

immunity are stable cavitation and Inertial cavitation (97, 98).

3.2.1 Stable cavitation (non-inertial cavitation)
Stable cavitation (also known as non-inertial cavitation) is

characterised by the repeated contraction and expansion of

microbubbles within a stable fluid environment (99). This process

induces a surrounding fluid flow. This microflow exerts shear stress

on the cell, resulting in transient permeability of the cell membrane

(i.e. acoustic perforation), which is conducive to the delivery of

loaded drugs such as immunoactive substances.

In addition to facilitating the delivery of immunotherapy

molecules, ultrasonically targeted microbubbles can also induce
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cell rupture when interacting with ultrasound, which can

subsequently elicit a series of biological effects. Dong and

colleagues devised a two-part therapeutic regimen (100). One

component was a phospholipid microvesicle (C@MBs) loaded

with CXC chemokine ligand 10 (CXCL10). The material was

capable of opening the blood-brain barrier and releasing CXCL10,

which in turn recruits CD8+ T cells and promotes their migration

and adhesion to tumour tissues when stimulated by 0.4 W/cm² at a

low frequency of ultrasound. The second component was the fusion

of a mature DCs membrane with a platelet-derived growth factor

(PDGF) and a phospholipid-based material containing interleukin-

2 (IL-2) and anti-programmed cell death 1 ligand 1 (aPD-L1),

designated IP@DCNBs. The release of IL-2 in response to 1.58 W/

cm² ultrasound irradiation was observed to reduce the depletion of

CD8⁺ T cells, while aPD-L1 was seen to enhance the activity of CD8⁺

T cells. This strategy employs low-frequency and high-frequency

ultrasound to facilitate the sequential delivery of glioblastoma and

achieve the “open-source throttling” effect on CD8⁺ T cells.

3.2.2 Inertial cavitation
Inertial cavitation exerts a greater pressure on microbubbles,

resulting in their collapse and the generation of stronger mechanical

forces. This leads to irreversible damage to cells and tissue

destruction. Tumour cell injury can result in the production of

cell debris and the release of antigens, while vascular tissue injury

can enhance antigen diffusion, thereby initiating a subsequent

immune response. This includes the induction of DCs to present

antigens and the maturation of T cells to upregulate immune

functions. It can be concluded, therefore, that inertial cavitation

plays a pivotal role in immune activation induced by ultrasound-

targeted microbubble destruction.

The team led by Wu employed perfluoropropane to generate

low-intensity focused ultrasound-responsive microbubbles (101). In

ultrasound conditions of 1 MHz, 3 W/cm², 50% duty cycle,

microbubbles were observed to inhibit tumour growth in mice

implanted with the 4T1 tumour cell line. This was achieved by

blocking blood perfusion and causing tumour cell damage. It has

also been demonstrated that ICD induced by cell injury leads to

immune activation. An analysis of immune cell populations and

cytokines at the tumour site has revealed a significant increase in the

proportion of mature DCs and cytotoxic T lymphocytes,

accompanied by elevated levels of both IL-12 and TNF-a in

serum. Furthermore, microbubbles have been shown to exert a

synergistic effect on tumour immunotherapy when combined with

anti-PD-L1 in tumour-bearing mice.

In a similar manner, nanobubbles with reduced dimensions

have the capacity to augment anti-tumour immunotherapy through

the utilisation of ultrasonic cavitation effects. The utilisation of

perfluoropentane as the gas core of nanovesicles in the preparation

of nanoparticles has been demonstrated to induce a novel form of

programmed necrosis, termed caspase-independent programmed

necrosis, in mouse tumour models through ultrasonic stimulation

(102). Furthermore, the combination of perfluoropentane with

immune checkpoint blocking has been shown to result in

complete regression of primary tumours. This formulation has
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been shown to have a favourable therapeutic effect on metastatic

tumours in a RIPK3-deficient CT-26 tumour-bearing mouse model,

thereby confirming the development potential of ultrasonic-assisted

immunotherapy in this field. In addition to nanobubbles, nano-

vesicles and nano-sized droplets have also made outstanding

contributions in this field. In Hu’ s study, ultrasound-responsive

nanovesicles, prepared with perfluoropropane, have been shown to

induce tumour cell necrosis through ultrasound-mediated

cavitation (103). In a mouse model, the combination of these

nanovesicles with anti-PD1 therapy resulted in enhanced systemic

anti-tumour immunity and immune memory, as well as a

prolonged inhibition of tumour growth and recurrence when

compared to the control group. In a study using nanodroplets,

lipid shells wrapped the structure of liquid nuclei to achieve the

gasification of droplets in specific parts of tumours to provide

cavitation nuclei, which were further broken under ultrasonic

stimulation to achieve tumour ablation and activate the immune

system (104). The immune-activating effects of this combination

were also demonstrated in a model of metastatic breast cancer

treated with anti-PD1. Ultrasound-targeted contrast agents with

nanometre size have been shown to achieve a cavitation effect

similar to that of traditional microbubbles (105). In comparison

with micron-sized carriers, nano-sized carriers were found to enter

tumour tissue through defective blood vessels via the EPR effect,

thereby inducing cavitation within the tumour and enhancing the

efficacy of immunotherapeutic interventions, particularly in cases of

deep-seated tumours (106, 107). Consequently, the utilisation of

nanosized ultrasound-targeted contrast agents is anticipated to

emerge as a pivotal research trajectory in the forthcoming years.

However, the application of ultrasound parameters of different

contrast agents is quite different and there is no unified standard,

which is also an important reason that limits the application of

ultrasound contrast agents in tumour immunotherapy. The

application parameters of new contrast agents are shown in Table 2.
3.3 Sonodynamic therapy

SDT employs ultrasound sensitizers (sonosensitizers) to stimulate

the production of active substances, primarily reactive oxygen species

(ROS), through ultrasound, thereby facilitating the treatment of

tumours (108). A concise illustration of SDT is presented in

Figure 2. The specific mechanism of ROS production is as follows:

the inertial cavitation of sonosensitising agents, induced by ultrasound,

causes the collapse of cavitation microbubbles, releasing a significant

amount of energy and mediating various sonochemical reactions to

generate ROS, including hydroxyl radicals, singlet oxygen and

superoxide anion. It has been demonstrated that ROS play a pivotal

role in a multitude of immune-related processes (109). Firstly, ROS can

induce ICD and the release of damage-associated molecular patterns

(DAMPs), including high mobility group box 1 protein (HMGB1),

adenosine triphosphate (ATP) and calreticulin (CRT). The maturation

of DCs and subsequent immune initiation will eventually result in the

transformation of T cells into toxic T cells, thereby achieving

tumour killing and long-term immune memory. Furthermore, ROS
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can reverse the tumour immunosuppressive microenvironment

by participating in the maturation of antigen-presenting cells (APCs)

and the transformation of anti-inflammatory M2 macrophages

into pro-inflammatory M1 macrophages (110, 111). A summary of

some of the recent SDT-based tumour immunotherapy options is

provided in Table 3.

Sonosensitizer is an important factor affecting the efficacy of SDT-

assisted immunotherapy. The commonly used sonosensitizers in the

current SDT mainly included are organic sonosensitizer, inorganic

sonosensitizer and organics/inorganics hybrid sonosensitizers.
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3.3.1 Organic sonosensitizer
Sonosensitizers of organic molecules can be classified into two

main groups: porphyrin derivatives and phthalocyanine. Porphyrin

derivatives are the most widely used of them.

The unbalanced REDOX microenvironment at the tumour site,

coupled with hypoxia and high reducibility conditions, often

impairs the efficiency of SDT in producing ROS. In recent years,

there has been a notable increase in interest in multi-functional

composite materials (130). In 2022, Yang et al. introduced

fluorinated covalent conjugated polymers (COPs) with

-5,10,15,20-tetrad (4-hydroxyphenyl) porphyrin (THPP) and

perfluorodecanoic acid (PFSEA) as crosslinking agents in acoustic

sensitizers (131). The synthesis of THPPF-COP resulted in a

material with high sonodynamic efficiency and load capacity for

the perfluorinated 15-crown-5-ether (PFCE) model molecule. The

application of ultrasound irradiation has been demonstrated to

improve blood and lymphatic circulation at the tumour site, thereby

alleviating hypoxia. Furthermore, the perfluorocarbon framework

provides conditions conducive to high oxygen load, which in turn

creates an optimal environment for SDT. The release of injury-

related molecular patterns and the occurrence of ICD were

confirmed by the detection of calreticulin on the cell surface. This

result was corroborated in CT26 tumour-bearing mice, and the

subsequent THPPF-COP combined with CD47-mediated immune

checkpoint blockade therapy demonstrated robust innate and

adaptive anti-tumour immune responses, effectively reversing

tumour immunosuppression.

Apoptosis is the primary mechanism of SDT inducing cell

death, with the production of ROS playing a crucial role (132).

Recently, research has revealed that ROS can also trigger a distinct

form of programmed cell death, termed pyroptosis (133).

Pyroptosis is a form of programmed cell death driven by
FIGURE 2

Schematic illustration of SDT and its induced immune effects.
TABLE 2 Application of ultrasound-targeted contrast agents with
tumour immunotherapy.

Contrast
agents

Parameters Ref

Microbubbles 300 W, 10 min on-off cycle
1) 0.4 W/cm2 for delivery

2) 1.58 W/cm2 for drug release

(100)

Microbubbles 1.0 MHz, 3 W/cm2,
50% duty cycle

(101)

Nanobubbles 1 Hz, 30 W,
20% duty cycle

(102)

Nanobubbles 1.0 MHz, 1 W/cm2 (103)

Nanodroplet 1) activated at a centre frequency of 3.5 MHz and an
MI of 1.84 (PNP of 3.4 MPa)

2) Vesicle bursting at low frequency application at a
centre frequency of 105 kHz and
an MI of 0.9 (PNP of 290 kPa)

(104)

Nanodroplet 0.65 MHz, 2W/cm2,
50% duty cycle

(105)

Nanobubbles 1.0 MHz, 1.5 W/cm2,
50% duty cycle

(107)
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inflammatory bodies. It can release more DAMPs and pro-

inflammatory factors, which can trigger a stronger immune

response than apoptosis. Therefore, inducing pyroptosis may be a

more advantageous approach in tumour immunotherapy. Wang

and colleagues devised a pyrogenic amplifier comprising the

organic acoustic sensitizer chlorine e6 (Ce6), which was coupled

to copper tannic acid (CuTA) nanoneedles via an amide bond (125).

They found that ultrasonic stimulation could induce Ce6 to release

a substantial quantity of singlet oxygen, and CuTA nanoneedles

exhibited quadruple enzyme-like activity in response to the tumour
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microenvironment, thereby exacerbating the REDOX imbalance

within the microenvironment. The experimental results

demonstrated that the ultrasound-enhanced ROS storm elevated

the polarization ratio of M1-type macrophages and effectively

induced the maturation of DCs and the subsequent differentiation

of killer T cells, thereby enhancing the overall efficacy

of immunotherapy.
3.3.2 Inorganic sonosensitizer
Some nanomaterials, comprising inorganic compounds such as

noble metal nanoparticles, transition metal oxides and carbon-

based nanomaterials, have the capacity to generate reactive

oxygen species under ultrasonic stimulation, functioning as

sonosensitizers (117). The chemical properties of these inorganic

compounds are stable and resistant to photobleaching. In addition,

inorganic compounds can be employed as nuclear points to

facilitate the generation of ultrasonic microbubbles and augment

the cavitation effect.

Hong’s team designed coreshell Fe3O4@TiO2 nanoparticles

loaded with VISTA monoclonal antibody (FTV) to target

pancreatic ductal adenocarcinoma (PDAC), a checkpoint that

plays a role in immune escape from VISTA (126). Given that

titanium nanomaterials with a large cavity structure and high

specific surface area possess a greater number of catalytic sites,

FTV exhibits superior SDT performance compared to commercial

TiO₂ (P25) under ultrasonic stimulation. The immunogenic death

of cells induced by FTV in both in vitro and in vivo therapeutic

experiments resulted in the release of a pattern of injury-associated

molecules that subsequently triggered an anti-tumour immune

response in T lymphocytes. Furthermore, the high penetration of

ultrasound is an inherent advantage in the treatment of PDAC,

given its deep location. The in vivo treatment experiment

demonstrated that the fibrostitium of the ultrasound combined

with the FTV group was significantly loosened, accompanied by an

increase in blood vessel density. This resulted in an enhanced

delivery of FTV in PDCA, increased accumulation of drugs, and a

notable improvement in the efficacy of tumour immunotherapy.

Similarly, the utilisation of inorganic acoustic sensitizers can also

facilitate pyroptosis of cells, thereby promoting tumour

immunotherapy. Sun and his colleagues devised a novel fluorine-

containing titanium oxide acoustic sensitising agent, designated as

TiO2-xFx (127). The introduction of F atoms into TiO₂ reduces the

adsorption properties of the latter to oxygen and water, thereby

facilitating the occurrence of acoustic catalytic reactions.

Concurrently, the substitution of fluorine for oxygen increases the

oxygen vacancy of the acoustic sensitising agent, reduces the band

gap and enhances the SDT performance of titanium oxide. In vitro

and in vivo anti-tumour experiments have demonstrated that TiO2-

xFx is capable of releasing a substantial quantity of ROS in response to

ultrasonic stimulation. ROS, in excess, can directly destroy tumour

cells and also activate caspase family proteins to induce pyroptosis,

reverse immunosuppression and initiate an immune response.

Furthermore, pyroptosis has the capacity to engender a robust

immune memory effect, thereby preventing tumour recurrence.
TABLE 3 Application of SDT-based tumour immunotherapy.

Category Sonosensitizer Parameters Ref

Inorganic Gold nanoparticles 1 MHz (112)

Organic Hematoporphyrin 650 kHz, 0.5 W/cm2 (113)

Inorganic Oxygendeficient
MoOx (ODM)

1 MHz, 1.5 W/cm2,
50% duty cycle

(114)

Organic Exosome-inhibiting
polymeric

sonosensitizer (EIPS)

1 MHz, 1.2 W/cm2,
50% duty cycle,

(115)

Organic Chlorin e6 (Ce6) 1 MHz, 2 W/cm2,
20% duty cycle

(116)

Inorganic Schottky heterojunctions
containing Sb

component (Sb2Se3@Pt)

30 kHz, 3.0 W/cm2 (117)

MOF Iron-based covalent organic
framed nanoadjuvant

doped with curcumin and
platinum (CFCP)

1 MHZ, 1 W/cm2,
50% duty cycle

(118)

Inorganic Titanium diselenide
(TiSe2) nanosheets

1 MHz, 0.5 W/cm2,
50% duty rate,

(119)

Organic Protoporphyrin IX (PpIX) 1 MHz, 1.4 W/cm2 (120)

Inorganic Tin monosulfide
nanoparticles (SnSNPs)

1 MHz, 1 W/cm2,
50% duty cycle

(121)

Organic Indocyanine green
derivatives (IDs)

3.0 MHz, 1.5 W/cm2,
50% duty cycle

(122)

Inorganic Fe-doped TiO2 nanodots
(Fe-TiO2 NDs)

40 kHz, 3 W/cm2,
33% duty cycle

(123)

Inorganic Defect-rich MOF(Ti)
(D-MOF(Ti))

1.0 MHz, 50%
duty cycle

(124)

Organic THPP 40 kHz, 2 W (131)

Organic Chlorine e6 (Ce6) 1 MHz, 1.5 W/cm2,
50% duty cycle

(125)

Inorganic Fe3O4@TiO2 1 MHz, 1.5 W/cm2,
50% duty cycle

(126)

Inorganic Fluorinated titanium oxide
(TiO2−xFx)

30 kHz, 3 W/cm2,
50% duty cycle,

(127)

MOF Mn-porphyrin-based MOF 40 kHz, 1 W/cm2 (128)

MOF TPP-conjugated porphyrin-
based nMOFs

(Zr-TCPP(TPP))

1 MHz, 1 W/cm2,
50% duty cycle

(129)
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3.3.3 Organics/inorganics hybrid sonosensitizers
Despite the excellent acoustic dynamic effect of organic

molecular sonosensitizers, the majority of these macromolecules

are hydrophobic and prone to aggregation in solution, resulting in a

sel f -quenching phenomenon. Furthermore , inorganic

sonosensitizers may present biosafety concerns due to their

inability to be degraded in vivo (134). In order to address the

limitations of both organic and inorganic sonosensitizers, hybrid

sonosensitizers, which combine the properties of both, have been

developed. Organic/inorganic hybrid sonosensitizers encompass a

range of materials, including those with a mesoporous structure,

yolk shell, metal porphyrin, and metal-organic framework (MOF)

composition (135). Among these, MOF have emerged

as a particularly promising area of research. Among the

aforementioned materials, those belonging to the category of

MOF nanomaterials are particularly noteworthy. From one

perspective, organic ligands in MOFs have the capacity to absorb

ultrasound, thereby activating metal ions/clusters through a charge

transfer mechanism that links the body to the metal. This

mechanism facilitates the separation of electrons and holes and

enhances the generation of ROS in comparison to organic or

inorganic sonosensitizers. Conversely, the porous structure of

MOFs provides a periodic array that minimises self-quenching to

a minimum volume and allows for rapid ROS diffusion, thereby

increasing ROS generation efficiency. Furthermore, MOFs possess

the attributes of a large surface area, high porosity, and facile

modification, which enable the loading of diverse anticancer

drugs and the integration of SDT with other tumour therapies,

thus enhancing its efficacy (136–139).

To address the limitations of the organic, acoustically sensitive

porphyrin, Lu and his colleagues devised a strategy wherein an Mn-

porphyrin-based MOF was loaded with the immune adjuvant R848

within the porous structure of the MOF (125). This was followed by

the coating of the surface with an AuPt shell through reduction and

the subsequent coating of the surface with modified Hep1–6

tumour cell vesicles. In response to ultrasonic stimulation, MOF

acoustic sensitizers released a substantial quantity of ROS, which

induce ICD in a collaborative manner with the immune adjuvant

R848, thereby triggering a highly efficacious immune response.

Concurrently, MOF-mediated SDT facilitated the catalysis of

AuPt shell-mediated catalytic convertor-based therapy. In

addition to enhancing the targeting of tumour cells with a similar

genetic make-up, the outermost tumour cell membrane also

enhanced the cross-presentation of tumour antigen MHC-I/II by

DCs. In vivo experiments demonstrate that the MOF material is

capable of inducing a systemic immune response and long-term

memory immunity, and of eradicating both primary and distal

tumours, thereby fulfilling the function of a vaccine.

The product of the SDT is ROS. In cells, mitochondria play a

pivotal role in ROS production and apoptosis control. The targeted

induction of apoptosis may be achieved with greater efficacy by

inducing SDT in mitochondria. Luo’s team employed the

mitochondrial targeting properties of triphenylphosphine, which

they coupled with a meso-tetra(4-carboxyphenyl)porphine

(H2TCPP) acoustic sensitised agent, utilising it as an organic
Frontiers in Immunology 09
ligand of MOF (126). A metal complex of Zr was formed with

the organic ligand, resulting in the synthesis of an MOF that was

loaded with the immune adjuvant imiquimod (R837). In order to

achieve homologous targeting, the final material was formulated

with a 4T1 cell membrane. The highly effective SDT of MOFs

induces the in situ release of tumour-associated antigens, which

results in a stronger vaccine-like activity and a robust immune

response when combined with immunoadjuvants.
4 Conclusion

The use of ultrasound in clinical care has increased significantly

in recent years due to the non-invasive and highly penetrating

nature of this technology (140). In the context of tumour therapy,

ultrasound has the potential to serve not only as a direct ablation

method for tumour tissue, but also as an immune system activator

(141–143). This is achieved by the destruction of tumour-associated

antigens released following tumour destruction. Moreover, through

the use of cavitation ultrasound, the blood-brain barrier or vascular

tumour barrier can be transiently opened, facilitating precise and

effective drug delivery and thus enhancing the efficacy of tumour

immunotherapy (144, 145). Another area of intense research in the

field of ultrasound-assisted tumour immunotherapy is SDT, which

involves the induction of immunogenic death and the initiation of

an immune response through the mass release of ROS from

sensitizers upon sonication. Ultrasound-assisted immunotherapy

shows great promise in treating malignant tumour. However, the

application of ultrasound in immunotherapy is still confronted with

significant challenges. Firstly, in the SDT-induced ROS product,

molecular oxygen in the tissues an important catalyst. Tumour cells

grow in a hypoxia microenvironment (146), indicating that hypoxia

condition in tumour microenvironment is one of the challenges

limiting the production efficiency of ROS upon SDT. Therefore,

alleviating hypoxia in the tumour tissues are a promising strategy in

enhancing the efficacy of SDT. Jiang et al. demonstrated that on-

demand oxygen delivery to the tumour site could enhance SDT-

related tumour immunotherapy by inhibiting both primary and

distal tumour growth (147). Additionally, the SDT-induced ROS as

a stress can result in the accumulation of reducing substances such

as glutathione (GSH) in the tumour tissues to possibly weaken the

SDT efficacy. Tian and their colleagues found that GSH inhibitors

significantly increased the immunogenic death of tumour cells by

SDT (148). These results have demonstrated that the further

improvements of TEM, especially hypoxia and redox state, have

huge potentials in improving the SDT-assisted immunotherapy on

tumours. Secondly, the development of a safe and highly efficient

sonosensitizers is still a hotspot to achieve SDT-related tumour

immunotherapy. Although the different types of sonosensitizers

including organic sonosensitizer, inorganic sonosensitizer and

organics/inorganics hybrid sonosensitizers have been widely

studied and developed, currently the majority of sonosensitizers

are developed based on photosensitizers as prototypes, and there are

few established guidelines for the development of efficacious, safe

and reliable sonosensitizers (149). Their hydrophobicity and poor
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targeting are also challenges. Along with the rapid advance of

intelligent and responsive nanoscale in addressing the targeting,

efficacy and hydrophobicity of drugs, the development of targeted,

smart and responsive nanosonosensitizers will be a promising

future direction in the field of SDT-assisted immunotherapy (150).

Moreover, the optimal setting of ultrasound parameters should

be reckoned with in performing ul trasound-ass is ted

immunotherapy on tumours. The parameters of ultrasound

determine the effect of thermal or mechanical action. In practical

applications, both effects often occur simultaneously. Therefore,

further research is required to determine the optimal parameters for

immune activation, with a particular focus on the underlying

mechanisms of ultrasound. Furthermore, although the long-term

clinical application of ultrasound has demonstrated its excellent

safety profile, the current basic and clinical research on ultrasonic

parameters lack a unified standard. It is therefore essential to

conduct further research into the intrinsic characteristics of

ultrasound parameters and identify the factors that influence

them. This will enable the gradual establishment of a scientific,

reasonable and widely accepted standard system, providing a more

robust theoretical basis and scientific evidence for the clinical

application of ultrasound technology. As a result of the increasing

depth and breadth of research into SDT, it is anticipated that these

studies will facilitate the imminent transition of ultrasound-assisted

tumour immunotherapy into clinical practice.
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