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Chronic endometritis (CE) is an inflammatory disease of the uterus that is

associated with infertility and poor reproductive outcomes. Although most

cases of CE are attributed to bacterial infections, antibiotic treatment is

sometimes ineffective, and the mechanisms underlying the development and

persistence of inflammation in CE are poorly understood. In the present study,

we established a novel mouse model of CE that causes fetal death without

affecting implantation and demonstrated that dysregulation of lipid metabolism

contributes to its pathology. A deficiency in SREBP1, a key regulator of lipid

metabolism, prolonged endometrial inflammation with CD138+ plasma cell

accumulation and induced miscarriage in LPS-induced endometritis, thereby

mimicking CE. Lipidomic analyses showed that Srebf1 deficiency significantly

reduced phospholipids containing eicosapentaenoic acid (EPA) within uterine

tissue. Dietary supplementation of EPA increased endometrial levels of EPA-

containing phospholipids and ameliorated inflammation and miscarriage in

Srebf1-/- CE mice. These results suggest that dysregulation of lipid metabolism,

particularly reductions in polyunsaturated fatty acids in endometrial

phospholipids, promotes inflammation and miscarriage in CE. Importantly,

EPA-containing phospholipids were also decreased in endometrial tissue from

human CE patients. Thus, dysregulated lipid metabolism appears to play a pivotal

role in the development of CE and provides novel therapeutic targets.
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Introduction

Chronic endometritis (CE) is a prolonged mild inflammation of

the endometrium characterized by the presence of edema; increased

numbers of stromal cells, particularly infiltrated plasma cells; and

dissociation between maturation of epithelial cells and stromal

fibroblasts (1, 2). Whereas in the normal endometrium, a small

number of immune cells are located at exclusively at the basal layer,

in CE a large population of plasma cells are present in both the basal

layer and glandular epithelium. Although in most cases patients with

CE are asymptomatic or have only mild symptoms (3), it has attracted

attention due to its association with unexplained infertility, recurrent

miscarriage and poor outcomes in assisted reproductive technology.

For instance, rates of both pregnancy and live birth are reportedly lower

in the patients with persistent endometrial inflammation than in those

without inflammation (pregnancy rate 65% vs 33%, live birth rate 61%

vs 13%) (4). Chronic endometritis (CE) has been reported in 30–57%

of infertile women with recurrent implantation failure (RIF), indicating

a high prevalence among individuals with impaired endometrial

receptivity (4). Furthermore, accumulating epidemiologic evidence

suggests that CE plays a role in the pathogenesis of recurrent

pregnancy loss (RPL), with a significantly higher prevalence of CE

reported in women with unexplained RPL, ranging from 10% to over

50%, compared with fertile controls (5). Several pathophysiological

mechanisms have been proposed to explain the association between CE

and RPL, including impaired decidualization, disruption of immune

tolerance, and abnormalities in the endometrial microbiota (6, 7).

Notably, the abnormal activation of immune cells and excessive

production of pro-inflammatory cytokines may compromise the

immune tolerance essential for pregnancy maintenance, thereby

impairing post-implantation embryonic development and increasing

the risk of miscarriage (5) (8). However, the mechanisms underlying

persistent inflammation in the endometrium are poorly understood,

given the tissue’s continuous remodeling through the cell proliferation

and differentiation and shedding (i.e., menstruation) during each

menstrual cycle. The mechanism by which persistent inflammation

impairs implantation and pregnancy is also largely unknown.

Although CE can be associated with the presence of intrauterine

devices as well as structural pathology within the endometrial cavity,

including submucous myomas and polyps (2), most cases of CE are

attributed, at least initially, to bacterial infections, which makes broad-

spectrum antibiotics, such as doxycycline, the first line of treatment (9).

However, inflammation persists in approximately 25% of CE patients,

even after repeated administration of up to three different types of

antibiotics (4). Moreover, recent studies have shown that the uterus is

not a sterile cavity and may harbor a unique microbiota (10). As such,

the presence of bacteria is not necessarily the cause or the persistent

mechanism of this disease. There is also growing concern over the

emergence of antibiotic-resistant bacteria due to the prolonged use of

broad-spectrum antibacterial drugs (11). Consequently, there is an

urgent need to elucidate the mechanisms that lead to the persistent

unresolved inflammation characteristic of CE and to develop novel

treatment strategies to treat it.

Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated

fatty acid (PUFA) found in fish oils and has potent anti-
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inflammatory properties (12). Low serum EPA/arachidonic acid

levels are reportedly associated with an increased risk for

cardiovascular disease (13), and oral EPA has been shown to

reduce cardiovascular risk and to lower both C-reactive protein

(CRP) and low-density lipoprotein (LDL) levels (14, 15). The

mechanism underlying the anti-inflammatory action of EPA

appears to be multifaceted and is not fully understood, though

EPA metabolites, including specialized lipid mediators such as

resolvins and protectins, have been shown to have anti-

inflammatory potential (16, 17). Recent studies also suggest that

EPA may increase the fluidity of cell membranes by being

incorporated into phospholipids, thereby altering cellular function

and making cells less susceptible to inflammation, perhaps through

modulation of cellular signaling events and membrane protein

function (18, 19). The composition of fatty acids in membrane

phospholipids varies among organs, with PUFAs being particularly

abundant in reproductive organs (20, 21). Interestingly, adherence

to a “Mediterranean diet,” which is rich in w-3 PUFAs such as EPA

and docosahexaenoic acid (DHA), is associated with a higher

likelihood of achieving clinical pregnancy and live birth in

women over 35 years of age at the first in vitro fertilization (22).

Sterol regulatory element-binding protein 1 (SREBP1) is a key

transcription factor that regulates lipid metabolism. SREBP1 is also

involved in the regulation of inflammatory responses of immune

cells, particularly macrophages and T lymphocytes (23–25). We

previously showed that SREBP1 drives fatty acid elongation and

desaturation, promoting synthesis of PUFAs in macrophages (24).

Moreover, Srebf1-/- macrophages exhibited enhanced and

prolonged inflammatory responses following pro-inflammatory

TLR4 stimulation (24, 26), while Srebf1-/- mice exhibited

exaggerated and prolonged inflammation in a sepsis model. The

enhanced inflammatory responses in Srebf1-/- mice were

ameliorated by supplementation of exogenous EPA (24),

suggesting that SREBP1 controls inflammatory responses in part

by regulating fatty acid metabolism.

In the present study, we found that a lack of Srebf1 exacerbates

inflammation and reduces live births in a novel mouse model of CE.

Srebf1 deficiency strongly affected fatty acid species, including

PUFAs, and EPA supplementation ameliorated inflammation and

miscarriage in Srebf1-/- mice. In addition, lipidomics analysis

revealed that levels of EPA-containing phospholipids were

decreased in endometrial tissues from CE patients, suggesting that

a decrease in the EPA content of the endometrium may contribute

to human CE pathology.
Results

Establishment of a mouse model of LPS-
induced endometritis

With the goal of recapitulating the characteristics of human CE

pathology, we first established a mouse model of uterine

inflammation. To induce uterine inflammation, we administered

lipopolysaccharide (LPS, 10 mg/unilateral uterine horn) or saline
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into the uterus through laparotomy in 8-week-old female mice.

Endometrial tissue was then collected and subjected to the

histological examination, including hematoxylin-eosin (H-E)

staining and immunohistochemical staining for CD45, a pan-

leukocyte marker, and CD138, a plasma cell marker. The

presence of CD138+ plasma cells in the subepithelial stromal

region is one of the diagnostic criteria for CE in humans (1, 27).

No CD138+ cells were observed within uninflamed tissues

(Supplementary Figure 1). One day after intrauterine LPS

administration, CD45+ mononuclear cells had accumulated in the

subepithelial stromal region of the endometrium, which supports

the idea that LPS induced endometrial inflammation (Figures 1A,

B). Administration of PBS also modestly increased the number of

CD45+ cells, particularly at later time points, likely due to the

surgical intervention. Notably, PBS administration did not trigger

an acute accumulation of CD45+ cells on day 1. By contrast, a clear

increase in CD45+ cells was observed in the LPS-treated mice across

all the observed time points. In the LPS-treated mice, the number of

CD138+ plasma cells, located primarily in the stromal region of the

endometrium, peaked on day 3 and gradually decreased thereafter

(Figures 1A, C). These results suggest that LPS injection induces an

acute inflammatory response in the endometrium, followed by the

accumulation of plasma cells on day 3. Although the plasma cell

count tended to decrease, it remained elevated on days 5 and 7,

indicating persistent inflammation.

To further investigate the effect of LPS injection, we performed

bulk RNA sequencing (RNA-seq) of whole uterine tissues on day 7.

Gene set enrichment analysis (GSEA) of the Molecular Signatures

Database (MSigDB) hallmark gene sets using GSEApy (28–30)

showed significant downregulation of gene sets related to fatty

acid metabolism in the LPS-treated group as compared to the

control group (Figure 1D), suggesting lipid metabolism was

modulated in the endometritis tissues. The analysis also showed

the upregulation of gene ontology (GO) terms that included

“epithelial-mesenchymal transition” and “inflammatory response,”

which suggests increased inflammation and remodeling.
Srebf1 deficiency exaggerates and sustains
LPS-induced endometritis

The finding of altered expression of genes related to lipid

metabolism in the inflamed endometrium prompted us to

investigate the involvement of SREBP1, a key transcription factor

controlling the de novo biosynthesis of fatty acids including PUFAs,

using Srebf1-deficient mice (Srebf1-/-). Because regular mouse chow

contains a high level of PUFAs (50% of the 4.6 g of fat per 100 g of

chow are PUFAs, mainly derived from fish meal; the rest are

monounsaturated (29%) and saturated (21%) fatty acids (31)), we

changed it to fish meal-free chow 7 days prior to LPS administration

to minimize the effect of exogenous w3 PUFAs (Figure 2A), which

would allow a more precise evaluation of SREBP-1-dependent

endogenous w3 PUFA metabolism. Eight-week-old female

Srebf1-/- and WT mice were administered intrauterine LPS or

saline, and uterine tissues were collected 7 days post-injection
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(Figure 2A). Whereas tissues from both WT and Srebf1-/- mice

showed similar levels of CD45+ mononuclear cell accumulation

(Figures 2B, C), CD138+ plasma cell counts were significantly

higher in the subepithelial stromal regions in Srebf1-/- mice

(Figures 2B, D).

To characterize the effect of Srebf1 deficiency on the

endometrial inflammation, we performed bulk RNA-seq of WT

and Srebpf1-/- uterine tissues on day 7 after LPS administration.

GSEA of MSigDB hallmark gene sets showed that inflammatory

response-related gene sets, including tumor necrosis factor-alpha

(TNFa) signaling via NF-kB, inflammatory responses, interleukin

(IL)-6/Janus kinase/signal transducers and activators of

transcription 3 (JAK/STAT3) signaling, and interferon responses,

were upregulated in uterine tissue from Srebf1-/- mice (Figure 2E).

These transcriptome changes and the persistent accumulation of

CD138+ plasma cells on day 7 (Figure 2B) suggests sustained

inflammation in Srebp1-/- mice, which mimics the pathological

findings in human CE patients.
Fatty acid metabolism is dysregulated in
the endometrium of Srebf1-/- mice

Given our earlier findings that Srebf1 deletion decreases PUFA

levels in skeletal muscle and in macrophages associated with

exacerbated inflammation (31), we speculated that altered fatty

acid composition may contribute to the prolonged and exacerbated

endometritis observed in Srebf1-/- mice. To address that possibility,

uterine tissues were collected fromWT or Srebf1-/- mice 7 days post

LPS administration, after which total lipids were extracted and

subjected to the quantitative analysis of fatty acids using liquid

chromatography-tandem mass spectrometry (LC-MS/MS). Under

the control (saline-treated) conditions, the abundances of major

fatty acids, including C16:0 (palmitic acid), C18:0 (stearic acid),

C16:1 (palmitoleic acid), C18:1 (oleic acid), C20:4 (arachidonic acid,

AA), C20:5 (EPA) and C22:6 (DHA), were all reduced in the uterine

tissues of Srebf1-/- as compared to WT mice (Figure 2F). In the WT

mice, LPS treatment increased levels of several PUFAs, including

C18:2 (linoleic acid), C20:4 (AA), C20:5 (EPA), and C22:6 (DHA),

whereas it decreased levels of saturated and monounsaturated fatty

acids, including C16:0, C18:0, C16:1 and C18:1 (Figure 2F). The

shift toward PUFAs over saturated and monounsaturated fatty

acids is consistent with previously observed changes in lipid

metabolism during the resolution and reparative phases of

inflammation after injury (17, 31, 32). In Srebf1-/- mice, those

changes in the levels of fatty acids were greatly attenuated. In

particular, the upregulation of PUFAs was not observed, and the

levels of PUFAs remained lower than in WT tissues (Figure 2F).
Srebf1 deficiency increases intrauterine
fetal death and resorbed embryo in CE

Given that CE is a strong risk factor for infertility, recurrent

miscarriage and pregnancy complications in humans (8, 33), we
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FIGURE 1

Establishment of a mouse chronic endometritis model. (A) Histological images of uteri from C57BL/6 (WT) mice collected on days 1, 3, 5 and 7 after
intrauterine administration of saline or LPS (representative images). Mice were fed with fish meal-free chow diet for 7 days prior to saline or LPS
administration. Shown are representative H-E-stained sections and immunostained for CD45 (blue) and CD138 (red). Scale bars: 50 µm. Yellow
arrowheads on CD138-immunostained sections show plasma cells; magnified images are in the upper left. Scale bars: 10 µm. n=6 mice in each
condition. (B, C) CD45-positive areas (B) and the plasma cell counts (C) in the endometrial stromal area of uteri collected on days 1, 3, 5 and 7 after
intrauterine LPS administration. Data are presented as means ± SEM. Significance was determined using Student’s t-tests. *p<0.05, **p < 0.01; ns,
not significant. n = 4–11 mice /experimental condition. Two sections were made from each side of the bicornuate uterus per mouse. Measured
were the CD45-positive areas and the CD138-positive cell counts in the subepithelial stromal region of the endometrium surrounding the uterine
lumen in each specimen. (D) MSigDB Hallmark gene sets enriched in tissues treated with LPS (FDR < 0.20) as compared to saline treatment. NES,
normalized enrichment score.
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next investigated the impact of endometritis and Srebf1 deletion on

fertility. Both male and female Srebf1-/- mice are fertile, and litter

sizes (determined at 19.5-20.5 dpc (days post coitum)) were

comparable between WT and Srebf1-/- mice when fed a fish meal-
Frontiers in Immunology 05
free diet (Supplementary Figure 2). The mean weights of the

offspring were also similar between the genotypes (1.3 ± 0.1 g in

WT, n = 5; 1.3 ± 0.1 g in Srebf1-/-, n = 6; p = 0.92), which is in

agreement with an earlier report (34).
FIGURE 2

Systemic deletion of SREBP1 exacerbates and prolongs endometrial inflammation. (A) Schematic diagram of the LPS or saline administration used to
analyze chronic endometritis in mice. (B) H-E-staining and immunostaining for CD45 (blue) and CD138 (red) in uteri collected from WT and Srebf1-/-

mice 7 days after saline or LPS injection (scale bars: 50 µm). Yellow arrowheads on images immunostained for CD138 show plasma cells; magnified
images are in the upper left (scale bars: 10 µm). (C, D) CD45-positive areas (C) and plasma cell counts (D) in the endometrial stromal area of uteri
collected from WT and Srebf1-/- mice on day 7 after LPS administration. Mice were fed a fish meal-free diet. Data are presented as means ± SEM,
and significance was determined using Student’s t-tests. **p<0.01, ns; not significant. n = 4–5 for each experimental condition. Two sections were
made from each side of the bicornuate uterus per mouse. Measured were CD45-positive areas and CD138-positive cell counts in the subepithelial
stromal region of the endometrium surrounding the uterine lumen in each specimen. (E) MSigDB Hallmark gene sets differentially expressed in
uterine tissue from female WT and Srebf1-/- mice on day 7 after intrauterine administration of LPS (FDR < 0.20). NES, normalized enrichment score.
(F) Lipidomics analysis showing fatty acid levels. Uterine tissues were collected from female WT and Srebf1-/- mice on day 7 after intrauterine
administration of NS or LPS (n=6 mice/experimental condition). The mean and standard deviation of the signal intensities for each fatty acid species
were used to calculate the z-score for each fatty acid species. Minimum (blue) and maximum (red) z-scores were determined for each fatty acid
species, and a heat map was created based on the z-score. The numbers shown on the heat map represent the average signal intensities for each
fatty acid species.
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To study the effect of endometrial inflammation on fertility,

female Srebf1-/- and WT mice were administrated intrauterine LPS

or saline 7 days prior to mating with WT male mice (Figure 3A).

When mice were treated with saline, litter size and average offspring

weight were comparable between the genotypes (Figure 3B).

However, after LPS administration, whereas WT mice had

average of 6.5 ± 0.9 offspring 19.5-20.5 dpc, Srebf1-/- mice had

none (Figure 3B). At 16.5 dpc, the uteri of WT mice contained

healthy offspring with a bright red appearance. In sharp contrast,

the uteri of Srebf1-/- mice appeared dark red with accompanying

intrauterine fetal death and hematoma formation (red arrowhead;

Figure 3C). We also evaluated pregnancy loss by examining the

uteri at 16.5 dpc (Figure 3D). Pregnancy loss was defined as the sum

of miscarriages during early pregnancy, indicated by a resorbed

embryo (blue arrowhead), and intrauterine fetal death during late

pregnancy (red arrowhead; Figure 3C) (35, 36). In the saline-

administered group, the prevalence of pregnancy loss was

comparable between the two genotypes. However, in the LPS-

administered group, although successful implantation was

observed, the prevalence of pregnancy loss was significantly

higher in Srebf1-/- than WT mice (Figure 3D).

Placental hypoplasia and impaired vascularization causes

intrauterine fetal death in both humans and mice. Histologically,

the miscarried placenta of Srebf1-/- mice displayed thinning of the

placental parenchyma at 16.5 dpc, indicating significant placental

hypoplasia (Figure 3E). Although no accumulation of CD45+

mononuclear cells was evident, immunostaining for CD31

revealed a significant reduction in the CD31+ capillary area in

placentas from Srebf1-/- mice as compared to WT mice (Figures 3F,

G). These findings suggest that placental hypoplasia with deficient

vascularization contributed to the increased intrauterine fetal death

during late pregnancy, which in turn contributed to the pregnancy

loss in the mice.
EPA ameliorates inflammation and
miscarriage in Srebf1-/- mice

Given that Srebf1 deficiency reduces PUFAs in endometritis

tissues and that abnormal PUFA metabolism may contribute to the

observed inflammation and placental abnormality and pregnancy

loss (Figures 2, 3), we investigated the effects of dietary EPA

supplementation. Mice were fed either a control (fish meal-free)

or a 5% EPA-enriched diet for 7 days, followed by the intrauterine

LPS injection. Uterine tissue was then collected on day 7 post

injection and subjected to histological analysis. H-E staining

revealed no significant differences between the two groups.

However, feeding of the EPA-rich diet led to reduced

accumulation of CD45+ mononuclear cells and CD138+ plasma

cells in the subepithelial stromal regions of endometria from both

WT and Srebf1-/-mice (Figures 4A–C). Notably, CD138+ cell counts

in Srebf1-/- mice on the EPA diet were decreased to levels

comparable to those in WT mice on the control diet (Figures 4A–

4C). Moreover, litter sizes were increased and pregnancy losses were

reduced in Srebf1-/-mice fed the EPA-rich diet (Figures 4D–F). EPA
Frontiers in Immunology 06
supplementation also prevented the placental thinning induced by

LPS and increased CD31+ capillary area (Figures 4G, H). Litter size

and the number of pregnancy losses were not changed by EPA

administration, and the vascular area of the placenta determined by

the CD31 immunostaining was not significantly increased by EPA

administration, suggesting that the beneficial effects of EPA

supplementation on pregnancy outcome and placenta were not

evident in the WT mice (Figures 4D-H). Taken together, these

findings indicate an EPA-rich diet ameliorates the sustained

intrauterine inflammation and increases litter size in Srebf1-/- mice.
EPA diet modulates the phospholipid
composition of uterine endometrium

Because we previously showed that diet supplementation with

EPA alters the composition of phospholipids in macrophages (31),

we assessed the levels of EPA (C20:5) and DHA (C22:6) in uterine

tissues from WT and Srebp1-/- mice on day 7 following LPS

treatment. The EPA-rich diet increased free EPA levels,

irrespective of genotype or treatment. On the contrary, DHA

levels were decreased by the EPA-rich diet in WT mice and

tended to be decreased in Srebp1-/- mice (Figure 5A). We then

analyzed the fatty acid composition of phospholipids, focusing on

phosphatidylcholine (PC) and phosphatidylethanolamine (PE),

which are the major phospholipid species in mouse endometrium

(37). We found that EPA supplementation significantly increased

the amounts of PC and PE species containing EPA (C20:5) at the

sn-2 position in both WT and Srebf1-/- mice (Figures 5B, C), which

suggests phospholipid remodeling. On the other hand, the levels of

PC and PE containing DHA (C22:6) tended to be decreased or

unchanged (Figures 5B, C).
Phospholipids containing EPA are
decreased in endometrium tissue from
patients with CE

Finally, we asked whether altered uterine phospholipid content

may also be associated with the pathogenesis of CE in humans. To

address that question, we performed lipidomic analysis of

endometrial biopsy samples from 11 women who experienced

either recurrent implantation failure (RIF) or recurrent pregnancy

loss (PRL). The endometrial biopsy was performed during the

implantation period, 5–7 days after ovulation. Among those

patients, 5 met the diagnostic criteria for CE (i.e., detection of

CD138+ cells in the stromal region of an endometrial sample

obtained through biopsy), while the other 6 patients did not

(Supplementary Table). All of the patients were of Asian descent,

with a mean age of 37.2 years, and none had a history of childbirth

or previous antibiotic treatment for CE. While the total free EPA

levels did not differ between CE and non-CE patients (Figure 6A),

the levels of major EPA-containing phospholipid species, including

PC 16:0-20:5, and PE 16:0-20:5, 18:0-20:5, and 18:1-20:5, were

significantly lower in CE patients compared to non-CE patients
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1547949
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Matsuda et al. 10.3389/fimmu.2025.1547949
FIGURE 3

Systemic deletion of SREBP1 resulted in pregnancy loss after intrauterine LPS injection. (A) Experimental scheme. WT and Srebf1-/- female mice (7
weeks old) were fed a fish meal-free diet for 7 days, followed by intrauterine administration of LPS to induce endometrial inflammation. Seven days
after LPS injection, the mice were mated with WT male mice. (B) Litter size (number of offspring) was evaluated 19.5-20.5 dpc. Data are presented as
means ± SEM, and significance was determined using Kruskal-Wallis test followed by the Dunn's test. n = 4–6, *p < 0.05, ***p < 0.001. Only
significant comparisons are shown. (C) Representative images of uteri collected from WT and Srebf1-/- mice 16.5 dpc. Blue arrowheads indicate
resorbed embryos; red arrowheads indicate intrauterine fetal death. Scale bar: 10 mm. (D) Pregnancy loss (determined as the sum of the numbers of
resorbed embryos and dead fetuses) was evaluated 16.5 dpc. Data are presented as mean ± SEM. and significance was determined using Kruskal-
Wallis test, followed by the Dunn's test. n = 3-5, *p < 0.05. (E, F) Representative histological images of placentas harvested 16.5 dpc. Shown in E are
low-magnification images of H-E-stained sections (scale bars, 200 mm); in F are high-magnification images of sections stained with H-E and
immunostained for CD31 (red) and CD45 (brown) (scale bars, 50 mm). (G) CD31-positive areas in the labyrinth layers of placentas from female WT
and Srebf1-/- mice 16.5 dpc. Data are presented as means ± SEM. Significance was determined using a Student’s t-test. *p < 0.05. n = 7 for each
experimental condition.
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FIGURE 4

EPA supplementation ameliorates chronic endometritis, pregnancy loss and placenta-associated obstetric complications in Srebf1-/- mice. (A) Representative
histological images of the endometrial stromal area of uteri collected from WT and Srebf1-/- mice 7 days after saline or LPS injection (scale bars: 50 µm).
Yellow arrowheads on sections immunostained for CD138 show plasma cells. Magnified images are in the upper left (scale bars: 10 µm). (B, C) CD45-
positive areas (C) and plasma cell counts (D) in the endometrial stromal area of uteri collected from WT and Srebf1-/- mice on day 7 after LPS administration.
Mice were fed a fish meal-free diet (control) or 5% EPA diet. Data are presented as means ± SEM, and significance was determined using Kruskal-Wallis test
followed by the Dunn's test. *p<0.05, **p<0.01, ns; not significant. n = 4–5 for each experimental condition. Two sections were made from each side of the
bicornuate uterus per mouse. (D) Representative images of uteri collected 16.5 dpc from WT and Srebf1-/- mice fed with 5% EPA diet or control (fish meal-
free) diet. Red arrowheads show intrauterine fetal death (scale bar: 10 mm). (E) Numbers of offspring (litter size) evaluated 19.5-20.5 dpc. Data for litter size
without EPA supplementation are identical as those shown in Figure 3. Data are presented as means ± SEM. Significance was determined using Kruskal-
Wallis test followed by the Dunn's test. n = 4-6, *p < 0.05. (F) Pregnancy loss 16.5 dpc. Data are presented as means ± SEM. Significance was determined
using Kruskal-Wallis test followed by the Dunn's test. n = 3-5, **p < 0.01. (G) Representative histologic images of placenta stained with H-E and
immunostained for CD31 (scale bars: 200 mm for upper panels, 50 mm for middle and lower panels). (H) CD31-positive area within the labyrinth layers of
placentas collected from WT and Srebf1-/- mice 16.5 dpc. Data are presented as means ± SEM. Significance was determined using Kruskal-Wallis test
followed by the Dunn's test. **p < 0.01. n = 6–8 for each experimental condition.
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(Figures 6B, C). In contrast, both free DHA levels as well as DHA-

containing phospholipids (PC and PE) did not differ significantly

between the two groups (Figures 6A–C). Thus, lower endometrial

levels of EPA-containing phospholipid species were associated with

CE in humans, as we observed in the mouse model of CE.
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Discussion

This study highlights the role of dysregulated lipid metabolism

in CE and its impact on pregnancy outcomes. Srebf1-/- mice

exhibited altered endometrial fatty acid composition, especially
FIGURE 5

Phospholipid remodeling caused by exogenous EPA supplementation. (A) Quantitative analysis of omega-3 free fatty acids in uterine tissues collected
7 days after intrauterine administration of saline or LPS following 5% EPA supplementation. Levels of EPA (C20:5) and DHA (C22:6) are shown. Data are
presented as means ± SEM. Significance was determined using one-way ANOVA with Tukey’s post-hoc test; *p<0.05. n=3-6/experimental condition.
(B, C) Phosphatidylcholine (PC, in B) and phosphatidylethanolamine (PE, in C) containing EPA (C20:5) and DHA (C22:6) as sn-2 fatty acids were analyzed
with LC-MS. Data are shown as means ± SEM and were analyzed using one-way ANOVA with Tukey’s post-hoc test in all panels where P values are
shown. n =3–6 for each group. *P <0.05 vs. the same genotype fed a control diet, #P <0.05 vs. WT fed a control diet. ns: not significant.
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reduction in EPA-containing phospholipids, and showed sustained

endometrial inflammation and CD138+ plasma cell infiltration,

mimicking CE. Srebf1-/- mice also showed pregnancy loss with

placental abnormality without affecting implantation in the

endometritis model. Dietary EPA supplementation increased the

levels of endometrial EPA- and EPA-containing phospholipids,

suppressed inflammation and pregnancy loss, and improved

placental function in Srebf1-/- endometritis, which suggests that

dysregulation of PUFA (EPA in particular) metabolism due to

Srebf1 deficiency contributes to prolonged endometrial

inflammation and miscarriage. Finally, levels of EPA-containing

phospholipids were decreased in endometrial tissue from CE

patients, suggesting the involvement of impaired PUFA

metabolism in the pathogenesis of CE in humans.

CE is diagnosed based on the presence (or accumulation) of

plasma cells within the endometrial stroma due to unknown causes.

Intrauterine injection of LPS induced acute leukocyte accumulation

on day 1 after administration, which was followed by CD138+

plasma cell accumulation within the endometrial stroma (Figure 1).

In WT mice, CD138+ cell accumulation peaked on day 3, and the

lipid content shifted toward PUFAs, which marks the resolution

phase of inflammation. This suggests the acute inflammation

started to resolve after day 3 in WT mice. By contrast, Srebf1

deletion led to sustained plasma cell accumulation, even on day 7,
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enhanced inflammatory gene expression, and suppression of the

shift in the endometrial fatty acid composition toward PUFAs. This

indicates that, even as late as day 7, the inflammation remained

unresolved in Srebf1-/- mice. Importantly, LPS-induced

inflammation in Srebf1-/- mice also induced pregnancy loss and

placental abnormality. These findings demonstrate that intrauterine

administration of LPS to Srebf1-/- mice recapitulated key features of

human CE. Although a model of endometritis induced by LPS

injected into the uterus of mice has been reported, it did not

recapitulate the pathology of chronic endometritis in humans (38,

39). Our CE mouse model has the potential to accelerate the study

of the molecular mechanism of CE and to facilitate the development

of novel therapeutic interventions.

The mechanism that regulates CD138+ plasma cell

accumulation and their functional roles in CE remain poorly

understood. However, various observational studies on clinical

outcomes have suggested their pathological roles in CE pathology.

Several studies indicated that lower live birth and pregnancy rates

were observed in patients diagnosed with CE by the accumulation

of CD138+ cells in their endometrium (5, 40), although one study

reported no significant difference in pregnancy rates between

CD138-positive and CD138-negative cases (41). Furthermore,

high CD138+ cell counts are positively correlated with poorer

reproductive outcomes including lower live birth and pregnancy
FIGURE 6

The levels of major EPA-containing phospholipids are decreased in endometrial tissue from patients with CE. (A) Levels of free EPA and DHA were
analyzed using LC-MS. (B, C) Levels of PC (B) and PE (C) containing 20:5 (EPA) and 22:6 (DHA) were analyzed using LC-MS. Data are presented as
means ± SEM, and statistical significance was determined using Student’s t-tests. *p < 0.05, ns, not significant. non CE: n=6, CE: n=5.).
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rates (5, 40, 42). Additionally, CD138-positive cell infiltration has

been shown to associate with endometrial polyps and alterations in

molecular markers such as TGF-b1, MMP-9, and avb3 integrin,

which are associated with endometrial dysfunction and prolonged

inflammation (40).

Our research indicates that chronic endometritis in SREBP1

deficiency leads to the pregnancy loss accompanied by the placental

abnormality (Figure 3). Previous studies have suggested that

arachidonic acid metabolites play a crucial role in female

reproduction. For instance, deficiencies of molecules involved in

arachidonic acid metabolism and its signaling pathway, such as

cytosolic phospholipase A2 (43), cyclooxygenase-2 (44) and

prostaglandin E2 receptor (45) resulted in female infertility. In

our study, uterine tissue from Srebf1-/- mice showed a reduction

in arachidonic acid (C20:4) levels (Figure 2F), which may explain, at

least in part, pregnancy loss (fetal death) associated with Srebf1

deficiency. Furthermore, we found that the adverse effects of

SREBP1 deficiency in the context of chronic endometritis could

be ameliorated by EPA supplementation. This suggests that the

beneficial effects of EPA may be partly due to its ability to inhibit

persistent inflammation. Multiple pathways have been reported to

link inflammation to implantation and placental impairment (46).

These include dysregulation of cytokines, altered composition of

immune cells required for the physiological processes of pregnancy,

and altered endometrial cell differentiation, proliferation and

apoptosis. It is therefore essential to identify the specific processes

that EPA modulates to suppress miscarriage. In addition, the

increase in phospholipid species containing EPA suggests EPA

supplementation triggers phospholipid remodeling, which may

affect the function of not only immune cells, but also endometrial

epithelial cells and stromal cells potentially contributing to the

restoration of decidualization processes. In that regard, EPA

reportedly ameliorates pulmonary endothelial dysfunction in

particulate matter air pollution-induced inflammation, in part by

improving eNOS coupling (47). In future experiments, it will be

important to assess the effects of EPA on the various cell types

comprising the endometrium and their interactions.

Recent studies have suggested that abnormalities in fatty acid

metabolism may impair endometrial receptivity and contribute to

adverse pregnancy outcomes (48). In particular, an imbalance in the

n-3/n-6 PUFA ratio promotes excessive prostaglandin production

and induce a pro-inflammatory endometrial environment that is

prevent implantation (49). In the present study, although

implantation efficiency was not directly assessed, EPA may have

improved not only fetal survival but also endometrial receptivity

and implantation efficiency, thereby contributing to the increased

number of offspring. This interpretation is suggested by the

observation that the litter size in the EPA-treated group of the

SREBP1-deficient CE mouse model exceeded the number expected

from the prevention of fetal loss alone, and that EPA treatment also

showed a trend toward increased litter size even in wild-type mice,

which rarely exhibit pregnancy loss (Figures 4E, F). These

observations support the possibility that abnormal lipid

metabolism in chronic endometritis negatively affects not only

pregnancy maintenance but also implantation. Future studies are
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needed to assess the effects of EPA on and the roles of lipid

metabolism in implantation.

We found that endometrial tissue from patients diagnosed with

CE had decreased levels of EPA-containing phospholipids, although

there was no significant difference in the amount of free EPA

(Figure 6). Less than 5% of fatty acids exist as free fatty acids in the

body, and about 30% of fatty acids exist as phospholipids (LIPID

MAPS Structure Database. (https://www.lipidmaps.org)).

Accordingly, our results support the notion the dysregulation of

PUFA metabolism is associated with CE. In mice, orally ingested

EPA is incorporated into the phospholipid membranes of cells

constituting the endometrium, increasing the EPA-containing

phospholipids in the endometrium (Figures 6B, C). It is expected

that consumption of an EPA-rich diet increases the EPA-containing

phospholipids in the endometrium in humans, as previous studies

have shown that oral EPA increases plasma and tissue level of EPA-

containing phospholipids (50, 51). The results of the present study

suggest that oral EPA ameliorate CE development that involves

dysregulated lipid metabolism. Future studies need to further

analyze dysregulation in lipid metabolism in CE and other

conditions associated with poor pregnancy outcomes.

Several human studies have evaluated the effects of PUFAs,

including EPA and DHA, on pregnancy rate (52), pregnancy

outcome (53), gestational diabetes, preeclampsia (54), fetal growth

and prolonged gestational age as well as the weight, height and head

circumference of infants (55). However, a causal relationship between

PUFAs and pregnancy outcomes remains unclear. To our knowledge,

no studies have investigated the relationship between PUFA intake and

pregnancy outcomes in patients with CE. Our mouse model of CE and

the present findings that point to the involvement of SREBP1-mediated

fatty acid metabolism in CE and pregnancy loss could facilitate the

elucidation of the molecular mechanisms underlying CE and the

actions of dietary PUFAs in pregnancy.

A limitation of this study is the small sample size of lipidomic

analysis using endometrial samples from CE patients, which

included individuals diagnosed with either RIF or RPL. Our CE

mouse model primarily exhibited fetal loss rather than

implantation failure. Therefore, analyzing endometrial samples

specifically from CE patients with PRL would better align with our

mouse model when assessing the role of fatty acid metabolism in

chronic endometritis. In future studies, large-scale lipid analyses

with clinically well-characterized cohorts will be necessary to

further elucidate how dysregulated lipid metabolism contributes

to different types of adverse pregnancy outcomes associated with

CE. In conclusion, the results of the present study strongly suggest

that dysregulated fatty acid metabolism, particularly SREBP1-

mediated pathways, drives chronic endometrial inflammation

and adverse pregnancy outcomes. These findings underscore the

therapeutic potential of targeting fatty acid metabolism,

particularly through EPA supplementation, to prevent post-

implantation fetal loss and miscarriage associated with CE.

These insights have important implications for understanding

the pathophysiology of CE and may pave the way for novel

therapeutic strategies for the management of CE and related

pregnancy complications.
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Materials and methods

Animals

All mice used in this study had a C57BL/6 background. Srebf1-/-

mice were generated as described previously and provided by Dr.

Hitoshi Shimano (The University of Tsukuba) (34). All mice were

maintained in an institutional animal facility with a 12 h/12 h light-

dark cycle and free access to food and water. All experimental

procedures were performed following the research guidelines for

the care and use of laboratory animals at the Nippon

Medical School.
Establishment of a chronic endometritis
model in mice

Seven-week-old female mice were fed fish meal-free diet (fish

meal-free MF: 4.4% fat; Oriental Yeast Co., Ltd., Tokyo, Japan), as

described previously (26). For studies involving supplemental EPA

supplementation, mice were fed a fish meal-free diet supplemented

with 5% EPA ethyl ester (v/v) (9% EPA; Bizen Chemical Co., Ltd.

Okayama, Japan) for 7 days before intrauterine LPS administration.

LPS or saline (as a control) was administered to the uteri of 8-week-

old female mice following the technique used for intrauterine

implantation of blastocysts (56). Briefly, the abdomen was opened

under general anesthesia, and 10 µg of LPS (Sigma) dissolved in 100

µL of saline were administered from each uterine horn into the

uterus through a 29G needle, followed by closure of the abdomen.

In the control group, 100 µL of saline were administered to the

uterus. After euthanasia by cervical dislocation on days 1, 3, 5 and 7

after LPS or saline administration, the lower abdomen was incised,

and the uterus was removed and observed. We injected 10 µg of LPS

per uterine horn (20 µg per mouse) to induce chronic endometritis,

because previous studies demonstrated that the administration of

20–40 µg of LPS induced acute endometritis (38), while 20 µg of LPS

induced inflammatory preterm birth in pregnant mice (57). We

confirmed that 20 µg LPS successfully induced chronic

inflammation without systemic toxicity such as significant

weight loss.

For studies to evaluate pregnancy loss, male WT mice aged ≥ 8

weeks were housed with the female mice daily beginning 7 days

after LPS or saline administration. The day a vaginal plug was

observed in the morning was identified as 0.5 dpc, and the uterus

was collected at 16.5 dpc. After euthanasia by cervical dislocation,

the lower abdomen was incised, and the pregnant uterus was

removed and observed.
Preparation and immunostaining of uterine
tissue sections

Whole mouse uterus were fixed by immersion in Tissue-Tek

Ufix (Sakura Finetek, Tokyo, Japan), embedded in paraffin blocks,

and cut into 10-µm-thick cross-sectional slices. The sections were
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then deparaffinized, rehydrated, stained with hematoxylin for 10

min, washed with running water for 15 min, stained with eosin for 5

min, and quickly washed in a 70, 80, 90, 95 and 100% ethanol series

before washing twice in xylene.

To obtain immunofluorescence images, tissue sections were

immersed in Tris-EDTA buffer (pH 9.0) solution heated to 95 °C

and boiled for 20 min. After washing three times in phosphate-

buffered saline (PBS; 5 min), the sections were blocked with 2% BSA

for 2 h at room temperature. The samples were then reacted with

primary antibodies (anti-CD138/Syndecan-1 antibody (#10593-1-

AP, Proteintech), CD45 (#550539, BD) and CD31 (N1596, DAKO)

at 4°C overnight and again washed three times with PBS (5 min).

Thereafter, the sections were incubated with secondary antibody for

30 min at room temperature and washed with PBS (3x, 5 min)

before being incubated with an alkaline phosphatase kit (AK-5000,

Vector Laboratories, US) for 30 min at room temperature. After

again washing with PBS (3x, 5 min), the chromogenic reaction was

carried out for 30 min using Vector Red (#SK-5105, Vector

Laboratories, US) as a substrate. The sections were then cleared

with xylene and mounted.

Images of immunofluorescence were acquired using a

microscope (BZ-X810, Keyence, Osaka, Japan) and analyzed. The

numbers of CD138+ cells present in the entire interstitial region

surrounding the uterine lumen were counted, and the CD45+ and

CD31+ areas are measured. Four sections from the bicornuate

uterus of each mouse were made and analyzed.
Lipidomic analysis

MS-based lipidomic analysis was performed using our

published protocol (58). Briefly, for phospholipid detection,

frozen uterine tissues were crushed in a Multi-Beads-Shocker™

(Yasui Kikai, Osaka, Japan) at 2,500 rpm for 15 s (2 cycles), with a

pause time of 5 s. Lipids were extracted from the crushed tissue

using the Bligh and Dyer method (59). Electrospray ionization

(ESI)-MS analysis was performed using a 4000Q-TRAP, a triple

quadrupole-linear ion trap hybrid mass spectrometer (Sciex,

Framingham, MA, USA) equipped with reverse-phase LC

(NexeraX2 system, Shimadzu, Kyoto, Japan). Samples were

injected using an autosampler connected to a Kinetex C18

column (2.1 × 150 mm, 1.7 µm particle, Phenomenex, Torrance,

CA, USA) coupled to the ESI-MS and separated using a step

gradient of mobile phase A (acetonitrile/methanol/water = 1:1:1

[v/v/v] containing 5 µM phosphoric acid and 1 mM ammonium

formate) and mobile phase B (2-propanol containing 5 µM

phosphoric acid and 1 mM ammonium formate) at a flow rate of

0.2 mL/min at 50 °C.

Lipids were identified based on multiple reaction monitoring

(MRM) transitions and retention times. Quantification was

performed based on the peak area of the MRM transition and a

calibration curve constructed using an authentic standard for each

compound. As internal standards, d5-labeled EPA (50 pmol),

LPC17:0 (25 pmol) and PE14:0-14:0 (25 pmol) (Cayman

Chemical, Ann Arbor, MI, USA) were added to each sample.
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RNA-seq

Three biological replicates (n=3) were used for RNA-seq analyses

for each group: Saline, LPS, EPA, and EPA+LPS, in WT and Srebf1-/-

mice. Poly-A mRNA was extracted from total RNA using a NEBNext

poly(A) mRNA magnetic isolation module (New England Biolab),

and RNA-seq libraries were prepared using a NEBNext Ultra RNA

Library Prep kit for Illumina according to the manufacturer’s protocol

(New England Biolab). The libraries were then PCR-amplified for

approximately 12 cycles and sequenced on a Novaseq (Illumina).

Reads were aligned to the mm10 mouse genome using STAR (60).

Expression analysis of the RNA-seq data was performed using

HOMER (61). GSEA (30) was performed using rank files generated

from expression data analyzed using DESeq2 (62). All RNA-seq data

are available in the GEO under accession number GSE278134.
Human endometrial tissue collection

Endometrial tissue was collected from 11 patients with a history

of recurrent implantation failure (RIF, n=5) or recurrent pregnancy

loss (RP, n=6) who underwent endometrial biopsy. Endometrial

biopsy was performed during the implantation period, 5–7 days

after ovulation at the Department of Obstetrics and Gynecology,

Nippon Medical School Hospital between 2021 and 2023. The study

protocol was approved by the institutional review board of Nippon

Medical School Hospital (No. B-2021-393). All patients provided

written informed consent for the use of their endometrial samples

in this research.
Statistical analysis

Data are presented as means ± standard error of the mean

(SEM). Statistical significance was determined using two-tailed

Student’s t-tests. Two-way analysis of variance (ANOVA) with

post-hoc Bonferroni’s multiple comparison test or the Kruskal-

Wallis test followed by Dunn’s test was used in experiments

involving multiple factors. p < 0.05 was considered statistically

significant. All statistical analyses were performed using Prism 9

software (GraphPad, San Diego, CA, USA).
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