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lentiviral vector encoding
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for translational and
clinical applications
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Els Verhoeyen4,5, José Villacorta Hidalgo1* and Rimas J. Orentas1

1Research and Development Immunotherapy, Miltenyi Biotec, Bergisch Gladbach, Germany,
2Department of Immunology, Eberhard Karls Universität Tübingen, Tübingen, Germany, 3Faculty of
Medicine, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany, 4INSERM U1111, Université
de Lyon, Lyon, France and INSERM U1065, Nice, France, 5Université Côte d’Azur, INSERM, C3M,
Nice, France
gd T cells represent a promising cell platform for adoptive cell therapy. Their

natural anti-tumor reactivity and HLA-independent target cell recognition make

them an attractive platform for allogeneic adoptive immunotherapy clinical

interventions. Initial clinical trials exploring allogeneic gd T-cell therapies have

demonstrated encouraging safety profiles. However, their therapeutic efficacy,

especially against solid tumors, remains limited. This highlights the need for

further optimization of gd T cell products to improve anti-tumor potency, such as

the increased targeting induced by the expression of a chimeric antigen

receptors (CAR). However, a critical challenge in the development of CAR-gd T

cell therapies has been optimizing transduction efficiency with standard vector

formats allowing for optimal CAR transgene expression that then produces an

optimal therapeutic product. Here we present an effective method for enhancing

CAR transgene expression in gd T cells using a Baboon-pseudotyped lentiviral

vector (BaEV-LV), comparing it to the conventional vesicular-stomatitis-virus-G

protein (VSV-G) LVs. BaEV-LV significantly enhanced the transduction efficiency

of gd T cells with CARs, while conserving the beneficial cell product composition

and phenotype of untransduced gd T cells. The gd T cells transduced with BaEV-

LV CARs demonstrated significantly enhanced cytotoxicity against B7H3-

expressing tumor cells in both 2D and 3D in vitro models. Our findings

represent a significant advancement in CAR-gd T cell engineering, offering a

promising new avenue for cancer immunotherapy that combines the unique

properties of Vg9Vd2 T cells with the targeted specificity of CAR technology. This

method is compatible with automated closed-system platforms such as the
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CliniMACS Prodigy®, facilitating Good Manufacturing Practice (GMP)-compliant

production for clinical trials. This feature significantly enhances the translational

potential of engineered gd T cells, paving the way for the development of next-

generation gd T cell-based immunotherapies.
KEYWORDS

gd T cells, chimeric antigen receptor, CAR gd T cells, lentiviral transduction,
immunotherapy, allogeneic
1 Introduction

The unique biology of gamma delta T lymphocytes (gd T cells)

positions them as a highly promising platform for immunotherapy.

Although they constitute only 1-10% of T cells in peripheral blood,

their distinctive functional capabilities differentiate them from

conventional alpha beta (ab) T cells, offering exciting potential

for innovative therapeutic strategies for cancer and other intractable

diseases (1, 2).

One of the most significant advantages of gd T cells is their ability

to recognize a diverse array of antigens without the need for major

histocompatibility complex (MHC)-based antigen presentation,

allowing their use in allogeneic medical interventions (3). Vg9Vd2 T

cells, which are the dominant gd T cell population in peripheral blood

(4), react to nonpeptidic molecules called phospho-antigens (pAgs),

such as isopentenyl pyrophosphate (IPP) and hydroxymethyl.but-2-

enyl pyrophosphate (HMBPP) (5). IPP is an intermediate in the

isoprenoid synthesis pathway, which weakly activates Vg9Vd2 at

physiological conditions, but it accumulates in cancer and infected

cells (6). HMBPP is an intermediate in the non-mevalonate pathway

present in diverse pathogens, includingMycobacterium tuberculosis or

Toxoplasma gondii. HMBPP is a 10000-fold more potent antigen for

Vg9Vd2 T cells than IPP (7).

Initial clinical results have also demonstrated significant potential

for gd T cells as a cell therapy platform, owing to their diverse

cytotoxic activities against various tumor types and their remarkable

ability to infiltrate solid tumors (8, 9). A phase I trial in lung and liver

cancers using multiple allogeneic gd T cell infusions, showed good

safety profiles and improved survival (10). More recently, a pilot

study of donor-derived ex-vivo expanded Vg9Vd2 T cells in patients

with high-risk leukemia after haploidentical stem cell transplantation

(HSCT), reported safety and relapse free survival (RFS) ≥ 12 months,

in contrast to a reported 50% relapse rates at 1 year (11).

Zoledronate, a potent third-generation amino-bisphosphonate

used to inhibit bone resorption and to treat bone metastasis and

multiple myeloma, is widely employed for the selective expansion and

enrichment of Vg9Vd2 T cells (12). It inhibits the farnesyl

pyrophosphate synthase enzyme which metabolizes IPP, leading to

increased intracellular IPP levels in monocytes (13). Its availability in a

pharmacy-grade formulation (Zometa®) has advanced the application

of ex vivo expanded gd T cells in cancer immunotherapy. Nevertheless,
02
the effective utilization of genetically engineered gd T cells in solid

tumors is contingent upon optimizing their transduction processes.

Current clinical trials indicate that untransduced gd T cells exhibit only

moderate efficacy, highlighting the critical need for improved

transduction strategies to enhance their therapeutic potential by

means of expression of immunotherapeutic payloads, such as tumor

antigen-targeted chimeric antigen receptors (CAR) (14).

B7H3 (CD276) has emerged as a promising target for CAR T cell

therapy in the treatment of solid tumors. CD276 mRNA is present in

the majority of normal tissues; however, the expression of CD276

protein is significantly restricted. This discrepancy is attributed to

post-transcriptional regulation bymicroRNAs (miRNAs) (15). CD276

is frequently overexpressed in numerous solid tumors, notably in

breast cancer and brain tumors (16–20), where it contributes to the

tumor progression. It is involved in tumorigenesis, the dysregulation

of glycolysis and apoptosis, tumor metastasis, and tumor micro-

environment (TME) support (21). Because of all these functions, its

expression is associated with a poor prognosis (20). There are

currently several B7H3 CAR ab T cells being tested in clinical trials.

They have so far shown a good safety profile but a limited efficacy due

to tumor resistance mechanisms (22–24).

Lentiviral vectors (LVs) are the primary means to manufacture

CAR T cells since they can infect both dividing and non-dividing cells

and integrate into the target cell genome, leading to a stable expression

of the CAR. Given their extensive development and testing, LVs from

third-generation (SIN) vectors are considered relatively safe (25, 26).

An advantage of the LV system is the ability to test alternate envelope

glycoproteins, i.e. different pseudotypes, to create optimal gene vectors

for various target cell populations. Vesicular-stomatitis-virus-G

protein (VSV-G) is the most frequently used viral envelope (ENV)

for the pseudotyping of lentiviral vectors. It enters mammalian cells

through the low-density lipoprotein receptor (LDL-R) that regulates

cholesterol metabolism in mammalian cells (27), which explains its

limited tropism for unstimulated peripheral blood cells, which express

a very low level of LDL-R (28).

While being especially useful for ab T cell transduction, VSV-G-

based LV require a high multiplicity of infection (MOI) and more

complex protocols to efficiently transduce gd T cells (29). This

difficulty in using VSV-G based vectors impacts the scalability and

practicality of gd CAR T cell manufacturing processes (30–32).

Alternative pseudotypes may provide a key mechanism to overcome
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this bottleneck. A commonly tested solution is to use retroviral vectors

pseudotyped with the RD114 ENV for gd T cell transduction (33–35).

Unlike VSV-G viruses which bind to the target cells via low-density

lipoprotein receptor (LDLR), RD114 viruses enter the cells through

the amino acid transporter ASCT2. Building on the success of the

RD114 pseudotype, another virus from the same family as RD114, the

Baboon endogenous retrovirus (BaEV) has been used to transduce a

range of cells such as hematopoietic stem cells (HSC) (36), B cells (37),

T cells (38) and natural killer (NK) cells (39, 40). Like the RD114 virus,

it recognizes the receptor ASCT2, and also recognizes ASCT1, which

confers to it a broader tropism (41, 42). Laboratory studies have

demonstrated that the BaEV ENV can be successfully used to

pseudotype LVs, however prior to this study, their efficacy for

transducing gd T cells has not been reported.

Here we report an optimized and highly effective method for

enhancing CAR transgene expression in gd T cells using the BaEV

envelope protein to pseudotype LVs, in direct comparison to the

conventional LV ENV, VSV-G. We utilized a third-generation

B7H3 CAR for proof-of-concept, testing its efficacy on the B7H3

expressing cell lines MCF-7, MDA-MB-468, and U87-MG.
2 Materials and methods

2.1 Antibodies and reagents

The following antibodies were used for cell surface staining: anti-

human CD107a REA803, anti-human CD14 REA599, anti-human

CD19 REA675, anti-human CD27 REA499, anti-human CD3

REA613, anti-human CD45RA REA562, anti-human CD56

REA196, anti-human CD69 REA824, anti-human His GG11-

8F3.5.1, anti-human HLA/DR REA805, anti-human KIR2D

REA1042, anti-human PD-1 REA1165, anti-human REA Control

(S) REA293, anti-human TCR gd REA591, anti-human TIGIT

REA1004 (all from Miltenyi Biotec). The His-tagged B7H3 protein

(ACRO Biosystems) was used to assess CAR expression. PBS/EDTA/

BSA (PEB) buffer was prepared by adding 0.5% human serum

albumin (HAS) (Octapharma) in CliniMACS buffer (Miltenyi Biotec).
2.2 Tumor cell lines and spheroids
formation

The solid tumor cell lines MDA-MB-468, MCF-7, and U87-MG

expressing GFP and Luciferase were used in this study. The wild-type

MDA-MB-468 and MCF-7 were obtained from the Leibniz Institute

DMSZ and were then transduced with a GFP-P2A-Luc plasmid using

a VSV-G LV. U87-MG expressing GFP and Luciferase was kindly

provided by Dr. Marius Döring, Miltenyi Biotec. MDA-MB-468,

MCF-7, and U87-MG all naturally express B7H3 (Supplementary

Figure S1A). A modified version of U87-MG in which the target

B7H3 had been knocked out with the Alt-R™ CRISPR-Cas9 System

(IDT) was used as a control. MDA-MB-468 and U87-MG cell lines

were cultured in Dulbecco’s Modified Eagle Medium (DMEM)

supplemented with glutamine and sodium pyruvate (Biowest), 10%
Frontiers in Immunology 03
fetal bovine serum (FBS) (Biowest), and 100mMMEM non-essential

amino acids (Gibco). MCF-7 was cultivated in Roswell Park

Memorial Institute (RPMI) 1640 medium supplemented with 10%

fetal bovine serum (FBS) (Biowest). The cells were maintained in a

humidified incubator at 37°C with 5% CO2.

To obtain tumor spheroids, U87-MG WT and B7-H3 KO cells

were incubated for 4 days in an ultra-low attachment plate

(Corning) at 37°C, 5% CO2.
2.3 LV production

Three different CARs were tested. The B7-H3 CAR is a third-

generation CAR with a CD8 transmembrane domain, two co-

stimulatory domains derived from CD28 and 4-1BB, and a CD3z
signaling domain. Previously reported CD19 and CD33 CARs had a

CD8 transmembrane domain, a 4-1BB co-stimulatory domain, and

a CD3z signaling domain (43, 44).

Lentiviral vector (LV) particles were manufactured in suspension

HEK293T cells. HEK293T cells were cultivated in Dynamis medium

(Gibco) supplemented with Glutamax (Gibco). Cells were transfected

with a four-plasmid system using polyethyleneimine (PEI,

Polysciences). To produce VSV-G LVs, the ratios of the different

plasmids to the 3rd generation transfer vector were 1:0.4 for the

envelope, 1:0.3 for the reverse transcriptase and 1:0.6 for gag/pol. For

BaEV LVs, it was 1:4 for the envelope, 1:0.1 for the reverse transcriptase

and 1:0.2 for gag/pol. After 24h of incubation on an orbital shaker at

165 rpm, 37°C, 5% CO2, 5mM sodium butyrate was added (Thermo

Scientific). Supernatant was collected 24h later and sterile filtered to

remove debris. The LV particles were concentrated via centrifugation

(4000 rpm at 4°C for 24h), the pellet was resuspended in TexMACS

medium (Miltenyi Biotec) and stored at -80°C. LV particles were

titrated after one freeze-thaw cycle on SupT1 cells seeded in serum-free

RPMImedium (Gibco), serially diluted and, for the BaEV-LV particles,

incubated with Vectofusin-1 (Miltenyi Biotec) for 7 min. Subsequently,

LV particles were added onto cultured cells and incubated for at least

96h before being analyzed by flow cytometry. LV titers were calculated

by the ratio of transduced cells and LV volume used (TU/ml) (45). The

titers are shown in Supplementary Figure S2 and are in range with the

titers reported by Girard-Gagnepain et al. (46).
2.4 gd T cell expansion and transduction

Peripheral blood mononuclear cells (PBMC) were isolated from

healthy donors using density gradient separation with Pancoll

(PAN-Biotech) according to the manufacturer’s instructions. ab
T cells were then depleted by magnetic separation. Briefly, PBMCs

were resuspended in PEB buffer and incubated with anti-human

TCR ab-biotin antibodies (Miltenyi Biotec) for 30 minutes at room

temperature. The cells were washed twice and then incubated with

anti-biotin microbeads (Miltenyi Biotec) for an additional 30

minutes at room temperature. The cells were washed once more

and resuspended in PEB before being separated with a LS column

(Miltenyi Biotec). The flow-through, depleted of ab T cells, was
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collected and plated at 2 x 106 cells/ml in TexMACS medium

(Miltenyi Biotec). The medium was supplemented with 100 IU/ml

interleukin-2 (IL-2) (Miltenyi Biotec), 100 IU/ml interleukin-15

(IL-15) (Miltenyi Biotec), and 5µM Zoledronate (Roche).

After 3 days of expansion, cells were transduced with a third

generation B7H3 CAR, with either a VSV-G-pseudotyped or a BaEV-

pseudotyped LV at an MOI of 1. The BaEV-pseudotyped vector was

first incubated with 40µg/L Vectofusin-1 (VF-1) (Miltenyi Biotec)

before being added to the cells to enhance transduction efficiency.

VSV-G pseudotyped viruses do not benefit from VF-1 for gd T cells

and were thus directly added to the cells (Supplementary Figure S3).

The cells were further cultivated in TexMACS medium containing 5%

human AB serum (Access Biologicals) from day 6 and on. The cultures

were maintained in a humidified incubator at 37°C with 5% CO2.

Medium and cytokines were refreshed every 2–3 days to support cell

growth and expansion. The cells were kept in culture for 14 to 15 days

before functional analysis, thus 10–11 days after their transduction.
2.5 Phenotyping and cell surface markers
analysis

Cells were harvested and washed with PEB buffer for

phenotyping and cell surface marker analysis. The cells were first

incubated with B7H3-His protein (AcroBiosystems) and washed

twice. They were then stained for 10 minutes at 4°C with surface

marker-specific and anti-His antibodies to assess cellular

composition, gd T cell phenotype (based on CD45RA and CD27

expression), transduction efficiency, and expression of activating

and inhibitory markers. 7-AAD (Miltenyi Biotec) was added to

exclude dead cells. FCR-blocking reagent (Miltenyi Biotec) was used

to decrease non-specific binding. Labeled cells were then washed

twice with PEB and read on a MACSQuant 10 flow cytometer

(Miltenyi Biotec). The data were analyzed with the FlowJo software

version 10.8 (BD Bioscience).
2.6 In vitro assays for gd T cell cytotoxicity

gd T cell function was assessed in 2Dmodels by luciferase-based

viability analysis of target cells, on the Incucyte system (Sartorius),

and by quantifying their degranulation. gd T cells were co-cultured

with luciferase-expressing target cells (MCF-7, MDA-MB-468,

U87-MG WT, and B7H3 KO) at various effector to target (E:T)

ratios. After 24h of co-culture, the number of viable target cells was

determined by quantifying luciferase expression using the One-Glo

luciferase assay kit (Promega) and a Victor 3 plate reader (Perkin

Elmer). The Incucyte system was used to monitor cytolysis kinetics

over four days by measuring GFP+ target cells every two hours.

Finally, to assess the degranulation capacity of gd T cells, expression

of CD107a was measured after two hours of co-culture in presence

of CD107a antibody or an isotype control and Bafilomycin A1

(Sigma). The cells were stained with 7AAD, CD3, and anti-TCRgd
antibodies and analyzed using a MACSQuant 10 flow cytometer.
Frontiers in Immunology 04
To assess gd T cell cytotoxicity in 3D models, cells were co-

cultured with tumor targets for 6 days in the Incucyte system with

GFP+ spheroids of U87-MG WT and B7-H3 KO at different E:T

ratios. The total integrated intensity of GFP was measured every

two hours.
2.7 Statistical analysis

The data were analyzed with GraphPad Prism version 10.1.2 for

Windows. Unless stated otherwise, Tukey’s multiple comparisons

test with paired data was used. A p-value below 0.05 was

considered significant.
3 Results

3.1 gd T cells engineered with BaEV-
pseudotyped LV successfully express CARs

gd T cells were transduced after three days of culture with a

third-generation B7H3 CAR LV pseudotyped with either a VSV-G

or BaEV envelope (Figure 1A). VF-1 was used to enhance

transduction efficiency for the BaEV-pseudotyped LV. At a MOI

of 1, 65.6 ± 8.4% of gd T cells expressed the CAR with the BaEV-

pseudotyped LV, a significantly higher rate than with the VSV-G

ENV (Figure 1B). B7H3 CAR surface expression was nearly doubled

in gd T cells transduced with the BaEV-LV (Figures 1C, D). This

increased transduction efficiency was also confirmed with two

additional CAR vectors. A higher proportion of gd T cells

expressed CD19 CAR with BaEV-LVs. A similar trend was

observed with CD33 CAR (Figure 1E). Transduction did not

affect cell product composition, as the final product retained a

high proportion of gd T cells (> 85%), with NK cells as the

predominant non-gd T cells population (Figure 1F). These

findings demonstrate that the BaEV-LV effectively generates high-

purity CAR gd T cells with robust CAR expression.
3.2 Viral transduction does not alter the
phenotype of gd T cells

We characterized gd T cells before and after the cultivation

period using CD27 and CD45RA expression to determine their

phenotype. After 10–14 days of expansion, the proportion of naïve

and effector cells (CD45RA+) drastically decreased, with most cells

exhibiting either a central or effector memory phenotype (CD45RA-

). The phenotype of both CAR+ and CAR- cells was not

significantly impacted by VF-1 or LV transduction (Figure 2A).

Markers for activation, including CD69, CD56 and HLA-DR, were

also assessed (Figure 2B). CD69 expression was high in all

conditions, with a slight reduction only in CAR-gd T cells

transduced with BaEV-LV compared to VSV-G-LV. There was a

notable donor variability in CD56 expression, but no significant

differences across conditions. HLA-DR expression was consistently
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high across all transduction conditions. Immune-inhibitory

markers PD-1, KIR2D, and TIGIT were also evaluated

(Figure 2C). PD-1 and KIR2D expression remained low and

consistent across samples. TIGIT expression was donor-
Frontiers in Immunology 05
dependent and only upregulated in CAR+ gd T cells transduced

with VSV-G-LVs, compared to CAR-gd T cells transduced with

BaEV-LVs. Overall, BaEV-LV transduction did not alter gd T cell

phenotype or impede their activation.
FIGURE 1

gd T-cell CAR transduction. (A) After three days of expansion, cells were transduced with BaEV or VSV-G pseudotyped LV encoding a B7H3 CAR. VF-
1 was used in UTD and BaEV samples. Transduction efficiency (B) and the CAR MFI (C, D) were measured by flow cytometry at the end of culture.
(E) After 3 days of expansion, cells were transduced with BaEV-pseudotyped LV encoding either a CD19 or a CD33 CAR and VF-1. Transduction
efficiency was measured by flow cytometry at the end of the culture. (F) The final cellular product was also analyzed with flow cytometry to
determine its cell composition. ns = non-significant, * = p<0.05, ** = p<=0.01, *** = p<=.001 and **** = p<0.0001. Each data point is an
individual donor.
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3.3 B7-H3 CAR T cells engineered with
BaEV-LV show superior killing in various
solid tumor models expressing CAR targets

To evaluate the cytotoxicity of B7-H3 CAR gd T cells, we

conducted an endpoint killing assay against various B7H3(+)

tumor lines. In all three target cell lines, MCF-7, MDA-MB-468

and U87-MG, gd T cells transduced with a BaEV-LV encoding

B7H3 CAR had a significantly higher killing efficacy than either

untransduced or CAR-gd T cells transduced with VSV-G LVs,

especially at low E:T ratios (Figures 3A–C). In U87-MG B7H3

knockout cells, BaEV-CAR gd T cells demonstrated enhanced

killing only at the lowest E:T ratio compared to untransduced

cells (Figure 3D). We confirmed these results in an Incucyte

killing assay, which measures long-term cytotoxicity kinetics.

Only BaEV-transduced B7H3 CAR gd T cells could control tumor

cells expressing the CAR target at a 1:1 E:T ratio (Figures 3E–G).

There was no difference in killing between the different gd T cells in

the assays targeting U87-MG B7H3 KO cells (Figure 3H). Similar

results were obtained with both CD19 and CD33 CAR gd T cells

(Supplementary Figure S4). To further investigate the cytotoxic

mechanism, we assessed expression of CD107a as a marker of

degranulation after 2 hours of co-culture with target cells. CD107a

expression was significantly increased in BaEV CAR-gd T cells co-

cultured with cancer cells expressing B7H3 (Figures 3I–K) but not

with B7H3-negative cancer cells (Figure 3L).

A multiplex cytokine secretion assay revealed no significant

increase in granzyme B and perforin secretion, although BaEV-
Frontiers in Immunology 06
CAR gd T cells tended to show higher secretion levels (Figures 4A,

B). Interferon- g (IFN-g) and tumor-necrosis factor a (TNF-a)
concentrations were significantly elevated in the supernatant of

BaEV-CAR gd T cells co-cultured with cancer cells expressing B7H3

(Figures 4C, D). In summary, B7-H3 CAR gd T cells produced with

BaEV-LVs are highly cytotoxic aga inst cancer ce l l s

expressing B7H3.
3.4 B7-H3 CAR gd T cells successfully
control a U87-MG spheroid model
expressing the CAR target

To better evaluate the cytotoxic potential of B7-H3 CAR gd T

cells, we co-cultured them with 3D spheroid models of U87-MG. At

a 1:1 E:T ratio, B7-H3 CAR gd T cells effectively controlled U87-MG

spheroids whereas UTD gd T cells had no effect (Figure 5A). In

B7H3 KO spheroids, no difference in killing was observed between

UTD and CAR gd T cells (Figure 5B). Increasing the E:T ratio led to

a dose-dependent increase in B7-H3 CAR gd T cell-mediated

cytotoxicity, which was not observed with untransduced

cells (Figure 5C).
4 Discussion

CAR gd T cells are a promising alternative modality to treat

solid tumors in either autologous or allogeneic interventions.
FIGURE 2

gd CAR- T cell phenotype and activation profile. (A) gd T cells were analyzed by flow cytometry at the end of culture to determine phenotype based
on expression of CD45RA and CD27. (B, C) The expression of activation (B) and inhibition (C) markers by gd T cells was analyzed by flow cytometry
after expansion. Populations analyzed: starting population (Day 0), untransduced gd T cells (UTD), untransduced gd T cells supplemented with VF-1
(+VF-1), CAR+ gd T cells transduced by either BaEV-LV (BaEV CAR+) or VSV-G (VSV-G CAR+) and CAR- gd T cells in samples transduced by either
BaEV-LV (BaEV CAR-) or VSV-G (VSV-G CAR-). * = p<0.05.
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However, there has been a lack of simple and efficient methods to

deliver the CAR construct with LVs. This study aimed to evaluate

the efficiency of transduction and function of gd T cells engineered

with BaEV-LV to express various CARs, focusing on the
Frontiers in Immunology 07
transduction efficiency, cellular characteristics, and cytotoxic

potential of the engineered cells.

Our results show that BaEV-LVs achieved superior

transduction efficiency, with higher CAR expression both in terms
FIGURE 3

gd CAR T cell cytotoxicity. B7-H3 CAR gd T cells were co-cultured with indicated tumor cell lines (ea. row). (A-D) Overnight viability of luciferase
expressing lines MCF-7 (A, n=6), MDA-MB-468 (B, n≥6), U87-MG (C, n=6) and U87-MG B7-H3 KO (D, n≥3) was measured after 24h of coculture
with UTD and B7-H3 CAR gd T cells. (E-H) Incucyte analysis with and without gd T cells at a 1:1 E:T ratio, error bars = SEM. (I-L) The expression of
CD107as measured by flow cytometry after 2h of co-culture. * = p<0.05 and ** = p<=0.01. Each data point is an individual donor.
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of percentage of CAR+ cells and median fluorescence intensity

(MFI) compared to VSV-G-pseudotyped LVs. Similar results have

been reported in other cell types, such as NK cells (39, 40), B cells

(37, 47), and HSCs (36). This high transduction efficiency is

facilitated by the compatibility of BaEV-LVs with the soluble

peptide VF-1, which provides an advantage over traditional

RetroNectin-based methods, especially in the context of scalability

for clinical applications (48). We did not observe any difference in

terms of growth, phenotype or killing when VF-1 was added to

untransduced samples. It has also been reported elsewhere that VF-

1 is not toxic for hematopoietic stem cells (49). Importantly, BaEV-

LV transduction did not negatively impact the cellular composition,

phenotype, or activation/inhibition status of gd T cells. Our findings

indicate that transduced gd T cells maintained a high level of purity,

with most non-T cells being NK cells. NK cells have been reported

to have a synergistic action with gd T cells: their activity is enhanced

by gd T cells (50–52). They have also demonstrated a favorable

safety profile in clinical trials so far (53). Their presence is thus

advantageous for the safety and efficacy of a gd T cells-based cellular

product. The favorable phenotype observed in the expanded gd T

cell population is advantageous for immunotherapy applications.
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Memory gd T cells are associated with greater persistence and

potentially enhanced anti-tumor activity upon encountering target

cells, an important factor in solid tumor settings where long-term

cell activity is essential (54). The activation status of transduced cells

was also preserved, without evidence of tonic signaling or excessive

activation, which is crucial for preventing premature exhaustion

(55, 56). CAR- gd T cells in the BaEV transduced condition

expressed less CD69 than those in the VSV-G transduced

condition, which could suggest that cells expressing the highest

amount of CD69 were more favorably transduced by the BaEV LV.

The stability of inhibitory markers, including PD-1, KIR2D, and

TIGIT, suggests that BaEV CAR gd T cells are not more prone to

exhaustion and maintain a robust anti-tumor potential.

BaEV CAR gd T cells demonstrated high efficiency in selectively

killing B7H3-positive tumor cells, particularly against MDA-MB-468,

MCF-7, and U87-MG cell lines. The selectivity of BaEV CAR gd T

cells for target-positive cells underscores their therapeutic precision,

reducing the likelihood of off-target effects. Mechanistic studies

revealed that these cells exhibited increased degranulation (CD107a

expression) and secreted higher levels of pro-inflammatory cytokines

such as IFN-g and TNF-a when exposed to B7H3-positive target cells,
FIGURE 4

gd CAR T cell cytokine production. B7-H3 CAR gd T cells were co-cultured with tumor cell lines (x-axis) for 24h at an E:T ratio of 4:1. Supernatant
was collected and analyzed with a T/NK MACSplex kit. Granzyme B (A), perforin (B), IFN-g (C) and TNF-a (D) concentrations were detected in
samples containing gd CAR T cells and not in samples with targets alone. n=5. * = p<0.05, ** = p<=0.01. Each data point is an individual donor.
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suggesting that cytotoxic mechanisms are driven in part by both

degranulation and cytokine release. This dual mechanism may

enhance the durability and potency of gd T cell-mediated tumor

clearance. There may be additional mechanisms available to gd cells in
vivo that were not available in the in vitro setting of this study. gd T

cells have also been shown to induce antibody-dependent cellular

cytotoxicity (ADCC) (57, 58), thus further activating anti-tumor

immunity (59–65). The relevance of these findings is supported by

our observations in 3D tumor spheroid models. Unlike 2D cell
Frontiers in Immunology 09
cultures, 3D models better simulate the tumor microenvironment,

including hypoxic gradients and physical cell-to-cell interactions (66).

BaEV CAR gd T cells effectively controlled tumor growth at low E:T

ratios in 3D spheroids, a promising result for translating these

therapies to solid tumors, where T cell infiltration and persistence

are often challenging.

Our study demonstrates that BaEV-pseudotyped LVs offer an

efficient and scalable means of engineering gd T cells to express

CARs, preserving cell phenotype and activation status while
FIGURE 5

B7-H3 CAR gd T cells clear U87-MG tumor spheroids. B7-H3 CAR gd T cells were co-cultured with U87-MG WT or B7H3 KO in an Incucyte device.
(A, B) GFP integrated total intensity was measured every two hours for both U87-MG (A) and U87-MG B7-H3 KO (B) with and without gd T cells at a
1:1 E:T ratio. (C) Images for U87-MG GFP expression are shown every 24h for both UTD and B7-H3 CAR gd T cells co-cultures.
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achieving high levels of transduction and cytotoxicity. These BaEV

CAR gd T cells hold significant promise for solid tumor

immunotherapy, particularly for targeting B7-H3-positive cancers.

These features, combined with the potential for scalable

manufacturing, make BaEV LV-generated CAR gd T cells a

promising candidate for clinical development.
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