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Background: Distant metastasis remains a major reason for the high recurrence

and mortality of colorectal cancer (CRC). However, the underlying molecular

mechanisms driving metastasis in CRC remain poorly understood. In this study,

we investigated the mechanisms underlying the inhibitory effects of lipocalin-2

(LCN2) on CRC metastasis.

Methods:We assessed the expression and clinical significance of LCN2 in human

CRC specimens and CRC cell lines using, immunohistochemistry, and western

blot analyses. We evaluated the migratory and invasive capabilities of CRC cells

influenced by LCN2 using in vitro transwell assays and in vivo lung metastatic

models. RNA sequencing and proteome analysis were employed to identify

potential downstream targets of LCN2. Rescue experiments were conducted

to further elucidate the potential mechanisms of LCN2 and its downstream

effectors in CRC.

Results: LCN2 exhibited high expression levels in human CRC tissues and an

inverse correlation with N classification, advanced AJCC stages, and shorter

overall survival. LCN2 expression independently predicted a more favorable

outcome for CRC patients. Upregulation of LCN2 effectively suppressed CRC

cell metastasis both in vitro and in vivo. Mechanistically, Transforming growth

factor beta 1 (TGFB1) and C-X-C motif chemokine ligand 5 (CXCL5) were

identified as downstream effectors of LCN2, with LCN2 inhibiting CRC

metastasis through repression of the TGFB1/CXCL5 axis. Furthermore, either

TGF-bR1 inhibitor SB431542 or CXCR2 antagonist SB225002 treatment

moderately decreased the migratory and invasive capabilities of DLD-1-LV-

shLCN2 cells, whereas the combination treatment of the two agents

dramatically decreased the migratory and invasive capabilities of DLD-1-LV-

shLCN2 cells.
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Conclusions: This study underscores LCN2 as an independent protective factor

and prognostic biomarker for CRC patients. Combined treatment with the

SB431542 and the SB225002 significantly attenuated LCN2-related CRC

metastasis. Targeting the LCN2/TGFB1/CXCL5 axis emerges as a promising

therapeutic strategy for managing LCN2-related metastatic CRC.
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1 Introduction

With the third highest incidence and the second highest

mortality rates of all malignant tumors, colorectal cancer (CRC)

is by far one of the most prevalent and most deadly (1). Globally,

there were 2 million new cases and 0.9 million deaths associated

with CRC in 2020, and this number is expected to rise to 3.2 million

and 1.6 million by 2040 (2). For early-stage disease, surgical

resection and chemotherapy are capable of curing more than 90%

of CRC cases, however, once distant metastasis occurs, it is very

challenging to achieve curative treatment (3). The process of

metastasis involves a complex series of steps including that tumor

cells escape from their primary site and establish colonies in distant

tissues (4). Although significant advances have been made in

biomarker-driven targeted therapies, the treatment of metastasis

still lags far behind, especially for metastatic CRC (5). Thus,

unveiling the molecular mechanisms underlying metastasis in

CRC and identifying biomarkers are essential to develop novel

targeted therapeutic approaches.

Relying on the China Gastrointestinal Proteomics Project, our

research group provided hitherto undocumented evidence that

pseudouridine synthase 7 (PUS7) facilitates metastasis of CRC

cells by regulating LIM and SH3 protein 1 (LASP1) expression in

a previous study (6). To further extend the regulatory network of
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PUS7 in metastatic CRC, we conducted studies on Lipocalin-2

(LCN2), whose expression was the most significantly negatively

modulated by PUS7.

Lipocalin-2, also known as siderocalin, oncogene 24p3 or

neutrophil gelatinase-associated lipocalin (NGAL), is a 25KDa

secreted glycoprotein, acting as a carrier that primarily transports

lipophilic molecules (7). LCN2 was initially characterized as a

bacteriostatic factor and exerts biological function by inhibiting

the siderophore-mediated iron acquiring of bacteria, thus

suppressing bacterial growth (8).

An increasing body of evidence suggests that LCN2 is intricately

involved in multiple physiological and pathophysiological

functions, including neurodegenerative diseases (9–11),

inflammatory bowel disease (12), kidney diseases (13, 14), and

multiple cancers (15, 16). Most studies revealed that LCN2 is

responsible for facilitating tumor progression and metastasis (15,

16). For instance, in inflammatory breast cancer, augmented levels

of LCN2 reportedly promote tumor aggressiveness by regulating

cell cycle-associated proteins and are correlated with a poor

prognosis (15). In gastric cancer, low levels of LCN2 suppress cell

proliferation, migration, invasion and cell cycle by targeting SLPI

(16). Interestingly, some studies demonstrated that LCN2

contributes to inhibiting tumor development (17, 18). For

instance, in oral squamous cell carcinoma, downregulation of

LCN2 leads to increased survival, proliferation, migration, and

chemoresistance via the LKB1-AMPK-p53-Redd1-mTOR axis

(17). The discrepancies among these studies demonstrate that

LCN2 represents an important driver of tumor malignant

progression, but there are still some limitations. Thus, further

research is warranted to elucidate the critical molecular

mechanisms of LCN2.

Transforming growth factor beta 1 (TGFB1) belongs to the

TGF-b subfamily and the TGF-b signaling pathway, which

regulates cell fate and plays pleiotropic roles in tumor malignant

progression by regulating cell proliferation, apoptosis, migration,

and tumor microenvironment (TME) (19, 20). TGF-b executes its

functions through two signaling mechanisms: canonical TGF-b/
Smad pathway and non-canonical non-Smad pathways (including

p38, phosphoinositide 3-kinase (PI3K) and mitogen-activated

protein kinases (MAPKs) signaling cascades) (21). In the Smad-

dependent pathway, TGFB1 triggers signaling via binding to
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heterotetrameric receptor complexes, composed of dimers of TGF-

b type I receptors (TGFBR1) and type II receptors (TGFBR2), and

subsequently phosphorylate and activate Smad2/3, which form

transcriptional complexes with Smad4 and then translocate to the

nucleus, regulating multiple downstream target genes (22).

Substantial studies have demonstrated that TGF-b signaling

pathway has a dual role in cancer, switching between tumor-

suppressive and tumor-promoting phenotypes (20, 23). However,

the molecular mechanisms that underlie these inconsistencies have

not yet been clearly elucidated. C-X-C motif chemokine ligand 5

(CXCL5) is an inflammatory mediator that exerts a potent

chemotactic effect on neutrophils by binding to the G protein-

coupled receptor CXCR2 (24, 25). Previous studies have shown that

the CXCL5 expression is elevated in multiple types of cancer,

including colorectal cancer, breast cancer, gastric cancer, bladder

cancer, and hepatocellular carcinoma (24). In colorectal cancer,

CXCL5 mediates epithelial-mesenchymal transition (EMT) by

activating the ERK/Elk-1/Snail and AKT/GSK3b/b-catenin
signaling pathway, which promotes tumor cell migration and

invasion and liver metastases (26). Besides, in breast cancer, the

CXCL5/CXCR2 axis promotes tumor cell proliferation and

colonization in bone (27). Taken together, these findings suggest

that CXCL5 may play a pivotal and complex role in tumor

progression. Nevertheless, the mechanisms of its overexpression

in malignant tumors have rarely been reported, requiring more

intensive investigation. Herein, we found that LCN2 was

upregulated in CRC tissues and positively correlated with patient

prognosis. To our knowledge, this is the first study to report that

LCN2 suppresses the metastatic ability of CRC cells by inhibiting

the TGFB1/CXCL5 axis. Our study also demonstrated that

combination treatment with TGFB1 inhibitor SB431542 and

CXCL5 inhibitor SB225002 significantly suppressed LCN2-

mediated CRC metastasis.
2 Materials and methods

2.1 Public datasets

The public datasets collected in this study are publicly available

from Gene Expression Omnibus (GEO) database and Gene

Expression Profiling Interactive Analysis (GEPIA, http://

gepia.cancer-pku.cn/). GEO and GEPIA were employed to

analyze the mRNA expression level of LCN2 in human CRC

specimens compared with the non-malignant specimens.
2.2 Cell culture

All human CRC cells (SW480, SW620, DLD-1, HCT-8, HCT-

116, and RKO) were restored in our laboratory, and each cell line

was tested and authenticated by short tandem repeats (STRs) DNA

profiling. The above cell lines were incubated in an incubator with
Frontiers in Immunology 03
5% CO2 atmosphere at 37°C. DLD-1, HCT-8, HCT-116, and RKO

cell lines were cultured in RPMI1640 medium (Gibco, USA), while

SW480 and SW620 cell lines were cultured in DMEM medium

(Gibco, USA). The medium was supplemented with 10% fetal

bovine serum (FBS, Gibco, USA) and 100ug/ml penicillin-

streptomycin (Gibco, USA).
2.3 Human CRC tissue specimens and
tissue microarray

12 paired fresh CRC and healthy adjacent tissues were collected

from patients who underwent surgery for CRC at the Xijing

Hospital of Digestive Diseases, Xi’an, China. Written informed

assent was obtained from all patients involved, and ethical

approval for the use of human specimens was obtained from the

Xijing Hospital’s Protection of Human Subjects Committee.

HColA180Su19, a commercial human CRC tissue microarray

(TMA) containing tissue specimens from 94 CRC patients

(including 86 paired CRC tissues and adjacent normal tissues and

8 unpaired CRC tissues) and the associated clinicopathological

information was purchased from Outdo Biotech (Shanghai Outdo

Biotech, China).
2.4 Protein extractions and western blot

Human CRC t i s s u e s a n d c e l l s w e r e l y s e d i n

radioimmunoprecipitation assay lysis buffer (Proandy, China)

containing protease inhibitor (Beyotime, China) and phosphatase

inhibitor (Beyotime, China) mixture on ice to extract total proteins.

Protein concentration was detected by the BCA Protein Assay Kit

(Thermo Fisher, USA). The proteins were separated by SDS-PAGE

(Proandy, China) and then transferred to nitrocellulose (NC)

membranes (Merck Millipore, Germany). Nonspecific binding

sites on the NC membranes were blocked for 1h at room

temperature using 5% skimmed milk in TBS-Tween 20 (TBST,

Proandy, China). Afterward, the blots were incubated overnight at

4°C with the appropriate concentration of the specific primary

antibody. The following day, the membranes were rinsed three

times with TBST and then incubated with the corresponding

horseradish peroxidase (HRP)-conjugated secondary antibodies

(Zhongshan Golden Bridge Biotech, China) for 1h at room

temperature. UltraSignal enhanced chemiluminescent (ECL)

reagent kit (4A Biotech, China) was then used to visualize the

protein bands in a Bio-Rad ChemiDoc XRS+ Imaging System.

Protein quantification was performed by densitometric analysis

by Image Lab software 4.0.1.

The primary antibodies were employed as follows: anti-LCN2

(1:4000, #ab125075, Abcam, USA), anti-TGFB1 (1:1000,

#ab215715, Abcam, USA), anti-CXCL5 (1:5000, #ab126763,

Abcam, USA), anti-GAPDH (1:20000, #10494-1-AP, Proteintech,

China), anti-tubulin (1:10000, #11224-1-AP, Proteintech, China).
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2.5 RNA extraction and reverse
transcription-quantitative polymerase
chain reaction

According to the manufacturer’s protocol, total RNA was

extracted using the MiniBEST Universal RNA Extraction Kit

(TaKaRa, #9767, Japan), and then reverse transcription was

performed using the PrimeScript RT Master Mix (TaKaRa,

#RR036A, Japan) to synthesize complementary DNA (cDNA).

The target sequences were amplified with RT-qPCR using SYBR

Premix Ex Taq II (TaKaRa, #RR820A, Japan) on the CFX96 Real-

Time PCR detection system (Bio-Rad, CA, USA). Relative mRNA

expression levels were normalized to the b-actin mRNA levels and

were determined using the 2-DDCt method.

The primer sequences used in this study are listed in Table 1.
2.6 Immunohistochemistry and evaluation

Immunohistochemistry was employed to assess the expression of

LCN2 using a Tissue Microarray (TMA) slide (HColA180Su19,

Shanghai Outdo Biotech, China). The following steps were

undertaken: The TMA slide was placed in an incubator and heated to

65°C for 1 hour. The slide was dewaxed in xylene and subsequently

rehydrated through a graded ethanol immersion process. Antigen

retrieval was performed by immersing the slide in boiling citrate buffer

(0.01M, pH 6.0) for 2minutes. To block endogenous peroxidase activity,

the slide was treated with a 3% hydrogen peroxide (H2O2) solution for 10

minutes. The section was then blocked with 5% goat serum at room

temperature for 30 minutes. Next, it was incubated overnight at 4°C in a

moist chamber with the primary antibody against LCN2 (diluted at

1:250, #ab125075, Abcam, USA). On the following morning, the section

was subjected to a 30-minute incubation at room temperature with the

corresponding secondary antibodies conjugated with HRP (Zhongshan

Golden Bridge Biotech, China). Immunostaining was visualized by

incubating with diaminobenzidine (DAB, Zhongshan Golden Bridge

Biotech, China). The section was counterstained with hematoxylin,

followed by dehydration and cover-slipping. Digital images were

captured using a light microscope (Olympus, Japan) equipped with a

DP70 digital camera.
Frontiers in Immunology 04
The IHC results of the TMA were independently scored for

staining intensity by two pathologists, both of whom were blinded

to patient and clinical information. Staining intensity was assessed

using the following histological scoring standards: the percentage of

positive cells was scored as follows: 0 (negative), 1 (1–25%), 2 (26–

50%), 3 (51–75%), or 4 (76–100%). Immunostaining intensity was

evaluated as: 0 (negative), 1 (weak), 2 (medium), or 3 (strong). The

final scores, ranging from 0 to 12, were calculated by multiplying the

intensity and extent scores. Scores between 0 and 3 were categorized

as indicating low expression levels, while scores between 4 and 12

were categorized as indicating high expression levels.
2.7 Construction of lentivirus and stable
cell lines

To overexpress LCN2, a fragment of cDNA was cloned into the

GV358-Puro lentivirus vector, and the short hairpin RNA (shRNA)

sequence was incorporated into the GV248-Puro lentivirus vector to

silence LCN2. Corresponding negative controls (LV-NC and LV-

shNC) were constructed at the same time. All lentiviral vectors were

constructed and purchased by Shanghai Genechem (Genechem,

China). The LCN2 knockdown shRNA sequences was: LCN2

shRNA: cgGGGAATGCAATTCTCAGAG. Following the

instructions of the Genechem Recombinant Lentivirus Operation

Manual, Hitrans P (GeneChem, China) was applied for cell

transfection, which was conducted at 60% confluence with a final

lentivirus multiplicity of infection (MOI) of 30-50. 72 h after

infection, CRC cells were screened for using 2-5 mg/mL puromycin

(OriGene, USA). The transduction efficiency of the lentivirus was

confirmed using the RT-qPCR and Western blot assays.
2.8 In vitro migration and invasion assays

The migratory and invasive capacities of transfected cells were

measured in 24-well transwell chambers with an 8-mm pore

polycarbonate membrane filter (Corning, USA). For the

migration assays, 7 × 104 cells were seeded in the upper chamber

after being suspended with the corresponding medium without

FBS, and 600 mL of corresponding medium containing 20% FBS was

added into the bottom chamber. For the invasion assays, each

chamber insert was coated with 200 mg/mL of Matrigel (Corning,

USA). Then, 5 × 104 cells were seeded in the upper chamber after

being suspended with the corresponding medium without FBS, and

600 mL of the corresponding medium containing 20% FBS was

added into the bottom chamber. After incubation at 37°C for a fixed

duration, the cells that had migrated or invaded to the bottom

surface of the filter were fixed in 4% paraformaldehyde (Hete

Biotech, China) and then stained with 1% crystal violet

(Beyotime, China) for 10min. Finally, we visualized the cells that

migrated or invaded the bottom surface using a microscope

(Olympus, Japan) for counting the cells and statistical analysis.

All assays were performed in triplicate, and the relative migratory or

invasive capacities were expressed relative to the indicated

control cells.
TABLE 1 Primer sequences used in this study.

Primer name Primer sequences (5’-3’)

LCN2-F CTGAGTGCACAGGTGCCG

LCN2-R TTAGCAGACAAGGTGGGGCT

TGFB1-F ACGTGGAGCTGTACCAGAAAT

TGFB1-R TGAACCCGTTGATGTCCACT

CXCL5-F ACAGACCACGCAAGGAGTTC

CXCL5-R TCCTTGTTTCCACCGTCCAA

b-actin -F CTCCATCCTGGCCTCGCTGT

b-actin -R GCTGTCACCTTCACCGTTCC
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1548635
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2025.1548635
2.9 In vivo lung metastatic model

Five-week-old female BALB/c nude mice were purchased from

Weitonglihua Corporation (Beijing, China) and were raised and

cared for in a specific-pathogen-free environment. Animal

experiments were authorized by the Ethical Committee of the Air

Force Medical University. Twenty nude mice were randomly divided

into the HCT-8-LV-NC group and HCT-8-LV-LCN2 group (n = 10

in each group), and sixteen nude mice were randomly divided into

the DLD-1-LV-shNC group and DLD-1-LV-shLCN2 group (n = 8 in

each group). In vivo lung metastasis models were constructed via tail

vein injections. We injected 2 × 106 cell suspensions in 150 mL
phosphate-buffered saline (PBS, Gibco, USA) into the tail vein of

mice in HCT-8 groups and 3 × 106 cell suspensions in 150 mL (PBS,

Gibco, USA) into the tail vein of mice in the DLD-1 groups,

respectively. Eight weeks after the initial injections, the mice were

sacrificed, and lung metastatic nodules were carefully counted in

paraffin-embedded sections stained with hematoxylin-eosin (HE).
2.10 Agents

Recombinant human TGFB1 protein was purchased fromMCE

(#HY-P7118, China). Recombinant human CXCL5 protein was

purchased from MCE (#HY-P70572, China). The TGF-bR1
inhibitor SB431542 was purchased from Selleck Chemicals

(#S1067, USA). The CXCR2 antagonist SB225002 was purchased

from MCE (#HY-16711, USA).
2.11 Quantification and statistical analysis

All statistical analyses were performed using SPSS software

(version 23.0, IBM SPSS) and Prism software (version 8.2.1,

GraphPad Software). Comparisons of quantitative data were

compared between groups using the Student’s t-test or Mann-

Whitney U test. Comparisons of categorical data were analyzed

using Fisher’s exact test. Overall survival curves were estimated using

the Kaplan-Meier method, and the differences between the LCN2low

and LCN2high groups were evaluated by the log-rank test. Univariate

and multivariate analyses were conducted by the Cox proportional

hazards model to identify the independent affected factors for overall

survival. A p-value < 0.05 was statistically significant.
3 Results

3.1 LCN2 is upregulated in human CRC
tissues and correlates with longer overall
survival

To investigate the expression of LCN2 in human CRC, we analyzed

the mRNA expression levels in the GEO and GEPIA (28) databases.

The results showed that the mRNA expression levels of LCN2 were

significantly upregulated in CRC tissues compared with the adjacent
Frontiers in Immunology 05
normal tissues (Figures 1A, B). To confirm the increased expression of

LCN2, the protein expression levels of LCN2 examined by western blot

(WB) assay in 12 paired CRC and adjacent normal specimens revealed

that LCN2 was upregulated in most patients (n = 9/12) (Figure 1C). To

further evaluate the potential clinical value of LCN2, we performed IHC

staining on a cohort of tissuemicroarrays, including 86 paired CRC and

adjacent normal specimens and 8 unpaired CRC specimens. In this

cohort, the expression of LCN2 was upregulated in approximately

74.5% (70/94) of the paired specimens (Figures 1D, E). Next, the

relationship between clinicopathological features of CRC patients and

LCN2 expression was analyzed. Correlation analysis revealed that the

elevated LCN2 expression was negatively correlated with advanced

AJCC stages (p = 0.014) and N stage (p = 0.017) (Table 2). Multivariate

analysis indicated that high expression of LCN2 was an independent

protective factor for CRC patients (Table 3). Moreover, Kaplan-Meier

Plotter database analysis showed that CRC patients with high

expression of LCN2 had longer overall survival (OS) (Figure 1F).

Consistent with the database results, Kaplan-Meier survival analysis

demonstrated that CRC patients from Tissue Microarray with high

expression of LCN2 had a longer OS compared to those with low

expression of LCN2 (p < 0.0001) (Figure 1G). Collectively, these results

demonstrated that LCN2 was significantly upregulated in CRC and

positively correlated with the prognosis.
3.2 Overexpression of LCN2 suppresses
CRC metastasis in vitro and in vivo

To gain further insights into the function of LCN2 in CRC

metastasis, we examined LCN2 expression levels in HIEC6 and

several CRC cell lines by western blot assay. The results indicated

that LCN2 protein expression levels were upregulated in DLD-1

and SW480 cell lines and downregulated in HIEC6, HCT-8, SW620,

RKO, and HCT-116 cell lines (Figure 2A). To unveil the role of

LCN2 in CRC metastasis, HCT-8 cells with relatively low LCN2

expression and DLD-1 cells with relatively high LCN2 expression

were selected to construct HCT-8-LV-LCN2 and DLD-1- LV-

shLCN2 stable cell lines using recombinant lentivirus transfection

(Figure 2B). Then, the transfection efficiency was evaluated by RT-

qPCR and WB (Figures 2C, D).

Next, to investigate the effects of CRC cells with high and low

expression of LCN2 on migratory and invasive capacities, transwell

assays were performed. The results indicated that the ectopic

expression of LCN2 significantly diminished the migratory and

invasive capacities of HCT-8 cells, while downregulated expression

of LCN2 yielded the opposite effects on DLD-1 cells, compared with

the control group (Figures 2E, F).

Besides, to assess the effect of changes in LCN2 expression on

the metastatic potential of DLD-1 and HCT-8 cells, lung metastasis

models were constructed by tail vein injection in 5-week-old female

BALB/c nude mice. Similar results were obtained to those observed

in vitro; compared with the control group, LCN2 overexpression

significantly decreased the number of metastatic lung nodules and

lung metastasis incidence, while downregulation of LCN2

remarkably increased the number of metastatic lung nodules and
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lung metastasis incidence (Figures 2G, H). Collectively, these

findings demonstrated that LCN2 functioned as a metastasis-

suppressor in the migration and invasion of CRC cells.
3.3 Pro-metastatic proteins TGFB1 and
CXCL5 are downstream targets of LCN2

To further investigate the underlying molecular mechanisms of

LCN2 in inhibiting CRCmetastasis, RNA sequencing (RNA seq) was

performed in DLD-1-LV-shLCN2 and DLD-1-LV-shNC cells. There
Frontiers in Immunology 06
were 561 differentially expressed genes from DLD-1-LV-shLCN2 and

DLD-1-LV-shNC cells, among which 355 genes were upregulated

and 206 genes were downregulated (Fold Change > 2, p < 0.05). Gene

ontology (GO) analysis indicated that knockdown of LCN2 could

positively regulate cell migration (Figure 3A). Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analysis showed

that the knockdown of LCN2 was related to multiple pathways,

including estrogen signaling pathway, MAPK signaling pathway,

TNF signaling pathway, and ErbB signaling pathway (Figure 3B).

From a biological perspective, the transcriptome is the intermediate

state of gene expression, whereas proteins are the direct functional
FIGURE 1

LCN2 is upregulated in human CRC tissues and predicts longer overall survival. (A) The transcriptional levels of LCN2 between the adjacent
nontumor and CRC tissues were identified from the GEO database (GSE24514). (B) The transcriptional levels of LCN2 between the adjacent
nontumor and CRC tissues were identified from the GEPIA database. (C) The protein levels of LCN2 in 12 paired adjacent nontumor and CRC
specimens. (D, E) Plot of IHC scores of LCN2 expression in paired adjacent nontumor (n = 86) and CRC (n = 94) specimens and representative
positive IHC staining. (F) Kaplan-Meier Plotter database analysis showed that CRC patients with high expression of LCN2 had longer OS (G) Kaplan-
Meier survival analysis exhibited the relationship between OS and LCN2 expression in patients with CRC. Data are presented as the mean ± s.d. *p <
0.05, ***p < 0.001, ****p < 0.0001.
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performers of the organism; therefore, studying protein expression

levels is indispensable (29). Next, we performed proteome analysis

using DLD-1-LV-shLCN2 and DLD-1-LV-shNC cells, and 173

upregulated and 117 downregulated proteins were identified (Fold

Change > 2, p < 0.05) (Figure 3C). We downloaded STAR-counts data

and corresponding clinical information for CRC from the TCGA

database (https://portal.gdc.cancer.gov). We then extracted data in

TPM format and performed normalization using the log2(TPM+1)

transformation. After retaining samples that included both RNAseq

data and clinical information, we ultimately selected 620 samples

for further analysis. We collected the genes included in the

corresponding pathways and then analyzed them using the GSVA

package in R software, choosing the parameter method=‘ssgsea’ for

single-sample gene set enrichment analysis (ssGSEA). Finally, we

studied the correlation between gene expression and pathway scores

through Spearman correlation analysis. Statistical analysis was

conducted using R software, version v4.0.3. Results were

considered statistically significant when the p-value was less than

0.05. (Figure 3D). Among these candidate targets, TGFB1 and
Frontiers in Immunology 07
CXCL5 were significantly increased by knockdown of LCN2. RT-

qPCR and WB assays further confirmed that knockdown of LCN2

significantly upregulated the mRNA and protein expression levels

of TGFB1 and CXCL5, whereas the ectopic expression of LCN2

markedly reduced the mRNA and protein expression levels of

TGFB1 and CXCL5 (Figures 3E, F). Based on these results, it can

be inferred that the effects of LCN2 on CRC metastasis may be

mediated by TGFB1 and CXCL5.
3.4 TGFB1 and CXCL5 act as downstream
effectors of LCN2 to facilitate CRC
metastasis

SB431542, a specific and potent inhibitor of TGFb Receptor type

I (TGF-bR1), could effectively block the TGFB1-mediated canonical

pathway (30, 31). SB225002, as a CXCR2 selective antagonist, was

used to block CXCL5 signaling (32). To further verify the role of

TGFB1 and CXCL5 in LCN2-related CRC migration and invasion,
TABLE 2 Correlation between LCN2 expression and clinicopathological characteristics of human CRC tissues.

Clinicopathological variables Cases (No.) n=94
LCN2 (No.)

p-Value
Low Expression High Expression

Age(y) 0.939

<60 28 7 21

≥60 66 17 49

Gender 0.409

Male 48 14 34

Female 46 10 36

AJCC stage 0.014

I 10 0 10

II 48 9 39

III 31 12 19

IV 5 3 2

T classification 0. 098

1 1 0 1

2 10 0 10

3 51 12 39

4 32 12 20

N classification 0.017

0 60 10 50

1 25 9 16

2 9 4 3

M classification 0.069

0 89 21 68

1 5 3 2
frontiersin.org

https://portal.gdc.cancer.gov
https://doi.org/10.3389/fimmu.2025.1548635
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2025.1548635
DLD-1-LV-shLCN2 and DLD-1-LV-shNC cells were administrated

with TGF-bR1 inhibitor (SB431542) and CXCR2 antagonist

(SB225002), respectively. According to the results of WB, SB431542

could significantly decrease the intracellular expression of TGFB1,

and SB225002 could significantly decrease the intracellular

expression of CXCL5 (Figure 4A). Transwell assays demonstrated

that treatment with either SB431542 or SB225002 significantly

reduced the migratory and invasive capacities of DLD-1-LV-shNC

cells and impaired the enhanced migratory and invasive capacity of

DLD-1-LV-shLCN2 cells (Figure 4C). Subsequently, HCT-8-LV-NC

and HCT-8-LV-LCN2 cells were individually treated with TGFB1

protein and CXCL5 protein, which could increase the level of

intracellular TGFB1 or CXCL5 (Figure 4B). Transwell assays

illustrated that TGFB1 or CXCL5 treatment potentiated the

migratory and invasive capacities of HCT-8-LV-NC cells and

mitigated the reduced migratory and invasive capabilities of HCT-

8-LV-LCN2 cells (Figure 4D). Overall, these results indicated that

TGFB1 and CXCL5 acted as downstream effectors of LCN2 to

regulate CRC metastasis.
3.5 LCN2 inhibits CRC metastasis via the
TGFB1/CXCL5 axis and the combination of
TGF-bR1 inhibitor and CXCR2 antagonist
mitigates LCN2-related CRC metastasis

To determine the optimal concentration of TGFB1 and CXCL5,

HCT-8-LV-NC and HCT-8-LV-LCN2 cells were treated with

different concentrations. Interestingly, we observed that the

expression of CXCL5 significantly increased with increasing

concentration of TGFB1. However, the expression of TGFB1 was
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not altered with increasing concentration of CXCL5 (Figures 5A, B,

D). Based on this observation, we speculated that CXCL5 might be a

downstream effector of TGFB1. To further substantiate this

speculation, we exposed HCT-8-LV-LCN2 cells, which had been

treated with TGFB1 with 10ng/ml for 24h, to SB225002 (100mg/ml,

24h). Transwell assays demonstrated that TGFB1 enhanced the

migratory and invasive capabilities of HCT-8-LV-LCN2 cells,

whereas SB225002 significantly attenuated the migratory and

invasive properties promoted by TGFB1 (Figure 5C). These data

suggested that CXCL5 acts as a crucial functional downstream

effector of TGFB1 in CRC metastasis. More importantly, a novel

critical signaling axis LCN2/TGFB1/CXCL5 was identified to be

involved in the regulation of CRC metastasis (Figure 6).

In light of our above findings, we hypothesized that the

combination of SB431542 and SB225002 might have synergistic

effects on metastasis treatment in CRC. DLD-1-LV-shLCN2 cells

were administrated with SB431542 or SB225002, or both agents.

Transwell assays suggested that either SB431542 or SB225002

treatment moderately decreased the migratory and invasive

capabilities of DLD-1-LV-shLCN2 cells, whereas the combination

treatment of the two agents significantly reduced the migratory and

invasive capabilities of DLD-1-LV-shLCN2 cells (Figure 5E). Taken

together, combined administration of TGFB1 inhibitor SB431542

and CXCR2 antagonist SB225002 remarkably suppressed LCN2-

related CRC metastasis.
4 Discussion

In recent years, continuous advancements in surgical

techniques and the widespread adoption of high-quality screening
TABLE 3 Univariate and multivariate analysis of factors associated with overall survival of human CRC.

Clinicopathological
variables

Overall survival

p-Value Hazard ratio 95% Confidence interval

Univariate analysis

Age (<60 vs. ≥60) 0.903 0.959 0.486-1.893

Gender (Male vs. Female) 0.704 0.885 0.471-1.661

AJCC stage (I vs. II vs. III vs. IV) <0.001 2.955 1.898-4.599

T classification (T1 vs. T2 vs. T3 vs. T4) 0.001 2.450 1.418-4.231

N classification (N1 vs. N2 vs. N3) <0.001 2.582 1.718-3.883

M classification (M0 vs. M1) 0.002 4.700 1.761-12.546

LCN2 expression (Low vs. High) <0.001 0.092 0.046-0.184

Multivariate analysis

AJCC stage (I+II vs. III+IV) 0.363 1.656 0.559-4.910

T classification (I vs. II vs. III vs. IV) 0.225 1.481 0.785-2.794

N classification (I vs. II vs. III) 0.788 1.107 0.529-2.313

M classification (M0 vs. M1) 0.831 0.833 0.156-4.442

LCN2 expression (Low vs. High) <0.001 0.142 0.068-0.301
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1548635
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2025.1548635
programs have translated into improved survival rates of patients

with CRC (33, 34). Nevertheless, distant metastasis remains the

primary contributor leading to poor clinical prognosis, with 5-year

survival rates decreasing from 91% for early-stage disease to 14% for

advanced metastatic disease (3). Thus, elucidating the molecular
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mechanisms of metastasis is essential for the development of

targeted therapeutic strategies.

In this study, analysis of data from GEO and GEPIA databases

revealed that the expression level of LCN2 in CRC tissues was

upregulated and subsequently validated via RT-qPCR, WB, and
FIGURE 2

Overexpression of LCN2 suppresses CRC metastasis in vitro and in vivo. (A) The protein expression levels of LCN2 in HIEC6 and CRC cell lines RKO,
DLD-1, HCT-8, HCT-116, SW480, and SW620. (B) Structure of lentiviral vectors. (C, D) The lentivirus transfection efficiency in DLD-1 and HCT-8
CRC cells was verified by RT-qPCR and WB. (E, F) Migratory and invasive capabilities assessed by transwell assay for the indicated CRC cell lines.
(G, H) Hematoxylin-eosin (H&E) staining of lung tissues from representative mice and the number of lung metastatic foci in each group at 8 weeks.
(n = 10 mice per group for DLD-1 cells and n = 8 mice per group for HCT-8 cells). Data are presented as the mean ± s.d. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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FIGURE 3

Pro-metastatic proteins TGFB1 and CXCL5 are downstream targets of LCN2. (A, B) Bubble plot for visualizing GO and KEGG term enrichment based
on RNA-seq results. (C) Bubble plot for visualizing KEGG term enrichment based on proteome profiling results. (D) This is a Spearman correlation
analysis plot, which is used to show the correlation between the TGF-b pathway score and the expression of LCN2. In this plot, the X-axis represents
the distribution of the expression of LCN2, and the Y-axis represents the distribution of the TGF-b pathway score. The values at the top represent
the results of the Spearman correlation analysis, including the p-value, correlation coefficient. (E) WB and RT-qPCR analysis of the TGFB1 and CXCL5
expression in LCN2 silencing DLD-1 cells. (F) WB and RT-qPCR analysis of the TGFB1 and CXCL5 expression in LCN2 overexpressing HCT-8 cells.
Data are presented as the mean ± s.d. *p < 0.05, **p < 0.01, ***p < 0.001.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2025.1548635
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2025.1548635
immunohistochemical assays. Furthermore, we assessed the relationship

between clinical follow-up data and immunohistochemical score, which

demonstrated that LCN2was significantly correlated with AJCC stage, N

classification, and OS. More importantly, multivariate analysis showed

that the high expression of LCN2 was an independent protective factor
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for OS. Next, LCN2 overexpression and knockdown cell lines were

constructed via lentiviral vectors to perform gain- and loss-of-function

experiments, demonstrating that LCN2 could serve as a tumor

suppressor gene in CRC metastasis. By analyzing transcriptomic and

proteomic results and validation by RT-qPCR, WB, and rescue
FIGURE 4

TGFB1 and CXCL5 act as downstream effectors of LCN2 to facilitate CRC metastasis. (A) WB analysis showed that TGF-bR1 inhibitor SB431542 or
CXCR2 antagonist SB225002 could significantly weaken the expression level of intracellular TGFB1 or CXCL5, respectively. (B) WB analysis showed
that recombinant human TGFB1 or CXCL5 protein could significantly enhance the expression level of intracellular TGFB1 or CXCL5, respectively.
(C) Representative images from transwell assays showed the migratory and invasive capabilities of DLD-1-LV-shNC/shLCN2 cells after treatment
with TGF-bR1 inhibitor SB431542 and CXCR2 antagonist SB225002. (D) Representative images from transwell assays showed the migratory and
invasive capabilities of HCT-8-LV-NC/LCN2 cells after treatment with recombinant human TGFB1 or CXCL5 protein. Data are presented as the mean
± s.d. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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experiments, TGFB1 and CXCL5 were identified as downstream targets

of LCN2. Interestingly, we found that CXCL5 is a downstream target of

TGFB1, forming the LCN2/TGFB1/CXCL5 axis, which suppresses CRC

metastasis by inhibiting cell migration and invasion. Considering that

TGFB1 and CXCL5 are promising therapeutic targets, we hypothesized

that combining these two strategies may yield synergistic anticancer
Frontiers in Immunology 12
effects. Indeed, our results demonstrated limited efficacy when SB431542

or SB225002 was used in isolation, whereas their combined application

exhibited significant synergy in suppressing CRC metastasis. Therefore,

the co-administration of TGFB1 inhibitors and CXCL5 inhibitors for the

treatment of LCN2-induced CRC metastasis emerges as a promising

therapeutic strategy.
FIGURE 5

LCN2 inhibits CRC metastasis via the TGFB1/CXCL5 axis. (A, B) Western blot analysis demonstrates a marked increase in the protein levels of CXCL5
with varying concentrations of recombinant human TGFB1 protein. Conversely, the protein levels of TGFB1 remain largely unchanged across varying
concentrations of recombinant human CXCL5 protein. (C) Representative images from transwell assays illustrate the migratory and invasive
capabilities of HCT-8-LV-LCN2 cells after treatment with recombinant human TGFB1 alone or in combination with SB225002 (CXCR2 antagonist).
(D) WB analysis showed that TGFB1 is a potential positive regulator upstream of CXCL5. (E) Representative images from transwell assays showed the
migratory and invasive capabilities of DLD-1-LV-shLCN2 cells after treatment with TGF-bR1 inhibitor SB431542, CXCR2 antagonist SB225002 or the
combination of both agents. Data are presented as the mean ± s.d. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Although previous studies on LCN2 have demonstrated

conflicting roles as an oncogene or a tumor suppressor gene in

multiple malignancies, such as gastric cancer (16, 35, 36), breast

cancer (15, 37), ovarian cancer (38), prostate cancer (39), oral

squamous cell carcinoma (17), hepatocellular carcinoma (18),

cholangiocarcinoma (40) and colorectal cancer (41), research on

the tumor metastasis is far from sufficient particularly regarding the

underlying mechanisms. In this study, we uncovered a novel

regulatory axis , LCN2/TGFB1/CXCL5, expanding our

understanding of LCN2’s role in CRC. In addition, numerous

studies have revealed that the expression of CXCL5 is widely

upregulated in malignant tumors, which could be responsible for

the malignant phenotypes, including lymphatic metastasis (42),

tumor angiogenesis (43), proliferation (44), migration and

invasion (25–27, 44, 45). However, the mechanisms of its

overexpression in malignant tumors have rarely been reported.

Herein, we found that CXCL5 overexpression in CRC was caused

by the downregulation of LCN2. Furthermore, there is increasing

evidence suggesting that LCN2 is responsible for malignant

phenotypes via activating various signaling pathways (18, 41, 46).

In recent years, research on the distinct role of the TGF-b signaling

pathway in cancer progression has gained significant momentum,

including EMT and apoptosis (47), chemoresistance (48),

angiogenesis (49), and metastasis (48, 50). Our findings suggest

that LCN2 may suppress CXCL5 expression by inhibiting the TGF-

b signaling pathway, serving as a bridge between these key elements.

However, another study has indicated that LCN2 is a downstream

target of TGFB1, leading to the downregulation of Twist1 (46). It is

highly conceivable that there is a negative feedback loop between

LCN2 and TGFB1. The mechanisms behind this interesting

phenomenon are worth further exploring.

In recent years, the functions of LCN2 in the metastatic

phenotype of malignant tumors have attracted a significant

amount of interest (15–17, 35, 41). It is widely thought that

LCN2 is mainly involved in regulating tumor metastasis by
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promoting or suppressing the progression of EMT and MET. The

metastasis of cancers can be attributed to their complex ecosystem

of cells with heterogeneous functional states, which is known as the

TME (51). The cellular composition and functional status of TME

may vary considerably depending on the organ in which the tumor

arises, the intrinsic characteristics of the cancer cells, the stage of the

tumor, and patient characteristics (51). Combining the multiple

physiological and pathophysiological functions of LCN2, we

speculated that LCN2 might be involved in metastatic progression

by regulating the TME. First, the presence of iron is essential for the

growth of almost all organisms and its homeostasis is tightly

associated with inflammation and cancer (8, 52). LCN2

specifically binds to siderophores (53), altering intracellular iron

levels (54), which plays a critical regulatory role in tumor

proliferation and metastasis (52, 55) via altering TME-cells

survival status. Besides, LCN2 is closely related to ferroptosis

(56, 57), which is a phenotype of cell death (58). The secreted

LCN2 plays a crucial role in inducing the ferroptosis and wasting of

adipose and muscle tissues in lung cancer cachexia (56). It has been

reported that upregulation of LCN2 could deplete iron and weaken

sensitivity to ferroptosis inducers in liver cancer cells (57). The

above studies overlap in their assertion that LCN2 could regulate

the ferroptosis process of both tumor cells and TME cells, ultimately

playing a synergistic role in promoting CRC metastasis.

Furthermore, tumor-associated macrophages (TAM) are the

primary source of iron for the tumor (59). Besides, the

upregulation of LCN2 in TAM contributes to the enhancement of

iron release from TAM to the TME, enhancing tumor growth (60).

The study by Chaudhary et al (61), indicated that the cell death

induced by 5-fluorouracil (5FU) partially depends on the

ferroptosis pathway, while LCN2 protects tumor cells through the

aforementioned mechanisms, resulting in therapeutic resistance.

LCN2 suppresses ferroptosis via dual mechanisms—iron

metabolism regulation and antioxidant gene expression—thereby

driving chemoresistance and tumor progression in colorectal
FIGURE 6

Schematic representation of LCN2/TGFB1/CXCL5 signaling axis created using Figdraw.
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cancer. The monoclonal antibody targeting LCN2 provides a novel

strategy to overcome therapeutic resistance and demonstrates

significant potential for clinical translation. Taken together, these

findings suggest that LCN2 may regulate CRC metastasis by

exerting bidirectional effects on both tumor cells and TME cells,

and the LCN2/TGFB1/CXCL5 axis discovered in this study

represents just a fraction of its complex involvement. Further in-

depth investigations are warranted to unravel these intricate

interactions in the future.

Nonetheless, our study possesses limitations that require further

attention. Firstly, although we established that LCN2 is

overexpressed in CRC, the regulatory mechanisms involving the

upstream molecule PUS7 remain unknown. The specific molecular

mechanisms by which LCN2 regulates TGFB1 and CXCL5 were not

fully elucidated. Secondly, the relatively small number of patients

included in the CRC tissue microarray may introduce limitations to

our outcomes. The absence of in vivo experiments investigating

TGF-bR1 inhibitor SB431542 and CXCR2 antagonist SB225002-

based therapeutic approaches significantly compromises the clinical

relevance of the LCN2-TGFB1-CXCL5 regulatory axis. Thirdly, in

vitro-cultured CRC cells may not fully recapitulate the TME that

operates in vivo. Fourthly, the specific molecular mechanisms by

which LCN2 regulates TGFB1 were not fully elucidated.

Additionally, the regulatory mechanisms of the TGF-b pathway

on CXCL5, a downstream target molecule, remain unclear and

require further in-depth investigation. Finally, our study has

focused solely on one phenotype of LCN2 in CRC—metastasis,

while other tumor-progression-influencing phenotypes such as

proliferation and apoptosis still require in-depth investigation to

explore LCN2’s broader potential and clinical significance.
5 Conclusions

In the present study, we confirmed that LCN2 exhibits high

expression levels in CRC tissues, and LCN2 expression

independently predicted a more favorable outcome for CRC

patients. Upregulation of LCN2 effectively suppressed CRC cell

metastasis both in vitro and in vivo. TGFB1 and CXCL5 were

identified as downstream target genes of LCN2, and rescue

experiments verified the necessity of TGFB1 and CXCL5 in

LCN2-mediated CRC cell migration and invasion. Combined

treatment of SB431542 and SB225002 dramatically decreased

LCN2-related CRC metastasis. Thus, we elucidated the molecular

mechanism of LCN2 inhibiting the migration and invasion of CRC

cells and clarified that targeting the TGFB1/CXCL5 axis may be a

novel approach for LCN2-related CRC therapy.
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